1
|
Decker SM, Bruza P, Zhang R, Pogue BW, Gladstone DJ, Jarvis LA. Visual Dose Monitoring for Whole Breast Radiation Therapy Treatments via Combined Cherenkov Imaging and Scintillation Dosimetry. Int J Radiat Oncol Biol Phys 2025; 121:365-374. [PMID: 39182736 DOI: 10.1016/j.ijrobp.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE This study investigates scintillation dosimetry coupled with Cherenkov imaging for in vivo dose monitoring during whole breast radiation therapy (WBRT). Given recent observations of excess dose to the contralateral breast (CB), in vivo dosimetry (IVD) could help ensure accurate dose delivery and decrease risks of secondary cancer. This work presents a rapid, streamlined alternative to traditional IVD, providing direct visualization of measurement location relative to the treatment field on the patient. METHODS AND MATERIALS Ten WBRT patients consented under an institutional review board-approved protocol were monitored with scintillation dosimetry and always-on Cherenkov imaging, on both their treated and CB for 1 to 3 fractions. Scintillator dosimeters, small plastic discs 1 mm thick and 15 mm in diameter, were calibrated against optically stimulated luminescent dosimeters (OSLDs) to generate an integral output-to-dose conversion, where integral output is measured in postprocessing through a custom fitting algorithm. The discs have been extensively characterized in a previous study for various treatment conditions including beam energy and treatment geometry. RESULTS A total of 44 dosimetry measurements were evaluated, including 22 treated breast and 22 CB measurements. After integral output-to-dose calibration, in vivo scintillator dosimeters exhibited high linearity (R2 = 0.99) with paired OSLD readings across all patients. The difference between scintillation and OSLD dose measurements averaged 2.8% of the prescribed dose, or an absolute dose difference of approximately 7 cGy. CONCLUSIONS Integration of scintillation dosimetry with Cherenkov imaging offers an accurate, rapid alternative for in vivo dose verification in WBRT, circumventing the limitations of conventional point dosimeters. The additional benefit of visualizing measurement locations relative to the treatment field provides users an enhanced understanding of results and allows for detection of high dose gradients. Future work will explore the applicability of this technique across a broader range of radiation therapy treatments, aiming to streamline IVD practices.
Collapse
Affiliation(s)
- Savannah M Decker
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Rongxiao Zhang
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; The Department of Radiation Oncology and Applied Sciences, Dartmouth Cancer Center, Dartmouth Health, Lebanon, New Hampshire
| | - Lesley A Jarvis
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; The Department of Radiation Oncology and Applied Sciences, Dartmouth Cancer Center, Dartmouth Health, Lebanon, New Hampshire
| |
Collapse
|
2
|
Van Leeuwen FWB, Pouget JP, Lassmann M. Optical (Cherenkov) dosimetry to unravel the radiobiological effects of radioisotope based therapy. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-024-07047-4. [PMID: 39838151 DOI: 10.1007/s00259-024-07047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Affiliation(s)
- Fijs W B Van Leeuwen
- Interventional Molecular Imaging laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Sánchez‐Rubio P, Rodríguez‐Romero R, Pinto‐Monedero M, Alejo‐Luque L, Martínez‐Ortega J. New findings on clinical experience on surface-guided radiotherapy for frameless non-coplanar stereotactic radiosurgery treatments. J Appl Clin Med Phys 2024; 25:e14510. [PMID: 39287562 PMCID: PMC11633809 DOI: 10.1002/acm2.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
PURPOSE The aim of this study was to assess the accuracy of a surface-guided radiotherapy (SGRT) system for setup and intra-fraction motion control in frameless non-coplanar stereotactic radiosurgery (fSRS) using actual patient data immobilized with two different types of open-faced masks and employing a novel SGRT systems settings. METHODS AND MATERIALS Forty-four SRS patients were immobilized with two types of open-faced masks. Sixty lesions were treated, involving the analysis of 68 cone-beam scans (CBCT), 157 megavoltage (MV) images, and 521 SGRT monitoring sessions. The average SGRT translations/rotations and 3D vectors (MAG-Trasl and MAG-Rot) were compared with CBCT or antero-posterior MV images for 0° table or non-coplanar beams, respectively. The intrafraction control was evaluated based on the average shifts obtained from each monitoring session. To assess the association between the SGRT system and the CBCT, the two types of masks and the 3D vectors, a generalized estimating equations (GEE) regression analysis was performed. The Wilcoxon singed-rank test for paired samples was performed to detect differences in couch rotation with longitudinal (LNG) and lateral (LAT) translations and/or yaw. RESULTS The average SGRT corrections were smaller than those detected by CBCT (≤0.5 mm and 0.1°), with largest differences in LNG and yaw. The GEE analysis indicated that the average MAG-Trasl, obtained by the SGRT system, was not statistically different (p = 0.09) for both mask types, while, the MAG-Rot was different (p = 0.01). For non-coplanar beams, the Wilcoxon singed-rank test demonstrated no significantly differences for the corrections (LNG, LAT, and yaw) for any table rotation except for LNG corrections at 65° (p = 0.04) and 75° (p = 0.03) table angle position; LAT shifts at 65° (p = 0.03) and 270° (p < 0.001) table angle position, and yaw rotation at 30° (p = 0.02) table angle position. The average intrafraction motion was < 0.1 mm and 0.1° for any table angle. CONCLUSION The SGRT system used, along with the novel workflow performed, can achieve the setup and intra-fraction motion control accuracy required to perform non-coplanar fSRS treatments. Both masks ensure the accuracy required for fSRS while providing a suitable surface for monitoring.
Collapse
Affiliation(s)
- Patricia Sánchez‐Rubio
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - Ruth Rodríguez‐Romero
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - María Pinto‐Monedero
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - Luis Alejo‐Luque
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| | - Jaime Martínez‐Ortega
- Medical Physics DepartmentHospital Universitario Puerta de Hierro MajadahondaMadridSpain
| |
Collapse
|
4
|
Hallett JE, Bruza P, Jermyn M, Li K, Pogue BW. Noise & mottle suppression methods for cumulative Cherenkov images of radiation therapy delivery. Phys Med Biol 2024; 69:225015. [PMID: 39474803 PMCID: PMC11639195 DOI: 10.1088/1361-6560/ad8c93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 11/13/2024]
Abstract
Purpose.Cherenkov imaging during radiotherapy provides a real time visualization of beam delivery on patient tissue, which can be used dynamically for incident detection or to review a summary of the delivered surface signal for treatment verification. Very few photons form the images, and one limitation is that the noise level per frame can be quite high, and mottle in the cumulative processed images can cause mild overall noise. This work focused on removing or suppressing noise via image postprocessing.Approach.Images were analyzed for peak-signal-to-noise and spatial frequencies present, and several established noise/mottle reduction algorithms were chosen based upon these observations. These included total variation minimization (TV-L1), non-local means filter (NLM), block-matching 3D (BM3D), alpha (adaptive) trimmed mean (ATM), and bilateral filtering. Each were applied to images acquired using a BeamSite camera (DoseOptics) imaged signal from 6x photons from a TrueBeam linac delivering dose at 600 MU min-1incident on an anthropomorphic phantom and tissue slab phantom in various configurations and beam angles. The standard denoised images were tested for PSNR, noise power spectrum (NPS) and image sharpness.Results.The average peak-signal-to-noise ratio (PSNR) increase was 17.4% for TV-L1. NLM denoising increased the average PSNR by 19.1%, BM3D processing increased it by12.1% and the bilateral filter increased the average PSNR by 19.0%. Lastly, the ATM filter resulted in the lowest average PSNR increase of 10.9%. Of all of these, the NLM and bilateral filters produced improved edge sharpness with, generally, the lowest NPS curve.Conclusion.For cumulative image Cherenkov data, NLM and the bilateral filter yielded optimal denoising with the TV-L1 algorithm giving comparable results. Single video frame Cherenkov images exhibit much higher noise levels compared to cumulative images. Noise suppression algorithms for these frame rates will likely be a different processing pipeline involving these filters incorporated with machine learning.
Collapse
Affiliation(s)
- Jeremy E Hallett
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Petr Bruza
- Thayer School of Engineering at Dartmouth, Hanover, NH, United States of America
- DoseOptics LLC, Lebanon, NH, United States of America
| | - Michael Jermyn
- Thayer School of Engineering at Dartmouth, Hanover, NH, United States of America
- DoseOptics LLC, Lebanon, NH, United States of America
| | - Ke Li
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Brian W Pogue
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States of America
- Thayer School of Engineering at Dartmouth, Hanover, NH, United States of America
- DoseOptics LLC, Lebanon, NH, United States of America
| |
Collapse
|
5
|
Decker SM, Matous AL, Zhang R, Gladstone DJ, Grove EK, Williams BB, Jermyn M, McVorran S, Jarvis LA. Cherenkov imaging combined with scintillation dosimetry provides real-time positional and dose monitoring for radiotherapy patients with cardiac implanted electronic devices. Phys Imaging Radiat Oncol 2024; 32:100642. [PMID: 39315342 PMCID: PMC11417574 DOI: 10.1016/j.phro.2024.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Background and purpose Cardiac implanted electronic devices (CIED) require dose monitoring during each fraction of radiotherapy, which can be time consuming and may have delayed read-out times. This study explores the potential of Cherenkov imaging combined with scintillation dosimetry as an alternative verification system. Methods and materials Time-gated, complementary metal-oxide-semiconductor (iCMOS) cameras were used to collect video images of anthropomorphic phantoms and patients undergoing radiation treatment near chest wall cardiac devices. Scintillator discs and optically stimulated luminescence dosimeters (OSLDs) were used for dose measurement. Accuracy of spatial delivery was assessed by overlaying predicted surface dose outlines derived from the treatment planning system (TPS) with the Cherenkov images. Dose measurements from OSLDs and scintillators were compared. Results In phantom studies, Cherenkov images visibly indicated when dose was delivered to the CIED as compared to non-overlapping dose deliveries. Comparison with dose overlays revealed congruence at the planned position and non-congruence when the phantom was shifted from the initial position. Absolute doses derived from scintillator discs aligned well with the OSLD measurements and TPS predictions for three different positions, measuring within 10 % for in-field positions and within 5 % for out-of-field positions. For two patients with CIEDs imaged over 18 fractions, Cherenkov imaging confirmed positional accuracy for all fractions, and dose measured by scintillator discs deviated by <0.015 Gy from the OSLD measurements. Conclusions Cherenkov imaging combined with scintillation dosimetry presents an alternative methodology for CIED monitoring with the added benefit of instantly detecting deviations, enabling timely corrective actions or proper patient triage.
Collapse
Affiliation(s)
- Savannah M. Decker
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
| | - Allison L. Matous
- Radiation Oncology, Dartmouth Cancer Center, Dartmouth-Health, Lebanon, NH 03765, United States
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
- Radiation Oncology, University of Missouri, Columbia, MO 65212, United States
| | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
- Radiation Oncology, Dartmouth Cancer Center, Dartmouth-Health, Lebanon, NH 03765, United States
| | - Evan K. Grove
- Heart and Vascular Center Dartmouth-Health, Lebanon, NH 03765, United States
| | - Benjamin B. Williams
- Radiation Oncology, Dartmouth Cancer Center, Dartmouth-Health, Lebanon, NH 03765, United States
| | - Michael Jermyn
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
- DoseOptics LLC, Lebanon, NH 03766, United States
| | - Shauna McVorran
- Radiation Oncology, Dartmouth Cancer Center, Dartmouth-Health, Lebanon, NH 03765, United States
| | - Lesley A. Jarvis
- Radiation Oncology, Dartmouth Cancer Center, Dartmouth-Health, Lebanon, NH 03765, United States
| |
Collapse
|
6
|
Decker SM, Bruza P, Zhang R, Williams BB, Jarvis LA, Pogue BW, Gladstone DJ. Technical note: Visual, rapid, scintillation point dosimetry for in vivo MV photon beam radiotherapy treatments. Med Phys 2024; 51:5754-5763. [PMID: 38598093 PMCID: PMC11321933 DOI: 10.1002/mp.17071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND While careful planning and pre-treatment checks are performed to ensure patient safety during external beam radiation therapy (EBRT), inevitable daily variations mean that in vivo dosimetry (IVD) is the only way to attain the true delivered dose. Several countries outside the US require daily IVD for quality assurance. However, elsewhere, the manual labor and time considerations of traditional in vivo dosimeters may be preventing frequent use of IVD in the clinic. PURPOSE This study expands upon previous research using plastic scintillator discs for optical dosimetry for electron therapy treatments. We present the characterization of scintillator discs for in vivo x-ray dosimetry and describe additional considerations due to geometric complexities. METHODS Plastic scintillator discs were coated with reflective white paint on all sides but the front surface. An anti-reflective, matte coating was applied to the transparent face to minimize specular reflection. A time-gated iCMOS camera imaged the discs under various irradiation conditions. In post-processing, background-subtracted images of the scintillators were fit with Gaussian-convolved ellipses to extract several parameters, including integral output, and observation angle. RESULTS Dose linearity and x-ray energy independence were observed, consistent with ideal characteristics for a dosimeter. Dose measurements exhibited less than 5% variation for incident beam angles between 0° and 75° at the anterior surface and 0-60∘ $^\circ $ at the posterior surface for exit beam dosimetry. Varying the angle between the disc surface and the camera lens did not impact the integral output for the same dose up to 55°. Past this point, up to 75°, there is a sharp falloff in response; however, a correction can be used based on the detected width of the disc. The reproducibility of the integral output for a single disc is 2%, and combined with variations from the gantry angle, we report the accuracy of the proposed scintillator disc dosimeters as ±5.4%. CONCLUSIONS Plastic scintillator discs have characteristics that are well-suited for in vivo optical dosimetry for x-ray radiotherapy treatments. Unlike typical point dosimeters, there is no inherent readout time delay, and an optical recording of the measurement is saved after treatment for future reference. While several factors influence the integral output for the same dose, they have been quantified here and may be corrected in post-processing.
Collapse
Affiliation(s)
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755
| | - Rongxiao Zhang
- Geisel School of Medicine, Dartmouth College, Hanover NH 03755
| | | | - Lesley A. Jarvis
- Geisel School of Medicine, Dartmouth College, Hanover NH 03755
- Dartmouth Cancer Center, Dartmouth Health, Lebanon, NH, 03765
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755
| | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755
- Geisel School of Medicine, Dartmouth College, Hanover NH 03755
- Dartmouth Cancer Center, Dartmouth Health, Lebanon, NH, 03765
| |
Collapse
|
7
|
Yamada R, Nishio T, Kinkawa D, Tanaka T, Omura M, Tabata Y, Yoshimura H, Kataoka J. Preliminary study of luminescence phenomena from various materials under ultra-high dose rate proton beam irradiation for dose management. Sci Rep 2024; 14:14504. [PMID: 38914610 PMCID: PMC11196681 DOI: 10.1038/s41598-024-65513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024] Open
Abstract
This research aimed to identify materials capable of emitting visible light useful for dose management at ultra-high dose rate (uHDR). Various materials were irradiated with proton beams at a normal dose rate (NDR) and uHDR, and the resulting surface luminescence was captured using a high-sensitivity camera. The luminescence images were compared with the corresponding dose distributions. The luminescence of Tough Water Phantoms (Kyoto Kagaku Co. Ltd.) with various thicknesses was also observed to evaluate the depth distributions. Dose distributions were measured using two-dimensional ionization chamber detector arrays. The Tough Bone Phantom (Kyoto Kagaku Co. Ltd.) exhibited the strongest luminescence among the materials, followed by the Tough Water Phantom. The metals exhibited relatively weak luminescence. The luminescence profiles of the Tough Water Phantom, water, the Tough Lung Phantom (Kyoto Kagaku Co. Ltd.), and an acrylic were similar to the dose profiles. The luminescence distribution of the Tough Water Phantom in the depth direction was similar to that of the dose distributions. The luminescence at uHDR and NDR were approximately equivalent. The Tough Water Phantom was found to be a suitable material for dosimetry, even at uHDR. More detailed measurement data, such as wavelength data, must be collected to elucidate the luminescence mechanism.
Collapse
Affiliation(s)
- Ryosaku Yamada
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan
- Department of Radiology, Kouseikai Takai Hospital, Tenri-shi, Nara, Japan
| | - Teiji Nishio
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan.
| | - Daiki Kinkawa
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan
| | - Taketo Tanaka
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan
| | - Mizuki Omura
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan
| | - Yoji Tabata
- Department of Radiology, Kouseikai Takai Hospital, Tenri-shi, Nara, Japan
| | - Hitoshi Yoshimura
- Department of Radiology, Kouseikai Takai Hospital, Tenri-shi, Nara, Japan
| | - Jun Kataoka
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjyuku-ku, Tokyo, Japan
| |
Collapse
|
8
|
Yamamoto S, Yamashita T, Yoshino M, Kamada K, Yoshikawa A, Nishio T, Kataoka J. Scintillation of polyester fabric and clothing via proton irradiation and its utilization in surface imaging of proton pencil beams. Sci Rep 2024; 14:13494. [PMID: 38866842 PMCID: PMC11169216 DOI: 10.1038/s41598-024-62456-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
In the realm of radiation therapy, a conspicuous obstacle lies in the dearth of external observation concerning radiation beams aimed at the patient. While real-time monitoring of such beams on the patient's surface during therapy holds promise, the imaging of particle beams has thus far proven to be a formidable task. Here, we show our discovery of polyester fabrics and cloths as auspicious scintillating materials, ideally suited for the visualization of radiation beams upon the patient's surface. The light output of polyester fabrics ranged from 10 to 20% of that observed in plastic scintillators. When exposed to spot scanning proton beams, clear beam spots emerged on the surface of the polyester cloths. The movement of these scanning beams was effectively captured using a CMOS camera in a light-shield-free with lights-off environment. The resulting images provided a means for evaluating spills of the proton beams. The inherent flexibility of polyester fabrics and clothing enhances their appeal for applications in the intricate landscape of radiation therapy, promising a bright future for surface beam imaging endeavors.
Collapse
Affiliation(s)
- Seiichi Yamamoto
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
| | | | - Masao Yoshino
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Japan
| | - Kei Kamada
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Japan
| | - Akira Yoshikawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Japan
| | - Teiji Nishio
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jun Kataoka
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
9
|
Han H, Geng C, Deng X, Li J, Shu D, Tang X. A preliminary study of multispectral Cherenkov imaging and a Fricke-xylenol orange gel film (MCIFF) for online, absolute dose measurement. Med Phys 2024; 51:3734-3745. [PMID: 38224326 DOI: 10.1002/mp.16942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Cherenkov luminescence imaging has shown potential for relative dose distribution and field verification in radiation therapy. However, to date, limited research utilizing Cherenkov luminescence for absolute dose calibration has been conducted owing to uncertainties arising from camera positioning and tissue surface optical properties. PURPOSE This paper introduces a novel approach to multispectral Cherenkov luminescence imaging combined with Fricke-xylenol orange gel (FXG) film, termed MCIFF, which can enable online full-field absolute dose measurement. By integrating these two approaches, MCIFF allows for calibration of the ratio between two spectral intensities with absorbed dose, thereby enabling absolute dose measurement. METHODS All experiments are conducted on a Varian Clinac 23EX, utilizing an electron multiplying charge-coupled device (EMCCD) camera and a two-way image splitter for simultaneous capture of two-spectral Cherenkov imaging. In the first part of this study, the absorbance curves of the prepared FXG film, which receives different doses, are measured using a fluorescence spectrophotometer to verify the correlation between absorbance and dose. In the second part, the FXG film is positioned directly under the radiation beam to corroborate the dose measurement capacity of MCIFF across various beams. In the third part, the feasibility of MCIFF is tested in actual radiotherapy settings via a humanoid model, demonstrating its versatility with various radiotherapy materials. RESULTS The results of this study indicate that the logarithmic ratios of spectral intensities at wavelengths of 550 ± 50 and 700 ± 100 nm accurately reflect variations in radiation dose (R2 > 0.96) across different radiation beams, particle energies, and dose rates. The slopes of the fitting lines remain consistent under varying beam conditions, with discrepancies of less than 8%. The optical profiles obtained using the MCIFF exhibit a satisfactory level of agreement with the measured results derived from the treatment planning system (TPS) and EBT3 films. Specifically, for photon beams, the lateral distances between the 80% and 20% isodose lines, referred to as the penumbra (P80-20) values, obtained through TPS, EBT3 films, and MCIFF, are determined as 0.537, 0.664, and 0.848 cm, respectively. Similarly, for electron beams, the P80-20 values obtained through TPS, EBT3 films, and MCIFF are found to be 0.432, 0.561, and 0.634 cm, respectively. Furthermore, imaging of the anthropomorphic phantom demonstrates the practical application of MCIFF in real radiotherapy environments. CONCLUSION By combining an FXG film with Cherenkov luminescence imaging, MCIFF can calibrate Cherenkov luminescence to absorbed dose, filling the gap in online 2D absolute dose measurement methods in clinical practice, and providing a new direction for the clinical application of optical imaging to radiation therapy.
Collapse
Affiliation(s)
- Haonan Han
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Changran Geng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautic, Nanjing University of Aeronautics and Astronautics, Ministry of Industry and Information Technology, Nanjing, People's Republic of China
- Joint International Research Laboratory on Advanced Particle Therapy, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Xinping Deng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Jun Li
- Radiotherapy Center, Subei People's Hospital of Jiangsu Province, Yangzhou, People's Republic of China
| | - Diyun Shu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Joint International Research Laboratory on Advanced Particle Therapy, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Xiaobin Tang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautic, Nanjing University of Aeronautics and Astronautics, Ministry of Industry and Information Technology, Nanjing, People's Republic of China
- Joint International Research Laboratory on Advanced Particle Therapy, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Jia M, Wei Z, Gao F, Jiang M, Wang W, Yuan Z, Pogue BW. Time-gated single-pixel imaging of Cherenkov emission from a medical linear accelerator. OPTICS LETTERS 2024; 49:2425-2428. [PMID: 38691735 DOI: 10.1364/ol.518624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
Cherenkov imaging is an ideal tool for real-time in vivo verification of a radiation therapy dose. Given that radiation is pulsed from a medical linear accelerator (LINAC) together with weak Cherenkov emissions, time-gated high-sensitivity imaging is required for robust measurements. Instead of using an expensive camera system with limited efficiency of detection in each pixel, a single-pixel imaging (SPI) approach that maintains promising sensitivity over the entire spectral band could be used to provide a low-cost and viable alternative. A prototype SPI system was developed and demonstrated here in Cherenkov imaging of LINAC dose delivery to a water tank. Validation experiments were performed using four regular fields and an intensity-modulated radiotherapy (IMRT) delivery plan. The Cherenkov image-based projection percent depth dose curves (pPDDs) were compared to pPDDs simulated by the treatment planning system (TPS), with an overall average error of 0.48, 0.42, 0.65, and 1.08% for the 3, 5, 7, and 9 cm square beams, respectively. The composite image of the IMRT plan achieved a 85.9% pass rate using 3%/3 mm gamma index criteria, in comparing Cherenkov intensity and TPS dose. This study validates the feasibility of applying SPI to the Cherenkov imaging of radiotherapy dose for the first time to our knowledge.
Collapse
|
11
|
Hübinger L, Wetzig K, Runge R, Hartmann H, Tillner F, Tietze K, Pretze M, Kästner D, Freudenberg R, Brogsitter C, Kotzerke J. Investigation of Photodynamic Therapy Promoted by Cherenkov Light Activated Photosensitizers-New Aspects and Revelations. Pharmaceutics 2024; 16:534. [PMID: 38675195 PMCID: PMC11054706 DOI: 10.3390/pharmaceutics16040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
This work investigates the proposed enhanced efficacy of photodynamic therapy (PDT) by activating photosensitizers (PSs) with Cherenkov light (CL). The approaches of Yoon et al. to test the effect of CL with external radiation were taken up and refined. The results were used to transfer the applied scheme from external radiation therapy to radionuclide therapy in nuclear medicine. Here, the CL for the activation of the PSs (psoralen and trioxsalen) is generated by the ionizing radiation from rhenium-188 (a high-energy beta-emitter, Re-188). In vitro cell survival studies were performed on FaDu, B16 and 4T1 cells. A characterization of the PSs (absorbance measurement and gel electrophoresis) and the CL produced by Re-188 (luminescence measurement) was performed as well as a comparison of clonogenic assays with and without PSs. The methods of Yoon et al. were reproduced with a beam line at our facility to validate their results. In our studies with different concentrations of PS and considering the negative controls without PS, the statements of Yoon et al. regarding the positive effect of CL could not be confirmed. There are slight differences in survival fractions, but they are not significant when considering the differences in the controls. Gel electrophoresis showed a dominance of trioxsalen over psoralen in conclusion of single and double strand breaks in plasmid DNA, suggesting a superiority of trioxsalen as a PS (when irradiated with UVA). In addition, absorption measurements showed that these PSs do not need to be shielded from ambient light during the experiment. An observational test setup for a PDT nuclear medicine approach was found. The CL spectrum of Re-188 was measured. Fluctuating inconclusive results from clonogenic assays were found.
Collapse
Affiliation(s)
- Lisa Hübinger
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kerstin Wetzig
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Roswitha Runge
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Holger Hartmann
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Falk Tillner
- Department of Radiation Therapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
| | - Katja Tietze
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Marc Pretze
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - David Kästner
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Robert Freudenberg
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Claudia Brogsitter
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
12
|
Teng M, Liang X, Liu H, Li Z, Gao X, Zhang C, Cheng H, Chen H, Liu G. Cerenkov radiation shining a light for cancer theranostics. NANO TODAY 2024; 55:102174. [DOI: 10.1016/j.nantod.2024.102174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
13
|
Vasyltsiv R, Rahman M, Harms J, Clark M, Gladstone DJ, Pogue BW, Zhang R, Bruza P. Imaging and characterization of optical emission from ex vivotissue during conventional and UHDR PBS proton therapy. Phys Med Biol 2024; 69:075011. [PMID: 38422545 PMCID: PMC10945384 DOI: 10.1088/1361-6560/ad2ee6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Objective. Imaging of optical photons emitted from tissue during radiotherapy is a promising technique for real-time visualization of treatment delivery, offering applications in dose verification, treatment monitoring, and retrospective treatment plan comparison. This research aims to explore the feasibility of intensified imaging of tissue luminescence during proton therapy (PT), under both conventional and ultra-high dose rate (UHDR) conditions.Approach. Conventional and UHDR pencil beam scanning (PBS) PT irradiation of freshex vivoporcine tissue and tissue-mimicking plastic phantom was imaged using intensified complementary metal-oxide-semiconductor(CMOS) cameras. The optical emission from tissue was characterized during conventional irradiation using both blue and red-sensitive intensifiers to ensure adequate spectral coverage. Spectral characterization was performed using bandpass filters between the lens and sensor. Imaging of conventional proton fields (240 MeV, 10 nA) was performed at 100 Hz frame rate, while UHDR PBS proton delivery (250 MeV, 99 nA) was recorded at 1 kHz frame rate. Dependence of optical emission yield on proton energy was studied using an optical tissue-mimicking plastic phantom and a range shifter. Finally, we demonstrated fast beam tracking capability of fast camera towardsin vivomonitoring of FLASH PT.Main results. Under conventional treatment dose rates optical emission was imaged with single spot resolution. Spot profiles were found to agree with the treatment planning system calculation within >90% for all spectral bands and spot intensity was found to vary with spectral filtration. The resultant polychromatic emission presented a maximum intensity at 650 nm and decreasing signal at lower wavelengths, which is consistent with expected attenuation patterns of high fat and muscle tissue. For UHDR beam imaging, optical yield increased with higher proton energy. Imaging at 1 kHz allowed continuous monitoring of delivery during porcine tissue irradiation, with clear identification of individual dwell positions. The number of dwell positions matched the treatment plan in total and per row showing adequate temporal capability of iCMOS imaging.Significance. For the first time, this study characterizes optical emission from tissue during PT and demonstrates our capability of fast optical tracking of pencil proton beam on the tissue anatomy in both conventional and UHDR setting. Similar to the Cherenkov imaging in radiotherapy, this imaging modality could enable a seamless, independent validation of PT treatments.
Collapse
Affiliation(s)
- Roman Vasyltsiv
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
| | - Mahbubur Rahman
- UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Joseph Harms
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Megan Clark
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
- Department of Radiation Oncology, New York Medical College, Valhalla, NY, United States of America
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
| |
Collapse
|
14
|
Wahabi JM, Ung NM, Mahdiraji GA, Wong JHD. Development and characterisation of a plastic scintillator dosemeter in high-energy photon beams. RADIATION PROTECTION DOSIMETRY 2024; 200:264-273. [PMID: 38123475 DOI: 10.1093/rpd/ncad303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
The radioluminescent (RL) dosemeter is excellent for real-time radiation measurement and can be used in various applications. A plastic scintillator is often the choice sensor because of its size and tissue equivalency. This study aims to characterise a novel plastic scintillator irradiated with high-energy photon beams. An RL dosimetry system was developed using the plastic scintillator. The RL dosimetry system was irradiated using a linear accelerator to characterise the dose linearity, dose rate, energy dependency and depth dose. The developed system showed a linear response toward the dose and dose rate. An energy dependency factor of 1.06 was observed. Depth dose measurement showed a mean deviation of 1.21% from the treatment planning system. The response and characteristics of the plastic scintillator show that it may be used as an alternative in an RL dosimetry system.
Collapse
Affiliation(s)
- Janatul M Wahabi
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Ministry of Health Malaysia, Putrajaya 62590, Malaysia
| | - N M Ung
- Clinical Oncology Unit, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Jeannie H D Wong
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
15
|
Stevens S, Moloney S, Blackmore A, Hart C, Rixham P, Bangiri A, Pooler A, Doolan P. IPEM topical report: guidance for the clinical implementation of online treatment monitoring solutions for IMRT/VMAT. Phys Med Biol 2023; 68:18TR02. [PMID: 37531959 DOI: 10.1088/1361-6560/acecd0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
This report provides guidance for the implementation of online treatment monitoring (OTM) solutions in radiotherapy (RT), with a focus on modulated treatments. Support is provided covering the implementation process, from identification of an OTM solution to local implementation strategy. Guidance has been developed by a RT special interest group (RTSIG) working party (WP) on behalf of the Institute of Physics and Engineering in Medicine (IPEM). Recommendations within the report are derived from the experience of the WP members (in consultation with manufacturers, vendors and user groups), existing guidance or legislation and a UK survey conducted in 2020 (Stevenset al2021). OTM is an inclusive term representing any system capable of providing a direct or inferred measurement of the delivered dose to a RT patient. Information on each type of OTM is provided but, commensurate with UK demand, guidance is largely influenced byin vivodosimetry methods utilising the electronic portal imager device (EPID). Sections are included on the choice of OTM solutions, acceptance and commissioning methods with recommendations on routine quality control, analytical methods and tolerance setting, clinical introduction and staffing/resource requirements. The guidance aims to give a practical solution to sensitivity and specificity testing. Functionality is provided for the user to introduce known errors into treatment plans for local testing. Receiver operating characteristic analysis is discussed as a tool to performance assess OTM systems. OTM solutions can help verify the correct delivery of radiotherapy treatment. Furthermore, modern systems are increasingly capable of providing clinical decision-making information which can impact the course of a patient's treatment. However, technical limitations persist. It is not within the scope of this guidance to critique each available solution, but the user is encouraged to carefully consider workflow and engage with manufacturers in resolving compatibility issues.
Collapse
Affiliation(s)
| | - Stephen Moloney
- University Hospitals Dorset NHS Foundation Trust, Poole, United Kingdom
| | | | - Clare Hart
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Philip Rixham
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Anna Bangiri
- Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Alistair Pooler
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | | |
Collapse
|
16
|
Jia M, Sun B, Wang Y, Gao F, Yuan Z, Pogue BW. Photon-limited Cherenkov imaging of radiation therapy dose. OPTICS LETTERS 2023; 48:1918-1921. [PMID: 37221799 PMCID: PMC10914388 DOI: 10.1364/ol.485668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 05/25/2023]
Abstract
Cherenkov imaging is a unique verification tool that could provide both dosimetric and tissue functional information during radiation therapy. However, the number of interrogated Cherenkov photons in tissue is always limited and tangled with stray radiation photons, severely frustrating the measurement the signal-to-noise ratio (SNR). As such, here, a noise-robust photon-limited imaging technique is proposed by comprehensively exploiting the physical rationale of low-flux Cherenkov measurements together with the spatial correlations of the objects. Validation experiments confirmed that the Cherenkov signal could be promisingly recovered with high SNR by irradiating at as few as one x ray pulse from a linear accelerator (10 mGy dose), and the Cherenkov excited luminescence imaging depth can be extended by >100% on average, for most concentrations of phosphorescent probe. This approach demonstrates that improved applications in radiation oncology could be seen when signal amplitude, noise robustness, and temporal resolution are comprehensively considered in the image recovery process.
Collapse
Affiliation(s)
- Mengyu Jia
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Boshuai Sun
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yuxia Wang
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Biomedical Detecting techniques and Instruments, Tianjin 300072, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Brian W. Pogue
- Department of Medical Physics, University of Wisconsin-Madison, Madison WI 53705, USA
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| |
Collapse
|
17
|
Rahman M, Zhang R, Gladstone DJ, Williams BB, Chen E, Dexter CA, Thompson L, Bruza P, Pogue BW. Failure Mode and Effects Analysis for Experimental Use of FLASH on a Clinical Accelerator. Pract Radiat Oncol 2023; 13:153-165. [PMID: 36375771 PMCID: PMC10373055 DOI: 10.1016/j.prro.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/21/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE The use of a linear accelerator (LINAC) in ultrahigh-dose-rate (UHDR) mode can provide a conduit for wider access to UHDR FLASH effects, sparing normal tissue, but care needs to be taken in the use of such systems to ensure errors are minimized. The failure mode and effects analysis was carried out in a team that has been involved in converting a LINAC between clinical use and UHDR experimental mode for more than 1 year after the proposed methods of TG100. METHODS AND MATERIALS A team of 9 professionals with extensive experience were polled to outline the process map and workflow for analysis, and developed fault trees for potential errors, as well as failure modes that would result. The team scored the categories of severity magnitude, occurrence likelihood, and detectability potential in a scale of 1 to 10, so that a risk priority number (RPN = severity×occurrence×detectability) could be assessed for each. RESULTS A total of 46 potential failure modes were identified, including 5 with an RPN >100. These failure modes involved (1) patient set up, (2) gating mechanisms in delivery, and (3) detector in the beam stop mechanism. The identified methods to mitigate errors included the (1) use of a checklist post conversion, (2) use of robust radiation detectors, (3) automation of quality assurance and beam consistency checks, and (4) implementation of surface guidance during beam delivery. CONCLUSIONS The failure mode and effects analysis process was considered critically important in this setting of a new use of a LINAC, and the expert team developed a higher level of confidence in the ability to safely move UHDR LINAC use toward expanded research access.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Benjamin B Williams
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Erli Chen
- Cheshire Medical Center, Keene, New Hampshire
| | - Chad A Dexter
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Lawrence Thompson
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
18
|
Wancura J, Egan J, Sajo E, Sudhyadhom A. MRI of radiation chemistry: First images and investigation of potential mechanisms. Med Phys 2023; 50:495-505. [PMID: 36201151 PMCID: PMC9930196 DOI: 10.1002/mp.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/25/2022] [Accepted: 09/17/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Paramagnetic species such as O2 and free radicals can enhance T1 and T2 relaxation times. If the change in relaxation time is sufficiently large, the contrast will be generated in magnetic resonance images. Since radiation is known to be capable of altering the concentration of O2 and free radicals during water radiolysis, it may be possible for radiation to induce MR signal change. PURPOSE We present the first reported instance of x-ray-induced MR signal changes in water phantoms and investigate potential paramagnetic relaxation enhancement mechanisms associated with radiation chemistry changes in oxygen and free radical concentrations. METHODS Images of water and 10 mM coumarin phantoms were acquired on a 0.35 T MR-linac before, during, and after a dose delivery of 80 Gy using an inversion-recovery dual-echo sequence with water nullified. Radiation chemistry simulations of these conditions were performed to calculate changes in oxygen and free radical concentrations. Published relaxivity values were then applied to calculate the resulting T1 change, and analytical MR signal equations were used to calculate the associated signal change. RESULTS Compared to pre-irradiation reference images, water phantom images taken during and after irradiation showed little to no change, while coumarin phantom images showed a small signal loss in the irradiated region with a contrast-to-noise ratio (CNR) of 1.0-2.5. Radiation chemistry simulations found oxygen depletion of -11 µM in water and -31 µM in coumarin, resulting in a T1 lengthening of 24 ms and 68 ms respectively, and a simulated CNR of 1.0 and 2.8 respectively. This change was consistent with observations in both direction and magnitude. Steady-state superoxide, hydroxyl, hydroperoxyl, and hydrogen radical concentrations were found to contribute less than 1 ms of T1 change. CONCLUSION Observed radiation-induced MR signal changes were dominated by an oxygen depletion mechanism. Free radicals were concluded to play a minor secondary role under steady-state conditions. Future applications may include in vivo FLASH treatment verification but would require an MR sequence with a better signal-to-noise ratio and higher temporal resolution than the one used in this study.
Collapse
Affiliation(s)
- Joshua Wancura
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - James Egan
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Erno Sajo
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Atchar Sudhyadhom
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Alexander DA, Decker SM, Jermyn M, Bruza P, Zhang R, Chen E, McGlynn TL, Rosselot RA, Lee J, Rose ML, Williams BB, Pogue BW, Gladstone DJ, Jarvis LA. One Year of Clinic-Wide Cherenkov Imaging for Discovery of Quality Improvement Opportunities in Radiation Therapy. Pract Radiat Oncol 2023; 13:71-81. [PMID: 35777728 PMCID: PMC10984217 DOI: 10.1016/j.prro.2022.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE Cherenkov imaging is clinically available as a radiation therapy treatment verification tool. The aim of this work was to discover the benefits of always-on Cherenkov imaging as a novel incident detection and quality improvement system through review of all imaging at our center. METHODS AND MATERIALS Multicamera Cherenkov imaging systems were permanently installed in 3 treatment bunkers, imaging continuously over a year. Images were acquired as part of normal treatment procedures and reviewed for potential treatment delivery anomalies. RESULTS In total, 622 unique patients were evaluated for this study. We identified 9 patients with treatment anomalies occurring over their course of treatment, which were only detected with Cherenkov imaging. Categorizing each event indicated issues arising in simulation, planning, pretreatment review, and treatment delivery, and none of the incidents were detected before this review by conventional measures. The incidents identified in this study included dose to unintended areas in planning, dose to unintended areas due to positioning at treatment, and nonideal bolus placement during setup. CONCLUSIONS Cherenkov imaging was shown to provide a unique method of detecting radiation therapy incidents that would have otherwise gone undetected. Although none of the events detected in this study reached the threshold of reporting, they identified opportunities for practice improvement and demonstrated added value of Cherenkov imaging in quality assurance programs.
Collapse
Affiliation(s)
- Daniel A Alexander
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.
| | - Savannah M Decker
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Dose Optics LLC, Lebanon, New Hampshire
| | - Michael Jermyn
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Dose Optics LLC, Lebanon, New Hampshire
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Dose Optics LLC, Lebanon, New Hampshire
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Dartmouth Cancer Center, Lebanon, New Hampshire
| | - Erli Chen
- Cheshire Medical Center, Keene, New Hampshire
| | | | | | - Jae Lee
- Dartmouth Cancer Center, Lebanon, New Hampshire
| | | | - Benjamin B Williams
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Dartmouth Cancer Center, Lebanon, New Hampshire
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Dose Optics LLC, Lebanon, New Hampshire; Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Lesley A Jarvis
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Dartmouth Cancer Center, Lebanon, New Hampshire
| |
Collapse
|
20
|
Clinical implementation of the first Cherenkov imaging system in a community-based hospital. Tech Innov Patient Support Radiat Oncol 2022; 24:1-5. [PMID: 36118989 PMCID: PMC9472078 DOI: 10.1016/j.tipsro.2022.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose To document experiences with one year of clinical implementation of the first Cherenkov imaging system and share the methods that we developed to utilize Cherenkov imaging to improve treatment delivery accuracy in real-time. Methods A Cherenkov imaging system was installed commissioned and calibrated for clinical use. The optimal room lighting conditions and imaging setup protocols were developed to optimize both image quality and patient experience. The Cherenkov images were analyzed for treatment setup and beam delivery verification. Results We have successfully implemented a clinical Cherenkov imaging system in a community-based hospital. Several radiation therapy patient setup anomalies were found in 1) exit dose to the contralateral breast, 2) dose to the chin due to head rotation for a supraclavicular field, 3) intrafractional patient motion during beam delivery, and 4) large variability (0.5 cm to 5 cm) in arm position between fractions. The system was used to deliver deep inspiration breath hold (DIBH) treatment delivery of an electron treatment beam. Clinical process and procedures were improved to mitigate the identified issues to ensure treatment delivery safety and to improve treatment accuracy. Conclusion The Cherenkov imaging system has proven to be a valuable clinical tool for the improvement of treatment delivery safety and accuracy at our hospital. With only minimal training the therapists were able to adjust or correct treatment positions during treatment delivery as needed. With future Cherenkov software developments Cherenkov imaging systems could provide daily surface guided radiotherapy (SGRT) and real time treatment delivery quality control for all 3D and clinical setup patients without adding additional radiation image dose as in standard kV, MV and CBCT image verifications. Cherenkov imaging can greatly improve clinical efficiency and accuracy, making real time dose delivery consistency verification and SGRT a reality.
Collapse
|
21
|
Decker SM, Alexander DA, Bruza P, Zhang R, Chen E, Jarvis LA, Gladstone DJ, Pogue BW. Performance comparison of quantitative metrics for analysis of in vivo Cherenkov imaging incident detection during radiotherapy. Br J Radiol 2022; 95:20211346. [PMID: 35834415 PMCID: PMC10996952 DOI: 10.1259/bjr.20211346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Examine the responses of multiple image similarity metrics to detect patient positioning errors in radiotherapy observed through Cherenkov imaging, which may be used to optimize automated incident detection. METHODS An anthropomorphic phantom mimicking patient vasculature, a biological marker seen in Cherenkov images, was simulated for a breast radiotherapy treatment. The phantom was systematically shifted in each translational direction, and Cherenkov images were captured during treatment delivery at each step. The responses of mutual information (MI) and the γ passing rate (%GP) were compared to that of existing field-shape matching image metrics, the Dice coefficient, and mean distance to conformity (MDC). Patient images containing other incidents were analyzed to verify the best detection algorithm for different incident types. RESULTS Positional shifts in all directions were registered by both MI and %GP, degrading monotonically as the shifts increased. Shifts in intensity, which may result from erythema or bolus-tissue air gaps, were detected most by %GP. However, neither metric detected beam-shape misalignment, such as that caused by dose to unintended areas, as well as currently employed metrics (Dice and MDC). CONCLUSIONS This study indicates that different radiotherapy incidents may be detected by comparing both inter- and intrafractional Cherenkov images with a corresponding image similarity metric, varying with the type of incident. Future work will involve determining appropriate thresholds per metric for automatic flagging. ADVANCES IN KNOWLEDGE Classifying different algorithms for the detection of various radiotherapy incidents allows for the development of an automatic flagging system, eliminating the burden of manual review of Cherenkov images.
Collapse
Affiliation(s)
- Savannah M Decker
- Thayer School of Engineering, Dartmouth College,
Hanover, New Hampshire, United
States
| | - Daniel A Alexander
- Thayer School of Engineering, Dartmouth College,
Hanover, New Hampshire, United
States
- DoseOptics LLC, Lebanon, New
Hampshire, United States
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College,
Hanover, New Hampshire, United
States
- DoseOptics LLC, Lebanon, New
Hampshire, United States
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College,
Hanover, New Hampshire, United
States
- Geisel School of Medicine, Dartmouth College,
Hanover, New Hampshire, United
States
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical
Center, Lebanon, New Hampshire,
United States
| | - Erli Chen
- Cheshire Medical Center, Keene
NH, United States
| | - Lesley A Jarvis
- Geisel School of Medicine, Dartmouth College,
Hanover, New Hampshire, United
States
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical
Center, Lebanon, New Hampshire,
United States
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College,
Hanover, New Hampshire, United
States
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College,
Hanover, New Hampshire, United
States
- DoseOptics LLC, Lebanon, New
Hampshire, United States
- Department of Medical Physics, University of
Wisconsin-Madison, Madison,
Wisconsin, United States
| |
Collapse
|
22
|
Li G. Advances and potential of optical surface imaging in radiotherapy. Phys Med Biol 2022; 67:10.1088/1361-6560/ac838f. [PMID: 35868290 PMCID: PMC10958463 DOI: 10.1088/1361-6560/ac838f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/22/2022] [Indexed: 11/12/2022]
Abstract
This article reviews the recent advancements and future potential of optical surface imaging (OSI) in clinical applications as a four-dimensional (4D) imaging modality for surface-guided radiotherapy (SGRT), including OSI systems, clinical SGRT applications, and OSI-based clinical research. The OSI is a non-ionizing radiation imaging modality, offering real-time 3D surface imaging with a large field of view (FOV), suitable for in-room interactive patient setup, and real-time motion monitoring at any couch rotation during radiotherapy. So far, most clinical SGRT applications have focused on treating superficial breast cancer or deep-seated brain cancer in rigid anatomy, because the skin surface can serve as tumor surrogates in these two clinical scenarios, and the procedures for breast treatments in free-breathing (FB) or at deep-inspiration breath-hold (DIBH), and for cranial stereotactic radiosurgery (SRS) and radiotherapy (SRT) are well developed. When using the skin surface as a body-position surrogate, SGRT promises to replace the traditional tattoo/laser-based setup. However, this requires new SGRT procedures for all anatomical sites and new workflows from treatment simulation to delivery. SGRT studies in other anatomical sites have shown slightly higher accuracy and better performance than a tattoo/laser-based setup. In addition, radiographical image-guided radiotherapy (IGRT) is still necessary, especially for stereotactic body radiotherapy (SBRT). To go beyond the external body surface and infer an internal tumor motion, recent studies have shown the clinical potential of OSI-based spirometry to measure dynamic tidal volume as a tumor motion surrogate, and Cherenkov surface imaging to guide and assess treatment delivery. As OSI provides complete datasets of body position, deformation, and motion, it offers an opportunity to replace fiducial-based optical tracking systems. After all, SGRT has great potential for further clinical applications. In this review, OSI technology, applications, and potential are discussed since its first introduction to radiotherapy in 2005, including technical characterization, different commercial systems, and major clinical applications, including conventional SGRT on top of tattoo/laser-based alignment and new SGRT techniques attempting to replace tattoo/laser-based setup. The clinical research for OSI-based tumor tracking is reviewed, including OSI-based spirometry and OSI-guided tumor tracking models. Ongoing clinical research has created more SGRT opportunities for clinical applications beyond the current scope.
Collapse
Affiliation(s)
- Guang Li
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States of America
| |
Collapse
|
23
|
Cloutier É, Beaulieu L, Archambault L. Direct in-water radiation dose measurements using Cherenkov emission corrected signals from polarization imaging for a clinical radiotherapy application. Sci Rep 2022; 12:9608. [PMID: 35688843 PMCID: PMC9187683 DOI: 10.1038/s41598-022-12672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
Cherenkov emission (CE) is a visible blueish light emitted in water mediums irradiated by most radiotherapy treatment beams. However, CE is produced anisotropically which currently imposes a geometrical constraint uncertainty for dose measurements. In this work, polarization imaging is proposed and described as a method enabling precise 2D dose measurements using CE. CE produced in a water tank is imaged from four polarization angles using a camera coupled to a rotating polarizer. Using Malus' law, the polarized component of CE is isolated and corrected with Monte Carlo calculated CE polar and azimuthal angular distributions. Projected dose measurements resulting from polarization-corrected CE are compared to equivalent radiochromic film measurements. Overall, agreement between polarized corrected CE signal and films measurements is found to be within 3%, for projected percent depth dose (PPDD) and profiles at the different tested energies ([Formula: see text]: 6 and [Formula: see text], e[Formula: see text]: 6 and 18[Formula: see text]). In comparison, raw Cherenkov emission presented deviations up 60% for electron beam PPDDs and 20% for photon beams PPDDs. Finally, a degree of linear polarization between 29% and 47% was measured for CE in comparison to [Formula: see text]% for scintillation. Hence, polarization imaging is found to be a promising and powerful method for improved radio-luminescent dose measurements with possible extensions to signal separation.
Collapse
Affiliation(s)
- Émily Cloutier
- Centre Intégré de cancérologie and Axe Oncologie du CRCHU de Québec - Université Laval, CHU de Québec - Université Laval, Québec, G1R 2J6, Canada.
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, G1V 0A6, Canada.
| | - Luc Beaulieu
- Centre Intégré de cancérologie and Axe Oncologie du CRCHU de Québec - Université Laval, CHU de Québec - Université Laval, Québec, G1R 2J6, Canada
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, G1V 0A6, Canada
| | - Louis Archambault
- Centre Intégré de cancérologie and Axe Oncologie du CRCHU de Québec - Université Laval, CHU de Québec - Université Laval, Québec, G1R 2J6, Canada.
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, G1V 0A6, Canada.
| |
Collapse
|
24
|
El Naqa I, Pogue BW, Zhang R, Oraiqat I, Parodi K. Image guidance for FLASH radiotherapy. Med Phys 2022; 49:4109-4122. [PMID: 35396707 PMCID: PMC9844128 DOI: 10.1002/mp.15662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023] Open
Abstract
FLASH radiotherapy (FLASH-RT) is an emerging ultra-high dose (>40 Gy/s) delivery that promises to improve the therapeutic potential by limiting toxicities compared to conventional RT while maintaining similar tumor eradication efficacy. Image guidance is an essential component of modern RT that should be harnessed to meet the special emerging needs of FLASH-RT and its associated high risks in planning and delivering of such ultra-high doses in short period of times. Hence, this contribution will elaborate on the imaging requirements and possible solutions in the entire chain of FLASH-RT treatment, from the planning, through the setup and delivery with online in vivo imaging and dosimetry, up to the assessment of biological mechanisms and treatment response. In patient setup and delivery, higher temporal sampling than in conventional RT should ensure that the short treatment is delivered precisely to the targeted region. Additionally, conventional imaging tools such as cone-beam computed tomography will continue to play an important role in improving patient setup prior to delivery, while techniques based on magnetic resonance imaging or positron emission tomography may be extremely valuable for either linear accelerator (Linac) or particle FLASH therapy, to monitor and track anatomical changes during delivery. In either planning or assessing outcomes, quantitative functional imaging could supplement conventional imaging for more accurate utilization of the biological window of the FLASH effect, selecting for or verifying things such as tissue oxygen and existing or transient hypoxia on the relevant timescales of FLASH-RT delivery. Perhaps most importantly at this time, these tools might help improve the understanding of the biological mechanisms of FLASH-RT response in tumor and normal tissues. The high dose deposition of FLASH provides an opportunity to utilize pulse-to-pulse imaging tools such as Cherenkov or radiation acoustic emission imaging. These could provide individual pulse mapping or assessing the 3D dose delivery superficially or at tissue depth, respectively. In summary, the most promising components of modern RT should be used for safer application of FLASH-RT, and new promising developments could be advanced to cope with its novel demands but also exploit new opportunities in connection with the unique nature of pulsed delivery at unprecedented dose rates, opening a new era of biological image guidance and ultrafast, pulse-based in vivo dosimetry.
Collapse
Affiliation(s)
- Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Department of Medical Physics, University of Wisconsin-Madison, WI 53705, USA
| | - Rongxiao Zhang
- Giesel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Ibrahim Oraiqat
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching 85748, Germany
| |
Collapse
|
25
|
Cloutier E, Archambault L, Beaulieu L. Accurate dose measurements using cherenkov emission polarization imaging. Med Phys 2022; 49:5417-5422. [PMID: 35502867 DOI: 10.1002/mp.15693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Cherenkov radiation carries the potential of direct in-water dose measurements, but its precision is currently limited by a strong anisotropy. Taking advantage of polarization imaging, this work proposes a new approach for high accuracy Cherenkov emission dose measurements. METHODS Cherenkov radiation produced in a 15 × 15 × 20 cm3 water tank is imaged with a cooled CCD camera from four polarizer transmission axes [0°, 45°, 90°, 135°]. The water tank is positioned at the isocenter of a 5 × 5 cm2 , 6 MV and 18 MV photon beam. Using Malus' law, the polarized portion of the signal is extracted. Corrections are applied to the polarized signal following azimuthal and polar Cherenkov emission angular distributions extracted from Monte Carlo simulations. Projected percent depth dose and beam profiles are measured and compared with the prediction from a treatment planning system (TPS). RESULTS Corrected polarized signals on the central axis reduced deviations at depth (mean ± std) from 8±5% to 0.8 ±1% at 6 MV and 8±7% to 1±3% at 18 MV. For the profile measurement, differences between the corrected polarized signal and the TPS calculations are 1±3% and 2±3% on the central axis at 6 MV and 18 MV respectively. In these conditions, Cherenkov emission is shown to be partly polarized. CONCLUSIONS This work proposes a novel polarization imaging approach enabling high precision water-based dose measurements using Cherenkov radiation. The method allows correction of the Cherenkov emission anisotropy within 4% on the beam central axis and in depth. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Emily Cloutier
- Physics, physical engineering and optics department and Cancer Research Center, Universite Laval, Quebec, Canada.,CHU de Quebec - Universite Laval, CHU de Quebec, Quebec, Canada
| | - Louis Archambault
- Physics, physical engineering and optics department and Cancer Research Center, Universite Laval, Quebec, Canada.,CHU de Quebec - Universite Laval, CHU de Quebec, Quebec, Canada
| | - Luc Beaulieu
- Physics, physical engineering and optics department and Cancer Research Center, Universite Laval, Quebec, Canada.,CHU de Quebec - Universite Laval, CHU de Quebec, Quebec, Canada
| |
Collapse
|
26
|
Hachadorian RL, Bruza P, Jermyn M, Gladstone DJ, Zhang R, Jarvis LA, Pogue BW. Remote dose imaging from cherenkov light using spatially-resolved CT calibration in breast radiotherapy. Med Phys 2022; 49:4018-4025. [PMID: 35304768 DOI: 10.1002/mp.15614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Imaging Cherenkov light during radiotherapy allows the visualization and recording of frame-by-frame relative maps of the dose being delivered to the tissue at each control point used throughout treatment, providing one of the most complete real-time means of treatment quality assurance. In non-turbid media, the intensity of Cherenkov light is linear with surface dose deposited, however the emission from patient tissue is well-known to be reduced by absorbing tissue components such as hemoglobin, fat, water and melanin, and diffused by the scattering components of tissue. Earlier studies have shown that bulk correction could be achieved by using the patient planning CT scan for attenuation correction. METHODS In this study, CT maps were used for correction of spatial variations in emissivity. Testing was completed on Cherenkov images from radiotherapy treatments of post-lumpectomy breast cancer patients (n = 13), combined with spatial renderings of the patient radiodensity (CT number) from their planning CT scan. RESULTS The correction technique was shown to provide a pixel-by-pixel correction that suppressed many of the inter- and intra-patient differences in the Cherenkov light emitted per unit dose. This correction was established from a calibration curve that correlated Cherenkov light intensity to surface-rendered CT number (R6MV 2 = 0.70 and R10MV 2 = 0.72). The corrected Cherenkov intensity per unit dose standard error was reduced by nearly half (from ∼30% to ∼17%). CONCLUSIONS This approach provides evidence that the planning CT scan can mitigate some of the tissue-specific attenuation in Cherenkov images, allowing them to be translated into near surface dose images. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Petr Bruza
- Thayer School of Engineering at Dartmouth, Dartmouth College, Hanover, NH.,DoseOptics LLC, NH, Lebanon
| | - Michael Jermyn
- Thayer School of Engineering at Dartmouth, Dartmouth College, Hanover, NH.,DoseOptics LLC, NH, Lebanon
| | - David J Gladstone
- Thayer School of Engineering at Dartmouth, Dartmouth College, Hanover, NH.,Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Rongxiao Zhang
- Thayer School of Engineering at Dartmouth, Dartmouth College, Hanover, NH.,Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Lesley A Jarvis
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH
| | - Brian W Pogue
- Thayer School of Engineering at Dartmouth, Dartmouth College, Hanover, NH.,DoseOptics LLC, NH, Lebanon
| |
Collapse
|
27
|
Rahman M, Bruza P, Hachadorian R, Alexander D, Cao X, Zhang R, Gladstone DJ, Pogue BW. Optimization of in vivo Cherenkov imaging dosimetry via spectral choices for ambient background lights and filtering. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210195RR. [PMID: 34643072 PMCID: PMC8510878 DOI: 10.1117/1.jbo.26.10.106003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE The Cherenkov emission spectrum overlaps with that of ambient room light sources. Choice of room lighting devices dramatically affects the efficient detection of Cherenkov emission during patient treatment. AIM To determine optimal room light sources allowing Cherenkov emission imaging in normally lit radiotherapy treatment delivery rooms. APPROACH A variety of commercial light sources and long-pass (LP) filters were surveyed for spectral band separation from the red to near-infrared Cherenkov light emitted by tissue. Their effects on signal-to-noise ratio (SNR), Cherenkov to background signal ratio, and image artifacts were quantified by imaging irradiated tissue equivalent phantoms with an intensified time-gated CMOS camera. RESULTS Because Cherenkov emission from tissue lies largely in the near-infrared spectrum, a controlled choice of ambient light that avoids this spectral band is ideal, along with a camera that is maximally sensitive to it. An RGB LED light source produced the best SNR out of all sources that mimic room light temperature. A 675-nm LP filter on the camera input further reduced ambient light detected (optical density > 3), achieving maximal SNR for Cherenkov emission near 40. Reduction of the room light signal reduced artifacts from specular reflection on the tissue surface and also minimized spurious Cherenkov signals from non-tissue features such as bolus. CONCLUSIONS LP filtering during image acquisition for near-infrared light in tandem with narrow band LED illuminated rooms improves image quality, trading off the loss of red wavelengths for better removal of room light in the image. This spectral filtering is also critically important to remove specular reflection in the images and allow for imaging of Cherenkov emission through clear bolus. Beyond time-gated external beam therapy systems, the spectral separation methods can be utilized for background removal for continuous treatment delivery methods including proton pencil beam scanning systems and brachytherapy.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Petr Bruza
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Rachael Hachadorian
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Daniel Alexander
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Xu Cao
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Rongxiao Zhang
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Department of Radiation Oncology, Hanover, New Hampshire, United States
- Dartmouth-Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, New Hampshire, United States
| | - David J. Gladstone
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Department of Radiation Oncology, Hanover, New Hampshire, United States
- Dartmouth-Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, New Hampshire, United States
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth-Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Department of Surgery, Hanover, New Hampshire, United States
| |
Collapse
|
28
|
Decker SM, Alexander DA, Hachadorian RL, Zhang R, Gladstone DJ, Bruza P, Pogue BW. Estimation of diffuse Cherenkov optical emission from external beam radiation build-up in tissue. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210129RR. [PMID: 34545714 PMCID: PMC8451315 DOI: 10.1117/1.jbo.26.9.098003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Optical imaging of Cherenkov emission during radiation therapy could be used to verify dose delivery in real-time if a more comprehensive quantitative understanding of the factors affecting emission intensity could be developed. AIM This study aims to explore the change in diffuse Cherenkov emission intensity with x-ray beam energy from irradiated tissue, both theoretically and experimentally. APPROACH Derivation of the emitted Cherenkov signal was achieved using diffusion theory, and experimental studies with 6 to 18 MV energy x-rays were performed in tissue phantoms to confirm the model predictions as related to the radiation build-up factor with depth into tissue. RESULTS Irradiation at lower x-ray energies results in a greater surface dose and higher build-up slope, which results in a ∼46 % greater diffusely emitted Cherenkov signal per unit dose at 6 MV relative to 18 MV x-rays. However, this phenomenon competes with a decrease in signal from less Cherenkov photons being generated at lower energies, a ∼44 % reduction at 6 versus 18 MV. The result is an emitted Cherenkov signal that is nearly constant with beam energy. CONCLUSIONS This study explains why the observed Cherenkov emission from tissue is not a strong function of beam energy, despite the known strong correlation between Cherenkov intensity and particle energy in the absence of build-up and scattering effects.
Collapse
Affiliation(s)
- Savannah M. Decker
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Daniel A. Alexander
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | | | - Rongxiao Zhang
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Department of Medicine, Hanover, New Hampshire, United States
- Norris Cotton Cancer Center, Dartmouth–Hitchcock Medical Center, Lebanon, New Hampshire, United States
| | - David J. Gladstone
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Department of Medicine, Hanover, New Hampshire, United States
- Norris Cotton Cancer Center, Dartmouth–Hitchcock Medical Center, Lebanon, New Hampshire, United States
| | - Petr Bruza
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- DoseOptics LLC, Lebanon, New Hampshire, United States
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Department of Medicine, Hanover, New Hampshire, United States
- DoseOptics LLC, Lebanon, New Hampshire, United States
| |
Collapse
|
29
|
The role of surface-guided radiation therapy for improving patient safety. Radiother Oncol 2021; 163:229-236. [PMID: 34453955 DOI: 10.1016/j.radonc.2021.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022]
Abstract
Emerging data indicates SGRT could improve safety and quality by preventing errors in its capacity as an independent system in the treatment room. The aim of this work is to investigate the utility of SGRT in the context of safety and quality. Three incident learning systems (ILS) were reviewed to categorize and quantify errors that could have been prevented with SGRT: SAFRON (International Atomic Energy Agency), UW-ILS (University of Washington) and AvIC (Skåne University Hospital). A total of 849/9737 events occurred during the pre-treatment review/verification and treatment stages. Of these, 179 (21%) events were predicted to have been preventable with SGRT. The most common preventable events were wrong isocentre (43%) and incorrect accessories (34%), which appeared at comparable rates among SAFRON and UW-ILS. The proportion of events due to wrong accessories was much smaller in the AvIC ILS, which may be attributable to the mandatory use of SGRT in Sweden. Several case scenarios are presented to demonstrate that SGRT operates as a valuable complement to other quality-improvement tools routinely used in radiotherapy. Cases are noted in which SGRT itself caused incidents. These were mostly related to workflow issues and were of low severity. Severity data indicated that events with the potential to be mitigated by SGRT were of higher severity for all categories except wrong accessories. Improved vendor integration of SGRT systems within the overall workflow could further enhance its clinical utility. SGRT is a valuable tool with the potential to increase patient safety and treatment quality in radiotherapy.
Collapse
|