1
|
Brown KH, Kerr BN, Pettigrew M, Connor K, Miller IS, Shiels L, Connolly C, McGarry C, Byrne AT, Butterworth KT. A comparative analysis of preclinical computed tomography radiomics using cone-beam and micro-computed tomography scanners. Phys Imaging Radiat Oncol 2024; 31:100615. [PMID: 39157293 PMCID: PMC11328005 DOI: 10.1016/j.phro.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Background and purpose Radiomics analysis extracts quantitative data (features) from medical images. These features could potentially reflect biological characteristics and act as imaging biomarkers within precision medicine. However, there is a lack of cross-comparison and validation of radiomics outputs which is paramount for clinical implementation. In this study, we compared radiomics outputs across two computed tomography (CT)-based preclinical scanners. Materials and methods Cone beam CT (CBCT) and µCT scans were acquired using different preclinical CT imaging platforms. The reproducibility of radiomics features on each scanner was assessed using a phantom across imaging energies (40 & 60 kVp) and segmentation volumes (44-238 mm3). Retrospective mouse scans were used to compare feature reliability across varying tissue densities (lung, heart, bone), scanners and after voxel size harmonisation. Reliable features had an intraclass correlation coefficient (ICC) > 0.8. Results First order and GLCM features were the most reliable on both scanners across different volumes. There was an inverse relationship between tissue density and feature reliability, with the highest number of features in lung (CBCT=580, µCT=734) and lowest in bone (CBCT=110, µCT=560). Comparable features for lung and heart tissues increased when voxel sizes were harmonised. We have identified tissue-specific preclinical radiomics signatures in mice for the lung (133), heart (35), and bone (15). Conclusions Preclinical CBCT and µCT scans can be used for radiomics analysis to support the development of meaningful radiomics signatures. This study demonstrates the importance of standardisation and emphasises the need for multi-centre studies.
Collapse
Affiliation(s)
- Kathryn H Brown
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Brianna N Kerr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Mihaela Pettigrew
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Kate Connor
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ian S Miller
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- National Preclinical Imaging Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Liam Shiels
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Colum Connolly
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Conor McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
- Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Belfast, United Kingdom
| | - Annette T Byrne
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- National Preclinical Imaging Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
2
|
Clausen M, Ruangchan S, Sotoudegan A, Resch AF, Knäusl B, Palmans H, Georg D. Small field proton irradiation for in vivo studies: Potential and limitations when adapting clinical infrastructure. Z Med Phys 2023; 33:542-551. [PMID: 36357294 PMCID: PMC10751703 DOI: 10.1016/j.zemedi.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To evaluate the dosimetric accuracy for small field proton irradiation relevant for pre-clinical in vivo studies using clinical infrastructure and technology. In this context additional beam collimation and range reduction was implemented. METHODS AND MATERIALS The clinical proton beam line employing pencil beam scanning (PBS) was adapted for the irradiation of small fields at shallow depths. Cylindrical collimators with apertures of 15, 12, 7 and 5mm as well as two different range shifter types, placed at different distances relative to the target, were tested: a bolus range shifter (BRS) attached to the collimator and a clinical nozzle mounted range shifter (CRS) placed at a distance of 72cm from the collimator. The Monte Carlo (MC) based dose calculation engine implemented in the clinical treatment planning system (TPS) was commissioned for these two additional hardware components. The study was conducted with a phantom and cylindrical target sizes between 2 and 25mm in diameter following a dosimetric end-to-end test concept. RESULTS The setup with the CRS provided a uniform dose distribution across the target. An agreement of better than5% between the planned dose and the measurements was obtained for a target with 3mm diameter (collimator 5mm). A 2mm difference between the collimator and the target diameter (target being 2 mm smaller than the collimator) sufficed to cover the whole target with the planned dose in the setup with CRS. Using the BRS setup (target 8mm, collimator 12mm) resulted in non-homogeneous dose distributions, with a dose discrepancy of up to 10% between the planned and measured doses. CONCLUSION The clinical proton infrastructure with adequate beam line adaptations and a state-of-the-art TPS based on MC dose calculations enables small animal irradiations with a high dosimetric precision and accuracy for target sizes down to 3mm.
Collapse
Affiliation(s)
- Monika Clausen
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.
| | - Sirinya Ruangchan
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria; Division of Therapeutic Radiation and Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Arame Sotoudegan
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Andreas F Resch
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Barbara Knäusl
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Hugo Palmans
- Division of Medical Physics, MedAustron Ion Therapy Center, Wiener Neustadt, Austria; National Physical Laboratory, Teddington, United Kingdom
| | - Dietmar Georg
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria; Division of Medical Physics, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
3
|
Biltekin F, Bäumer C, Esser J, Ghanem O, Ozyigit G, Timmermann B. Preclinical Dosimetry for Small Animal Radiation Research in Proton Therapy: A Feasibility Study. Int J Part Ther 2023; 10:13-22. [PMID: 37823014 PMCID: PMC10563666 DOI: 10.14338/ijpt-22-00035.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/10/2023] [Indexed: 10/13/2023] Open
Abstract
Purpose To evaluate the feasibility of the three-dimensional (3D) printed small animal phantoms in dosimetric verification of proton therapy for small animal radiation research. Materials and Methods Two different phantoms were modeled using the computed-tomography dataset of real rat and tumor-bearing mouse, retrospectively. Rat phantoms were designed to accommodate both EBT3 film and ionization chamber. A subcutaneous tumor-bearing mouse phantom was only modified to accommodate film dosimetry. All phantoms were printed using polylactic-acid (PLA) filament. Optimal printing parameters were set to create tissue-equivalent material. Then, proton therapy plans for different anatomical targets, including whole brain and total lung irradiation in the rat phantom and the subcutaneous tumor model in the mouse phantom, were created using the pencil-beam scanning technique. Point dose and film dosimetry measurements were performed using 3D-printed phantoms. In addition, all phantoms were analyzed in terms of printing accuracy and uniformity. Results Three-dimensionally printed phantoms had excellent uniformity over the external body, and printing accuracy was within 0.5 mm. According to our findings, two-dimensional dosimetry with EBT3 showed acceptable levels of γ passing rate for all measurements except for whole brain irradiation (γ passing rate, 89.8%). In terms of point dose analysis, a good agreement (<0.1%) was found between the measured and calculated point doses for all anatomical targets. Conclusion Three-dimensionally printed small animal phantoms show great potential for dosimetric verifications of clinical proton therapy for small animal radiation research.
Collapse
Affiliation(s)
- Fatih Biltekin
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
| | - Christian Bäumer
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- TU Dortmund University, Department of Physics, Dortmund, Germany
| | - Johannes Esser
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
| | - Osamah Ghanem
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
| | - Gokhan Ozyigit
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- TU Dortmund University, Department of Physics, Dortmund, Germany
- Department of Particle Therapy, University Hospital Essen, Essen, Germany
| |
Collapse
|
4
|
Brown KH, Payan N, Osman S, Ghita M, Walls GM, Patallo IS, Schettino G, Prise KM, McGarry CK, Butterworth KT. Development and optimisation of a preclinical cone beam computed tomography-based radiomics workflow for radiation oncology research. Phys Imaging Radiat Oncol 2023; 26:100446. [PMID: 37252250 PMCID: PMC10213103 DOI: 10.1016/j.phro.2023.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
Background and purpose Radiomics features derived from medical images have the potential to act as imaging biomarkers to improve diagnosis and predict treatment response in oncology. However, the complex relationships between radiomics features and the biological characteristics of tumours are yet to be fully determined. In this study, we developed a preclinical cone beam computed tomography (CBCT) radiomics workflow with the aim to use in vivo models to further develop radiomics signatures. Materials and methods CBCT scans of a mouse phantom were acquired using onboard imaging from a small animal radiotherapy research platform (SARRP, Xstrahl). The repeatability and reproducibility of radiomics outputs were compared across different imaging protocols, segmentation sizes, pre-processing parameters and materials. Robust features were identified and used to compare scans of two xenograft mouse tumour models (A549 and H460). Results Changes to the radiomics workflow significantly impact feature robustness. Preclinical CBCT radiomics analysis is feasible with 119 stable features identified from scans imaged at 60 kV, 25 bin width and 0.26 mm slice thickness. Large variation in segmentation volumes reduced the number of reliable radiomics features for analysis. Standardization in imaging and analysis parameters is essential in preclinical radiomics analysis to improve accuracy of outputs, leading to more consistent and reproducible findings. Conclusions We present the first optimised workflow for preclinical CBCT radiomics to identify imaging biomarkers. Preclinical radiomics has the potential to maximise the quantity of data captured in in vivo experiments and could provide key information supporting the wider application of radiomics.
Collapse
Affiliation(s)
- Kathryn H. Brown
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
| | - Neree Payan
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
| | - Sarah Osman
- University College London Hospitals NHS Foundation Trust Department of Radiotherapy, London, UK
| | - Mihaela Ghita
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
| | - Gerard M. Walls
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
- Cancer Centre, Belfast Health & Social Care Trust, Lisburn Road, Belfast BT9 7AB, Northern Ireland, UK
| | | | | | - Kevin M. Prise
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
| | - Conor K. McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
- Cancer Centre, Belfast Health & Social Care Trust, Lisburn Road, Belfast BT9 7AB, Northern Ireland, UK
| | - Karl T. Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
| |
Collapse
|
5
|
Verhaegen F, Butterworth KT, Chalmers AJ, Coppes RP, de Ruysscher D, Dobiasch S, Fenwick JD, Granton PV, Heijmans SHJ, Hill MA, Koumenis C, Lauber K, Marples B, Parodi K, Persoon LCGG, Staut N, Subiel A, Vaes RDW, van Hoof S, Verginadis IL, Wilkens JJ, Williams KJ, Wilson GD, Dubois LJ. Roadmap for precision preclinical x-ray radiation studies. Phys Med Biol 2023; 68:06RM01. [PMID: 36584393 DOI: 10.1088/1361-6560/acaf45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
This Roadmap paper covers the field of precision preclinical x-ray radiation studies in animal models. It is mostly focused on models for cancer and normal tissue response to radiation, but also discusses other disease models. The recent technological evolution in imaging, irradiation, dosimetry and monitoring that have empowered these kinds of studies is discussed, and many developments in the near future are outlined. Finally, clinical translation and reverse translation are discussed.
Collapse
Affiliation(s)
- Frank Verhaegen
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
- SmART Scientific Solutions BV, Maastricht, The Netherlands
| | - Karl T Butterworth
- Patrick G. Johnston, Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Anthony J Chalmers
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Rob P Coppes
- Departments of Biomedical Sciences of Cells & Systems, Section Molecular Cell Biology and Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Dirk de Ruysscher
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sophie Dobiasch
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Germany
- Department of Medical Physics, Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Germany
| | - John D Fenwick
- Department of Medical Physics & Biomedical Engineering University College LondonMalet Place Engineering Building, London WC1E 6BT, United Kingdom
| | | | | | - Mark A Hill
- MRC Oxford Institute for Radiation Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
- German Cancer Consortium (DKTK), Partner site Munich, Germany
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, NY, United States of America
| | - Katia Parodi
- German Cancer Consortium (DKTK), Partner site Munich, Germany
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching b. Munich, Germany
| | | | - Nick Staut
- SmART Scientific Solutions BV, Maastricht, The Netherlands
| | - Anna Subiel
- National Physical Laboratory, Medical Radiation Science Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom
| | - Rianne D W Vaes
- MAASTRO Clinic, Radiotherapy Division, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Ioannis L Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jan J Wilkens
- Department of Radiation Oncology, Technical University of Munich (TUM), School of Medicine and Klinikum rechts der Isar, Germany
- Physics Department, Technical University of Munich (TUM), Germany
| | - Kaye J Williams
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - George D Wilson
- Department of Radiation Oncology, Beaumont Health, MI, United States of America
- Henry Ford Health, Detroit, MI, United States of America
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Silvestre Patallo I, Subiel A, Carter R, Flynn S, Schettino G, Nisbet A. Characterization of Inorganic Scintillator Detectors for Dosimetry in Image-Guided Small Animal Radiotherapy Platforms. Cancers (Basel) 2023; 15:987. [PMID: 36765943 PMCID: PMC9913621 DOI: 10.3390/cancers15030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The purpose of the study was to characterize a detection system based on inorganic scintillators and determine its suitability for dosimetry in preclinical radiation research. Dose rate, linearity, and repeatability of the response (among others) were assessed for medium-energy X-ray beam qualities. The response's variation with temperature and beam angle incidence was also evaluated. Absorbed dose quality-dependent calibration coefficients, based on a cross-calibration against air kerma secondary standard ionization chambers, were determined. Relative output factors (ROF) for small, collimated fields (≤10 mm × 10 mm) were measured and compared with Gafchromic film and to a CMOS imaging sensor. Independently of the beam quality, the scintillator signal repeatability was adequate and linear with dose. Compared with EBT3 films and CMOS, ROF was within 5% (except for smaller circular fields). We demonstrated that when the detector is cross-calibrated in the user's beam, it is a useful tool for dosimetry in medium-energy X-rays with small fields delivered by Image-Guided Small Animal Radiotherapy Platforms. It supports the development of procedures for independent "live" dose verification of complex preclinical radiotherapy plans with the possibility to insert the detectors in phantoms.
Collapse
Affiliation(s)
- Ileana Silvestre Patallo
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
| | - Anna Subiel
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
| | - Rebecca Carter
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Samuel Flynn
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
- School of Physics and Astronomy, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, UK
| | - Giuseppe Schettino
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Andrew Nisbet
- Department of Medical Physics & Biomedical Engineering, University College London, Mallet Place Engineering Building, London WC1E 6BT, UK
| |
Collapse
|
7
|
Biglin ER, Aitkenhead AH, Price GJ, Chadwick AL, Santina E, Williams KJ, Kirkby KJ. A preclinical radiotherapy dosimetry audit using a realistic 3D printed murine phantom. Sci Rep 2022; 12:6826. [PMID: 35474242 PMCID: PMC9042835 DOI: 10.1038/s41598-022-10895-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Preclinical radiation research lacks standardized dosimetry procedures that provide traceability to a primary standard. Consequently, ensuring accuracy and reproducibility between studies is challenging. Using 3D printed murine phantoms we undertook a dosimetry audit of Xstrahl Small Animal Radiation Research Platforms (SARRPs) installed at 7 UK centres. The geometrically realistic phantom accommodated alanine pellets and Gafchromic EBT3 film for simultaneous measurement of the dose delivered and the dose distribution within a 2D plane, respectively. Two irradiation scenarios were developed: (1) a 10 × 10 mm2 static field targeting the pelvis, and (2) a 5 × 5 mm2 90° arc targeting the brain. For static fields, the absolute difference between the planned dose and alanine measurement across all centres was 4.1 ± 4.3% (mean ± standard deviation), with an overall range of - 2.3 to 10.5%. For arc fields, the difference was - 1.2% ± 6.1%, with a range of - 13.1 to 7.7%. EBT3 dose measurements were greater than alanine by 2.0 ± 2.5% and 3.5 ± 6.0% (mean ± standard deviation) for the static and arc fields, respectively. 2D dose distributions showed discrepancies to the planned dose at the field edges. The audit demonstrates that further work on preclinical radiotherapy quality assurance processes is merited.
Collapse
Affiliation(s)
- Emma R Biglin
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK.
| | - Adam H Aitkenhead
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Gareth J Price
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Amy L Chadwick
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Elham Santina
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Kaye J Williams
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Karen J Kirkby
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK
- The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
8
|
Silvestre Patallo I, Carter R, Maughan D, Nisbet A, Schettino G, Subiel A. Evaluation of a micro ionization chamber for dosimetric measurements in image-guided preclinical irradiation platforms. Phys Med Biol 2021; 66. [PMID: 34794132 DOI: 10.1088/1361-6560/ac3b35] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022]
Abstract
Image-guided small animal irradiation platforms deliver small radiation fields in the medium energy x-ray range. Commissioning of such platforms, followed by dosimetric verification of treatment planning, are mostly performed with radiochromic film. There is a need for independent measurement methods, traceable to primary standards, with the added advantage of immediacy in obtaining results. This investigation characterizes a small volume ionization chamber in medium energy x-rays for reference dosimetry in preclinical irradiation research platforms. The detector was exposed to a set of reference x-ray beams (0.5 to 4 mm Cu HVL). Leakage, reproducibility, linearity, response to detector's orientation, dose rate, and energy dependence were determined for a 3D PinPoint ionization chamber (PTW 31022). Polarity and ion recombination were also studied. Absorbed doses at 2 cm depth were compared, derived either by applying the experimentally determined cross-calibration coefficient at a typical small animal radiation platform "user's" quality (0.84 mm Cu HVL) or by interpolation from air kerma calibration coefficients in a set of reference beam qualities. In the range of reference x-ray beams, correction for ion recombination was less than 0.1%. The largest polarity correction was 1.4% (for 4 mm Cu HVL). Calibration and correction factors were experimentally determined. Measurements of absorbed dose with the PTW 31022, in conditions different from reference were successfully compared to measurements with a secondary standard ionization chamber. The implementation of an End-to-End test for delivery of image-targeted small field plans resulted in differences smaller than 3% between measured and treatment planning calculated doses. The investigation of the properties and response of a PTW 31022 small volume ionization chamber in medium energy x-rays and small fields can contribute to improve measurement uncertainties evaluation for reference and relative dosimetry of small fields delivered by preclinical irradiators while maintaining the traceability chain to primary standards.
Collapse
Affiliation(s)
- Ileana Silvestre Patallo
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Rebecca Carter
- Cancer Institute, University College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - David Maughan
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Andrew Nisbet
- Department of Medical Physics & Biomedical Engineering, University College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Giuseppe Schettino
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, Middlesex, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Anna Subiel
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
9
|
Suckert T, Nexhipi S, Dietrich A, Koch R, Kunz-Schughart LA, Bahn E, Beyreuther E. Models for Translational Proton Radiobiology-From Bench to Bedside and Back. Cancers (Basel) 2021; 13:4216. [PMID: 34439370 PMCID: PMC8395028 DOI: 10.3390/cancers13164216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
The number of proton therapy centers worldwide are increasing steadily, with more than two million cancer patients treated so far. Despite this development, pending questions on proton radiobiology still call for basic and translational preclinical research. Open issues are the on-going discussion on an energy-dependent varying proton RBE (relative biological effectiveness), a better characterization of normal tissue side effects and combination treatments with drugs originally developed for photon therapy. At the same time, novel possibilities arise, such as radioimmunotherapy, and new proton therapy schemata, such as FLASH irradiation and proton mini-beams. The study of those aspects demands for radiobiological models at different stages along the translational chain, allowing the investigation of mechanisms from the molecular level to whole organisms. Focusing on the challenges and specifics of proton research, this review summarizes the different available models, ranging from in vitro systems to animal studies of increasing complexity as well as complementing in silico approaches.
Collapse
Affiliation(s)
- Theresa Suckert
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sindi Nexhipi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01309 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robin Koch
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Emanuel Bahn
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, 69120 Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| |
Collapse
|
10
|
Muñoz Arango E, Beltrán Gómez C, Alaminos-Bouza A, de Almeida CE. Integrating X-ray kV millimetric field dosimetry with a synthetic diamond detector into the treatment planning system commissioning of a preclinical irradiator. Med Phys 2021; 48:4038-4052. [PMID: 33797098 DOI: 10.1002/mp.14869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/28/2021] [Accepted: 03/07/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Small animal irradiators are equipped with x-ray beams and cone collimators with millimeter dimensions to be used in preclinical research. The use of small fields in the kV energy range may require the application of energy-dependent, field size-dependent, or depth-dependent correction factors to the dosimetric data acquired for treatment planning system (TPS) commissioning purposes to obtain accurate dose values. Considering that these corrections are also detector dependent, the suitability of a synthetic single-crystal diamond detector for small-field relative dosimetry in a preclinical irradiator (220-kVp) was evaluated to avoid the necessity of applying correction factors during TPS commissioning. METHODS The detector response was assessed during the transition for field sizes ranging from 20 × 20 mm2 to 3 × 3 mm2 , using the small animal radiation research platform (SARRP). The percentage depth dose distributions (PDDs), lateral profiles and output factors (OFs) were measured. The PDDs for the synthetic diamond detector were compared to the distributions acquired using a small-volume microchamber (0.016 cm3 ) and with Monte Carlo calculations using the MC3D in-house software package. The profiles and OFs were compared to the data from a silicon solid-state detector and to radiochromic film data provided by the manufacturer; for the OF determination, measurements made using a microchamber were added for comparison. The performance of several detectors used as references was previously validated for relative dosimetry in preclinical irradiators. A commercial TPS was commissioned for the factor-based algorithm, using the data acquired with the diamond detector, and no additional correction factors were applied. To verify the performance of the TPS and the accuracy of the dosimetric methodology, radiochromic film irradiation in water was conducted, and two-dimensional (2D) dose distributions in the coronal and axial planes were compared under different gamma criteria. RESULTS Compared with the microchamber and MC3D distributions, the agreement of the PDDs using the synthetic diamond detector was better than 2%. The profile data exhibited very good agreement compared with the data from the silicon detector, with an average and a maximum difference of 0.31 and 0.39 mm in the penumbras, respectively. Compared with the data from the radiochromic film, the average and maximum differences were equal to 0.77 and 0.89 mm, respectively. Very good agreement, within 1%, was obtained between the OFs measured with the synthetic diamond detector and the radiochromic film, compared only for the cone collimators. The validation of the TPS commissioning using gamma criteria compared to film showed an average passing rate of 100% and 93.2% with a global gamma criterion of 1 mm/3% for the coronal and axial planes, respectively, including the 3 × 3 mm2 field size and penumbra regions. CONCLUSIONS Synthetic diamond is a suitable detector for the complete relative dosimetry of small x-ray fields. The commissioning of the TPS with its own beam dosimetric data exhibited encouraging results even in a 3 × 3 mm2 field and penumbra region. This methodology allows for the prediction of 2D dose distributions with an accuracy in water ranging from 3 to 5% compared to the 2D distribution from film dosimetry.
Collapse
Affiliation(s)
- Erika Muñoz Arango
- Departamento de Ciências Radiológicas DCR, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-900, Brazil
| | | | | | - Carlos Eduardo de Almeida
- Departamento de Ciências Radiológicas DCR, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-900, Brazil
| |
Collapse
|
11
|
Sunbul NB, Oraiqat I, Rosen B, Miller C, Meert C, Matuszak MM, Clarke S, Pozzi S, Moran JM, Naqa IE. Application of radiochromic gel dosimetry to commissioning of a megavoltage research linear accelerator for small-field animal irradiation studies. Med Phys 2021; 48:1404-1416. [PMID: 33378092 PMCID: PMC8917956 DOI: 10.1002/mp.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To develop and implement an efficient and accurate commissioning procedure for small-field static beam animal irradiation studies on an MV research linear accelerator (Linatron-M9) using radiochromic gel dosimetry. MATERIALS The research linear accelerator (Linatron-M9) is a 9 MV linac with a static fixed collimator opening of 5.08 cm diameter. Lead collimators were manually placed to create smaller fields of 2 × 2 cm2 , 1 × 1 cm2 , and 0.5 × 0.5 cm2 . Relative dosimetry measurements were performed, including profiles, percent depth dose (PDD) curves, beam divergence, and relative output factors using various dosimetry tools, including a small volume ionization chamber (A14), GAFCHROMIC™ EBT3 film, and Clearview gel dosimeters. The gel dosimeter was used to provide a 3D volumetric reference of the irradiated fields. The Linatron profiles and relative output factors were extracted at a reference depth of 2 cm with the output factor measured relative to the 2 × 2 cm2 reference field. Absolute dosimetry was performed using A14 ionization chamber measurements, which were verified using a national standards laboratory remote dosimetry service. RESULTS Absolute dosimetry measurements were confirmed within 1.4% (k = 2, 95% confidence = 5%). The relative output factor of the small fields measured with films and gels agreed with a maximum relative percent error difference between the two methods of 1.1 % for the 1 × 1 cm2 field and 4.3 % for the 0.5 × 0.5 cm2 field. These relative errors were primarily due to the variability in the collimator positioning. The measured beam profiles demonstrated excellent agreement for beam size (measured as FWHM), within approximately 0.8 mm (or less). Film measurements were more accurate in the penumbra region due to the film's finer resolution compared with the gel dosimeter. Following the van Dyk criteria, the PDD values of the film and gel measurements agree within 11% in the buildup region starting from 0.5 cm depth and within 2.6 % beyond maximum dose and into the fall-off region for depths up to 5 cm. The 2D beam profile isodose lines agree within 0.5 mm in all regions for the 0.5 × 0.5 cm2 and the 1 × 1 cm2 fields and within 1 mm for the larger field of 2 × 2 cm2 . The 2D PDD curves agree within approximately 2% of the maximum in the typical therapy region (1-4 cm) for the 1 × 1 cm2 and 2 × 2 cm2 and within 5% for the 0.5 × 0.5 cm2 field. CONCLUSION This work provides a commissioning process to measure the beam characteristics of a fixed beam MV accelerator with detailed dosimetric evaluation for its implementation in megavoltage small animal irradiation studies. Radiochromic gel dosimeters are efficient small-field relative dosimetry tools providing 3D dose measurements allowing for full representation of dose, dosimeter misalignment corrections and high reproducibility with low inter-dosimeter variability. Overall, radiochromic gels are valuable for fast, full relative dosimetry commissioning in comparison to films for application in high-energy small-field animal irradiation studies.
Collapse
Affiliation(s)
- Noora Ba Sunbul
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Ibrahim Oraiqat
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Benjamin Rosen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Cameron Miller
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Meert
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Martha M. Matuszak
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Shaun Clarke
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Sara Pozzi
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jean M. Moran
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|