1
|
Stengl C, Muñoz ID, Arbes E, Rauth E, Christensen JB, Vedelago J, Runz A, Jäkel O, Seco J. Dosimetric study for breathing-induced motion effects in an abdominal pancreas phantom for carbon ion mini-beam radiotherapy. Med Phys 2024; 51:5618-5631. [PMID: 38631000 DOI: 10.1002/mp.17077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Particle mini-beam therapy exhibits promise in sparing healthy tissue through spatial fractionation, particularly notable for heavy ions, further enhancing the already favorable differential biological effectiveness at both target and entrance regions. However, breathing-induced organ motion affects particle mini-beam irradiation schemes since the organ displacements exceed the mini-beam structure dimensions, decreasing the advantages of spatial fractionation. PURPOSE In this study, the impact of breathing-induced organ motion on the dose distribution was examined at the target and organs at risk(OARs) during carbon ion mini-beam irradiation for pancreatic cancer. METHODS As a first step, the carbon ion mini-beam pattern was characterized with Monte Carlo simulations. To analyze the impact of breathing-induced organ motion on the dose distribution of a virtual pancreas tumor as target and related OARs, the anthropomorphic Pancreas Phantom for Ion beam Therapy (PPIeT) was irradiated with carbon ions. A mini-beam collimator was used to deliver a spatially fractionated dose distribution. During irradiation, varying breathing motion amplitudes were induced, ranging from 5 to 15 mm. Post-irradiation, the 2D dose pattern was analyzed, focusing on the full width at half maximum (FWHM), center-to-center distance (ctc), and the peak-to-valley dose ratio (PVDR). RESULTS The mini-beam pattern was visible within OARs, while in the virtual pancreas tumor a more homogeneous dose distribution was achieved. Applied motion affected the mini-beam pattern within the kidney, one of the OARs, reducing the PVDR from 3.78 ± $\pm$ 0.12 to 1.478 ± $\pm$ 0.070 for the 15 mm motion amplitude. In the immobile OARs including the spine and the skin at the back, the PVDR did not change within 3.4% comparing reference and motion conditions. CONCLUSIONS This study provides an initial understanding of how breathing-induced organ motion affects spatial fractionation during carbon ion irradiation, using an anthropomorphic phantom. A decrease in the PVDR was observed in the right kidney when breathing-induced motion was applied, potentially increasing the risk of damage to OARs. Therefore, further studies are needed to explore the clinical viability of mini-beam radiotherapy with carbon ions when irradiating abdominal regions.
Collapse
Affiliation(s)
- Christina Stengl
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Iván D Muñoz
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department for Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Eric Arbes
- Department for Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Evelyn Rauth
- Department for Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeppe B Christensen
- Department of Radiation Safety and Security, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - José Vedelago
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Armin Runz
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Oliver Jäkel
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Joao Seco
- Department for Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Koksal Akbas C, Vurro F, Fiorino C, Cozzarini C, Cavaliere F, Milani P, Broggi S, Del Vecchio A, Di Muzio N, Tacchetti C, Enrico Spinelli A. Preclinical photon minibeam radiotherapy using a custom collimator: Dosimetry characterization and preliminary in-vivo results on a glioma model. Phys Med 2024; 124:103420. [PMID: 38970950 DOI: 10.1016/j.ejmp.2024.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024] Open
Abstract
PURPOSE The purpose of this study is to investigate the dosimetric characteristics of a collimator for minibeam radiotherapy (MBRT) with film dosimetry and Monte Carlo (MC) simulations. The outcome of MBRT with respect to conventional RT using a glioma preclinical model was also evaluated. METHODS A multi-slit collimator was designed to be used with commercial small animal irradiator. The collimator was built by aligning 0.6 mm wide and 5 mm thick parallel lead leaves at 0.4 mm intervals. Dosimetry characteristics were evaluated by Gafchromic (CG) films and TOPAS Monte Carlo (MC) code. An in vivo experiment was performed using a glioma preclinical model by injecting two million GL261cells subcutaneously and treating with 25 Gy, single fraction, with MBRT and conventional RT. Survival curves and acute radiation damage were measured to compare both treatments. RESULTS A satisfactory agreement between experimental results and MC simulations were obtained, the measured FWHM and distance between the peaks were respectively 0.431 and 1.098 mm. In vivo results show that MBRT can provide local tumor control for three weeks after RT treatment and a similar survival fraction of open beam radiotherapy. No severe acute effects were seen for the MBRT group. CONCLUSIONS We developed a minibeam collimator and presented its dosimetric features. Satisfactory agreement between MC and GC films was found with differences consistent with uncertainties due to fabrication and set-up errors. The survival curves of MBRT and open field RT are similar while atoxicity is dramatically lower with MBRT, preliminarily confirming the expected effect.
Collapse
Affiliation(s)
- Canan Koksal Akbas
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Medical Physics Department, Istanbul University Oncology Institute, Istanbul, Turkey
| | - Federica Vurro
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Fiorino
- Medical Physics Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Cesare Cozzarini
- Radiotherapy Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Paolo Milani
- Department of Physics, University of Milan, Milan, Italy
| | - Sara Broggi
- Medical Physics Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Nadia Di Muzio
- Radiotherapy Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
3
|
Large MJ, Kanxheri K, Posar J, Aziz S, Bashiri A, Calcagnile L, Calvo D, Caputo D, Caricato AP, Catalano R, Cirio R, Cirrone GAP, Croci T, Cuttone G, De Cesare G, De Remigis P, Dunand S, Fabi M, Frontini L, Grimani C, Guarrera M, Ionica M, Lenta F, Liberali V, Lovecchio N, Martino M, Maruccio G, Mazza G, Menichelli M, Monteduro AG, Morozzi A, Moscatelli F, Nascetti A, Pallotta S, Passeri D, Pedio M, Petringa G, Peverini F, Placidi P, Quarta G, Rizzato S, Sabbatini F, Servoli L, Stabile A, Thomet JE, Tosti L, Villani M, Wheadon RJ, Wyrsch N, Zema N, Petasecca M, Talamonti C. Dosimetry of microbeam radiotherapy by flexible hydrogenated amorphous silicon detectors. Phys Med Biol 2024; 69:155022. [PMID: 39019068 DOI: 10.1088/1361-6560/ad64b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Objective.Detectors that can provide accurate dosimetry for microbeam radiation therapy (MRT) must possess intrinsic radiation hardness, a high dynamic range, and a micron-scale spatial resolution. In this work we characterize hydrogenated amorphous silicon detectors for MRT dosimetry, presenting a novel combination of flexible, ultra-thin and radiation-hard features.Approach.Two detectors are explored: an n-type/intrinsic/p-type planar diode (NIP) and an NIP with an additional charge selective layer (NIP + CSC).Results.The sensitivity of the NIP + CSC detector was greater than the NIP detector for all measurement conditions. At 1 V and 0 kGy under the 3T Cu-Cu synchrotron broadbeam, the NIP + CSC detector sensitivity of (7.76 ± 0.01) pC cGy-1outperformed the NIP detector sensitivity of (3.55 ± 0.23) pC cGy-1by 219%. The energy dependence of both detectors matches closely to the attenuation coefficient ratio of silicon against water. Radiation damage measurements of both detectors out to 40 kGy revealed a higher radiation tolerance in the NIP detector compared to the NIP + CSC (17.2% and 33.5% degradations, respectively). Percentage depth dose profiles matched the PTW microDiamond detector's performance to within ±6% for all beam filtrations except in 3T Al-Al due to energy dependence. The 3T Cu-Cu microbeam field profile was reconstructed and returned microbeam width and peak-to-peak values of (51 ± 1)μm and (405 ± 5)μm, respectively. The peak-to-valley dose ratio was measured as a function of depth and agrees within error to the values obtained with the PTW microDiamond. X-ray beam induced charge mapping of the detector revealed minimal dose perturbations from extra-cameral materials.Significance.The detectors are comparable to commercially available dosimeters for quality assurance in MRT. With added benefits of being micron-sized and possessing a flexible water-equivalent substrate, these detectors are attractive candidates for quality assurance,in-vivodosimetry and in-line beam monitoring for MRT and FLASH therapy.
Collapse
Affiliation(s)
- Matthew James Large
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Keida Kanxheri
- Dip. di Fisica e Geologia dell'Università degli Studi di Perugia, via Pascoli s.n.c., 06123 Perugia, Italy
- INFN Sezione di Perugia, via Pascoli s.n.c., 06123 Perugia, Italy
| | - Jessie Posar
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Saba Aziz
- INFN Sezione di Lecce, via per Arnesano, 73100 Lecce, Italy
- Department of Mathematics and Physics 'Ennio de Giorgi', University of Salento, via per Arnesano, 73100 Lecce, Italy
| | - Aishah Bashiri
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
- Najran University, King Abdulaziz Rd, Najran, Saudi Arabia
| | - Lucio Calcagnile
- INFN Sezione di Lecce, via per Arnesano, 73100 Lecce, Italy
- Department of Mathematics and Physics 'Ennio de Giorgi', University of Salento, via per Arnesano, 73100 Lecce, Italy
| | - Daniela Calvo
- INFN Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
| | - Domenico Caputo
- Dipartimento Ingegneria dell'Informazione, Elettronica e Telecomunicazioni, dell'Università degli studi di Roma 'La Sapienza', via Eudossiana 18, 00184 Roma, Italy
- INFN Sezione di Roma 1, Piazzale Aldo Moro 2, Roma, Italy
| | - Anna Paola Caricato
- INFN Sezione di Lecce, via per Arnesano, 73100 Lecce, Italy
- Department of Mathematics and Physics 'Ennio de Giorgi', University of Salento, via per Arnesano, 73100 Lecce, Italy
| | - Roberto Catalano
- INFN Laboratori Nazionali del Sud, Via S.Sofia 62, 95123 Catania, Italy
| | - Roberto Cirio
- INFN Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
| | | | - Tommaso Croci
- INFN Sezione di Perugia, via Pascoli s.n.c., 06123 Perugia, Italy
- Dip. di Ingegneria dell'Università degli studi di Perugia, via G.Duranti, 06125 Perugia, Italy
| | - Giacomo Cuttone
- INFN Laboratori Nazionali del Sud, Via S.Sofia 62, 95123 Catania, Italy
| | - Gianpiero De Cesare
- Dipartimento Ingegneria dell'Informazione, Elettronica e Telecomunicazioni, dell'Università degli studi di Roma 'La Sapienza', via Eudossiana 18, 00184 Roma, Italy
- INFN Sezione di Roma 1, Piazzale Aldo Moro 2, Roma, Italy
| | - Paolo De Remigis
- INFN Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
| | - Sylvain Dunand
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab), Rue de la Maladière 71b, 2000 Neuchâtel, Switzerland
| | - Michele Fabi
- DiSPeA, Università di Urbino Carlo Bo, 61029 Urbino (PU), Italy
- INFN Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
| | - Luca Frontini
- INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Catia Grimani
- DiSPeA, Università di Urbino Carlo Bo, 61029 Urbino (PU), Italy
- INFN Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
| | | | - Maria Ionica
- INFN Sezione di Perugia, via Pascoli s.n.c., 06123 Perugia, Italy
| | - Francesca Lenta
- INFN Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
- Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Valentino Liberali
- INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
- Dipartimento di Fisica dell'Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
| | - Nicola Lovecchio
- Dipartimento Ingegneria dell'Informazione, Elettronica e Telecomunicazioni, dell'Università degli studi di Roma 'La Sapienza', via Eudossiana 18, 00184 Roma, Italy
- INFN Sezione di Roma 1, Piazzale Aldo Moro 2, Roma, Italy
| | - Maurizio Martino
- INFN Sezione di Lecce, via per Arnesano, 73100 Lecce, Italy
- Department of Mathematics and Physics 'Ennio de Giorgi', University of Salento, via per Arnesano, 73100 Lecce, Italy
| | - Giuseppe Maruccio
- INFN Sezione di Lecce, via per Arnesano, 73100 Lecce, Italy
- Department of Mathematics and Physics 'Ennio de Giorgi', University of Salento, via per Arnesano, 73100 Lecce, Italy
| | - Giovanni Mazza
- INFN Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
| | - Mauro Menichelli
- INFN Sezione di Perugia, via Pascoli s.n.c., 06123 Perugia, Italy
| | - Anna Grazia Monteduro
- INFN Sezione di Lecce, via per Arnesano, 73100 Lecce, Italy
- Department of Mathematics and Physics 'Ennio de Giorgi', University of Salento, via per Arnesano, 73100 Lecce, Italy
| | - Arianna Morozzi
- INFN Sezione di Perugia, via Pascoli s.n.c., 06123 Perugia, Italy
| | - Francesco Moscatelli
- INFN Sezione di Perugia, via Pascoli s.n.c., 06123 Perugia, Italy
- CNR Istituto Officina dei Materiali (IOM), via Pascoli s.n.c., 06123 Perugia, Italy
| | - Augusto Nascetti
- INFN Sezione di Roma 1, Piazzale Aldo Moro 2, Roma, Italy
- Scuola di Ingegneria Aerospaziale Università degli studi di Roma 'La Sapienza', Via Salaria 851/881, 00138 Roma, Italy
| | - Stefania Pallotta
- INFN Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
- Dipartimento di Scienze Biomediche sperimentali e Cliniche 'Mario Serio', University of Florence Viale Morgagni 50, 50134 Firenze (FI), Italy
| | - Daniele Passeri
- INFN Sezione di Perugia, via Pascoli s.n.c., 06123 Perugia, Italy
- Dip. di Ingegneria dell'Università degli studi di Perugia, via G.Duranti, 06125 Perugia, Italy
| | - Maddalena Pedio
- INFN Sezione di Perugia, via Pascoli s.n.c., 06123 Perugia, Italy
- CNR Istituto Officina dei Materiali (IOM), via Pascoli s.n.c., 06123 Perugia, Italy
| | - Giada Petringa
- INFN Laboratori Nazionali del Sud, Via S.Sofia 62, 95123 Catania, Italy
| | - Francesca Peverini
- Dip. di Fisica e Geologia dell'Università degli Studi di Perugia, via Pascoli s.n.c., 06123 Perugia, Italy
- INFN Sezione di Perugia, via Pascoli s.n.c., 06123 Perugia, Italy
| | - Pisana Placidi
- INFN Sezione di Perugia, via Pascoli s.n.c., 06123 Perugia, Italy
- Dip. di Ingegneria dell'Università degli studi di Perugia, via G.Duranti, 06125 Perugia, Italy
| | - Gianluca Quarta
- INFN Sezione di Lecce, via per Arnesano, 73100 Lecce, Italy
- Department of Mathematics and Physics 'Ennio de Giorgi', University of Salento, via per Arnesano, 73100 Lecce, Italy
| | - Silvia Rizzato
- INFN Sezione di Lecce, via per Arnesano, 73100 Lecce, Italy
- Department of Mathematics and Physics 'Ennio de Giorgi', University of Salento, via per Arnesano, 73100 Lecce, Italy
| | - Federico Sabbatini
- DiSPeA, Università di Urbino Carlo Bo, 61029 Urbino (PU), Italy
- INFN Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
| | - Leonello Servoli
- INFN Sezione di Perugia, via Pascoli s.n.c., 06123 Perugia, Italy
| | - Alberto Stabile
- INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
- Dipartimento di Fisica dell'Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
| | - Jonathan Emanuel Thomet
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab), Rue de la Maladière 71b, 2000 Neuchâtel, Switzerland
| | - Luca Tosti
- INFN Sezione di Perugia, via Pascoli s.n.c., 06123 Perugia, Italy
| | - Mattia Villani
- DiSPeA, Università di Urbino Carlo Bo, 61029 Urbino (PU), Italy
- INFN Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
| | | | - Nicolas Wyrsch
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab), Rue de la Maladière 71b, 2000 Neuchâtel, Switzerland
| | - Nicola Zema
- INFN Sezione di Perugia, via Pascoli s.n.c., 06123 Perugia, Italy
- CNR Istituto struttura della Materia, Via Fosso del Cavaliere 100, Roma, Italy
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Cinzia Talamonti
- INFN Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
- Dipartimento di Scienze Biomediche sperimentali e Cliniche 'Mario Serio', University of Florence Viale Morgagni 50, 50134 Firenze (FI), Italy
| |
Collapse
|
4
|
Ahmed M, Bicher S, Combs SE, Lindner R, Raulefs S, Schmid TE, Spasova S, Stolz J, Wilkens JJ, Winter J, Bartzsch S. In Vivo Microbeam Radiation Therapy at a Conventional Small Animal Irradiator. Cancers (Basel) 2024; 16:581. [PMID: 38339332 PMCID: PMC11154279 DOI: 10.3390/cancers16030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Microbeam radiation therapy (MRT) is a still pre-clinical form of spatially fractionated radiotherapy, which uses an array of micrometer-wide, planar beams of X-ray radiation. The dose modulation in MRT has proven effective in the treatment of tumors while being well tolerated by normal tissue. Research on understanding the underlying biological mechanisms mostly requires large third-generation synchrotrons. In this study, we aimed to develop a preclinical treatment environment that would allow MRT independent of synchrotrons. We built a compact microbeam setup for pre-clinical experiments within a small animal irradiator and present in vivo MRT application, including treatment planning, dosimetry, and animal positioning. The brain of an immobilized mouse was treated with MRT, excised, and immunohistochemically stained against γH2AX for DNA double-strand breaks. We developed a comprehensive treatment planning system by adjusting an existing dose calculation algorithm to our setup and attaching it to the open-source software 3D-Slicer. Predicted doses in treatment planning agreed within 10% with film dosimetry readings. We demonstrated the feasibility of MRT exposures in vivo at a compact source and showed that the microbeam pattern is observable in histological sections of a mouse brain. The platform developed in this study will be used for pre-clinical research of MRT.
Collapse
Affiliation(s)
- Mabroor Ahmed
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (M.A.); (S.B.); (S.E.C.); (S.R.); (T.E.S.); (S.S.); (J.S.); (J.J.W.); (J.W.)
- Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Institute of Radiation Medicine, 85764 Neuherberg, Germany;
- Department of Physics, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Sandra Bicher
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (M.A.); (S.B.); (S.E.C.); (S.R.); (T.E.S.); (S.S.); (J.S.); (J.J.W.); (J.W.)
- Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Institute of Radiation Medicine, 85764 Neuherberg, Germany;
| | - Stephanie Elisabeth Combs
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (M.A.); (S.B.); (S.E.C.); (S.R.); (T.E.S.); (S.S.); (J.S.); (J.J.W.); (J.W.)
- Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Institute of Radiation Medicine, 85764 Neuherberg, Germany;
| | - Rainer Lindner
- Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Institute of Radiation Medicine, 85764 Neuherberg, Germany;
| | - Susanne Raulefs
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (M.A.); (S.B.); (S.E.C.); (S.R.); (T.E.S.); (S.S.); (J.S.); (J.J.W.); (J.W.)
- Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Institute of Radiation Medicine, 85764 Neuherberg, Germany;
| | - Thomas E. Schmid
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (M.A.); (S.B.); (S.E.C.); (S.R.); (T.E.S.); (S.S.); (J.S.); (J.J.W.); (J.W.)
- Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Institute of Radiation Medicine, 85764 Neuherberg, Germany;
| | - Suzana Spasova
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (M.A.); (S.B.); (S.E.C.); (S.R.); (T.E.S.); (S.S.); (J.S.); (J.J.W.); (J.W.)
- Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Institute of Radiation Medicine, 85764 Neuherberg, Germany;
- Department of Physics, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Jessica Stolz
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (M.A.); (S.B.); (S.E.C.); (S.R.); (T.E.S.); (S.S.); (J.S.); (J.J.W.); (J.W.)
- Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Institute of Radiation Medicine, 85764 Neuherberg, Germany;
| | - Jan Jakob Wilkens
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (M.A.); (S.B.); (S.E.C.); (S.R.); (T.E.S.); (S.S.); (J.S.); (J.J.W.); (J.W.)
- Department of Physics, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Johanna Winter
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (M.A.); (S.B.); (S.E.C.); (S.R.); (T.E.S.); (S.S.); (J.S.); (J.J.W.); (J.W.)
- Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Institute of Radiation Medicine, 85764 Neuherberg, Germany;
- Department of Physics, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), 85748 Garching, Germany
| | - Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (M.A.); (S.B.); (S.E.C.); (S.R.); (T.E.S.); (S.S.); (J.S.); (J.J.W.); (J.W.)
- Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Institute of Radiation Medicine, 85764 Neuherberg, Germany;
- Heinz Maier-Leibnitz Zentrum (MLZ), 85748 Garching, Germany
| |
Collapse
|
5
|
Clausen M, Ruangchan S, Sotoudegan A, Resch AF, Knäusl B, Palmans H, Georg D. Small field proton irradiation for in vivo studies: Potential and limitations when adapting clinical infrastructure. Z Med Phys 2023; 33:542-551. [PMID: 36357294 PMCID: PMC10751703 DOI: 10.1016/j.zemedi.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To evaluate the dosimetric accuracy for small field proton irradiation relevant for pre-clinical in vivo studies using clinical infrastructure and technology. In this context additional beam collimation and range reduction was implemented. METHODS AND MATERIALS The clinical proton beam line employing pencil beam scanning (PBS) was adapted for the irradiation of small fields at shallow depths. Cylindrical collimators with apertures of 15, 12, 7 and 5mm as well as two different range shifter types, placed at different distances relative to the target, were tested: a bolus range shifter (BRS) attached to the collimator and a clinical nozzle mounted range shifter (CRS) placed at a distance of 72cm from the collimator. The Monte Carlo (MC) based dose calculation engine implemented in the clinical treatment planning system (TPS) was commissioned for these two additional hardware components. The study was conducted with a phantom and cylindrical target sizes between 2 and 25mm in diameter following a dosimetric end-to-end test concept. RESULTS The setup with the CRS provided a uniform dose distribution across the target. An agreement of better than5% between the planned dose and the measurements was obtained for a target with 3mm diameter (collimator 5mm). A 2mm difference between the collimator and the target diameter (target being 2 mm smaller than the collimator) sufficed to cover the whole target with the planned dose in the setup with CRS. Using the BRS setup (target 8mm, collimator 12mm) resulted in non-homogeneous dose distributions, with a dose discrepancy of up to 10% between the planned and measured doses. CONCLUSION The clinical proton infrastructure with adequate beam line adaptations and a state-of-the-art TPS based on MC dose calculations enables small animal irradiations with a high dosimetric precision and accuracy for target sizes down to 3mm.
Collapse
Affiliation(s)
- Monika Clausen
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.
| | - Sirinya Ruangchan
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria; Division of Therapeutic Radiation and Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Arame Sotoudegan
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Andreas F Resch
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Barbara Knäusl
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Hugo Palmans
- Division of Medical Physics, MedAustron Ion Therapy Center, Wiener Neustadt, Austria; National Physical Laboratory, Teddington, United Kingdom
| | - Dietmar Georg
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria; Division of Medical Physics, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
6
|
Stengl C, Arbes E, Thai LYJ, Echner G, Vedelago J, Jansen J, Jäkel O, Seco J. Development and characterization of a versatile mini-beam collimator for pre-clinical photon beam irradiation. Med Phys 2023; 50:5222-5237. [PMID: 37145971 DOI: 10.1002/mp.16432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Interest in spatial fractionation radiotherapy has exponentially increased over the last decade as a significant reduction of healthy tissue toxicity was observed by mini-beam irradiation. Published studies, however, mostly use rigid mini-beam collimators dedicated to their exact experimental arrangement such that changing the setup or testing new mini-beam collimator configurations becomes challenging and expensive. PURPOSE In this work, a versatile, low-cost mini-beam collimator was designed and manufactured for pre-clinical applications with X-ray beams. The mini-beam collimator enables variability of the full width at half maximum (FWHM), the center-to-center distance (ctc), the peak-to-valley dose ratio (PVDR), and the source-to-collimator distance (SCD). METHODS The mini-beam collimator is an in-house development, which was constructed of 10 × 40 mm2 tungsten or brass plates. These metal plates were combined with 3D-printed plastic plates that can be stacked together in the desired order. A standard X-ray source was used for the dosimetric characterization of four different configurations of the collimator, including a combination of plastic plates of 0.5, 1, or 2 mm width, assembled with 1 or 2 mm thick metal plates. Irradiations were done at three different SCDs for characterizing the performance of the collimator. For the SCDs closer to the radiation source, the plastic plates were 3D-printed with a dedicated angle to compensate for the X-ray beam divergence, making it possible to study ultra-high dose rates of around 40 Gy/s. All dosimetric quantifications were performed using EBT-XD films. Additionally, in vitro studies with H460 cells were carried out. RESULTS Characteristic mini-beam dose distributions were obtained with the developed collimator using a conventional X-ray source. With the exchangeable 3D-printed plates, FWHM and ctc from 0.52 to 2.11 mm, and from 1.77 to 4.61 mm were achieved, with uncertainties ranging from 0.01% to 8.98%, respectively. The FWHM and ctc obtained with the EBT-XD films are in agreement with the design of each mini-beam collimator configuration. For dose rates in the order of several Gy/min, the highest PVDR of 10.09 ± 1.08 was achieved with a collimator configuration of 0.5 mm thick plastic plates and 2 mm thick metal plates. Exchanging the tungsten plates with the lower-density metal brass reduced the PVDR by approximately 50%. Also, increasing the dose rate to ultra-high dose rates was feasible with the mini-beam collimator, where a PVDR of 24.26 ± 2.10 was achieved. Finally, it was possible to deliver and quantify mini-beam dose distribution patterns in vitro. CONCLUSIONS With the developed collimator, we achieved various mini-beam dose distributions that can be adjusted according to the needs of the user in regards to FWHM, ctc, PVDR and SCD, while accounting for beam divergence. Therefore, the designed mini-beam collimator may enable low-cost and versatile pre-clinical research on mini-beam irradiation.
Collapse
Affiliation(s)
- Christina Stengl
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Eric Arbes
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department for Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Long-Yang Jan Thai
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department for Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Gernot Echner
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - José Vedelago
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Jeannette Jansen
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Jäkel
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Joao Seco
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department for Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Johnson TR, Bassil AM, Williams NT, Brundage S, Kent CL, Palmer G, Mowery YM, Oldham M. An investigation of kV mini-GRID spatially fractionated radiation therapy: dosimetry and preclinical trial. Phys Med Biol 2022; 67:10.1088/1361-6560/ac508c. [PMID: 35100573 PMCID: PMC9167045 DOI: 10.1088/1361-6560/ac508c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
Objective. To develop and characterize novel methods of extreme spatially fractionated kV radiation therapy (including mini-GRID therapy) and to evaluate efficacy in the context of a pre-clinical mouse study.Approach. Spatially fractionated GRIDs were precision-milled from 3 mm thick lead sheets compatible with mounting on a 225 kVp small animal irradiator (X-Rad). Three pencil-beam GRIDs created arrays of 1 mm diameter beams, and three 'bar' GRIDs created 1 × 20 mm rectangular fields. GRIDs projected 20 × 20 mm2fields at isocenter, and beamlets were spaced at 1, 1.25, and 1.5 mm, respectively. Peak-to-valley ratios and dose distributions were evaluated with Gafchromic film. Syngeneic transplant tumors were induced by intramuscular injection of a soft tissue sarcoma cell line into the gastrocnemius muscle of C57BL/6 mice. Tumor-bearing mice were randomized to four groups: unirradiated control, conventional irradiation of entire tumor, GRID therapy, and hemi-irradiation (half-beam block, 50% tumor volume treated). All irradiated mice received a single fraction of 15 Gy.Results. High peak-to-valley ratios were achieved (bar GRIDs: 11.9 ± 0.9, 13.6 ± 0.4, 13.8 ± 0.5; pencil-beam GRIDs: 18.7 ± 0.6, 26.3 ± 1.5, 31.0 ± 3.3). Pencil-beam GRIDs could theoretically spare more intra-tumor immune cells than bar GRIDs, but they treat less tumor tissue (3%-4% versus 19%-23% area receiving 90% prescription, respectively). Bar GRID and hemi-irradiation treatments significantly delayed tumor growth (P < 0.05), but not as much as a conventional treatment (P < 0.001). No significant difference was found in tumor growth delay between GRID and hemi-irradiation.Significance. High peak-to-valley ratios were achieved with kV grids: two-to-five times higher than values reported in literature for MV grids. GRID irradiation and hemi-irradiation delayed tumor growth, but neither was as effective as conventional whole tumor uniform dose treatment. Single fraction GRID therapy could not initiate an anti-cancer immune response strong enough to match conventional RT outcomes, but follow-up studies will evaluate the combination of mini-GRID with immune checkpoint blockade.
Collapse
Affiliation(s)
- Timothy R Johnson
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Alex M Bassil
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Nerissa T Williams
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Simon Brundage
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Collin L Kent
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Greg Palmer
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC, United States of America
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
8
|
Bazyar S, O’Brien ET, Benefield T, Roberts VR, Kumar RJ, Gupta GP, Zhou O, Lee YZ. Immune-Mediated Effects of Microplanar Radiotherapy with a Small Animal Irradiator. Cancers (Basel) 2021; 14:155. [PMID: 35008319 PMCID: PMC8750301 DOI: 10.3390/cancers14010155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Spatially fractionated radiotherapy has been shown to have effects on the immune system that differ from conventional radiotherapy (CRT). We compared several aspects of the immune response to CRT relative to a model of spatially fractionated radiotherapy (RT), termed microplanar radiotherapy (MRT). MRT delivers hundreds of grays of radiation in submillimeter beams (peak), separated by non-radiated volumes (valley). We have developed a preclinical method to apply MRT by a commercial small animal irradiator. Using a B16-F10 murine melanoma model, we first evaluated the in vitro and in vivo effect of MRT, which demonstrated significant treatment superiority relative to CRT. Interestingly, we observed insignificant treatment responses when MRT was applied to Rag-/- and CD8-depleted mice. An immuno-histological analysis showed that MRT recruited cytotoxic lymphocytes (CD8), while suppressing the number of regulatory T cells (Tregs). Using RT-qPCR, we observed that, compared to CRT, MRT, up to the dose that we applied, significantly increased and did not saturate CXCL9 expression, a cytokine that plays a crucial role in the attraction of activated T cells. Finally, MRT combined with anti-CTLA-4 ablated the tumor in half of the cases, and induced prolonged systemic antitumor immunity.
Collapse
Affiliation(s)
- Soha Bazyar
- Department of Radiation Oncology, University of Maryland, Maryland, MD 21201, USA;
| | - Edward Timothy O’Brien
- Department of Physics and Astronomy, The University of North Carolina, Chapel Hill, NC 27514, USA;
| | - Thad Benefield
- Department of Radiology, The University of North Carolina, Chapel Hill, NC 27514, USA;
| | | | - Rashmi J. Kumar
- Medical Scientist Training Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Gaorav P. Gupta
- Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Otto Zhou
- Department of Applied Physics Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Yueh Z. Lee
- Department of Radiology, The University of North Carolina, Chapel Hill, NC 27514, USA;
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|