1
|
Trojani V, Grehn M, Botti A, Balgobind B, Savini A, Boda-Heggemann J, Miszczyk M, Elicin O, Krug D, Andratschke N, Schmidhalter D, van Elmpt W, Bogowicz M, de Areba Iglesias J, Dolla L, Ehrbar S, Fernandez-Velilla E, Fleckenstein J, Granero D, Henzen D, Hurkmans C, Kluge A, Knybel L, Loopeker S, Mirandola A, Richetto V, Sicignano G, Vallet V, van Asselen B, Worm E, Pruvot E, Verhoeff J, Fast M, Iori M, Blanck O. Refining Treatment Planning in STereotactic Arrhythmia Radioablation: Benchmark Results and Consensus Statement From the STOPSTORM.eu Consortium. Int J Radiat Oncol Biol Phys 2025; 121:218-229. [PMID: 39122095 DOI: 10.1016/j.ijrobp.2024.07.2331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE STereotactic Arrhythmia Radioablation (STAR) showed promising results in patients with refractory ventricular tachycardia. However, clinical data are scarce and heterogeneous. The STOPSTORM.eu consortium was established to investigate and harmonize STAR in Europe. The primary goal of this benchmark study was to investigate current treatment planning practice within the STOPSTORM project as a baseline for future harmonization. METHODS AND MATERIALS Planning target volumes (PTVs) overlapping extracardiac organs-at-risk and/or cardiac substructures were generated for 3 STAR cases. Participating centers were asked to create single-fraction treatment plans with 25 Gy dose prescriptions based on in-house clinical practice. All treatment plans were reviewed by an expert panel and quantitative crowd knowledge-based analysis was performed with independent software using descriptive statistics for International Commission on Radiation Units and Measurements report 91 relevant parameters and crowd dose-volume histograms. Thereafter, treatment planning consensus statements were established using a dual-stage voting process. RESULTS Twenty centers submitted 67 treatment plans for this study. In most plans (75%) intensity modulated arc therapy with 6 MV flattening filter free beams was used. Dose prescription was mainly based on PTV D95% (49%) or D96%-100% (19%). Many participants preferred to spare close extracardiac organs-at-risk (75%) and cardiac substructures (50%) by PTV coverage reduction. PTV D0.035cm3 ranged from 25.5 to 34.6 Gy, demonstrating a large variety of dose inhomogeneity. Estimated treatment times without motion compensation or setup ranged from 2 to 80 minutes. For the consensus statements, a strong agreement was reached for beam technique planning, dose calculation, prescription methods, and trade-offs between target and extracardiac critical structures. No agreement was reached on cardiac substructure dose limitations and on desired dose inhomogeneity in the target. CONCLUSIONS This STOPSTORM multicenter treatment planning benchmark study not only showed strong agreement on several aspects of STAR treatment planning, but also revealed disagreement on others. To standardize and harmonize STAR in the future, consensus statements were established; however, clinical data are urgently needed for actionable guidelines for treatment planning.
Collapse
Affiliation(s)
- Valeria Trojani
- Department of Medical Physics, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | - Andrea Botti
- Department of Medical Physics, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Brian Balgobind
- Department of Radiation Oncology, Amsterdam UMC, Radiation Oncology, Amsterdam, The Netherlands
| | | | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcin Miszczyk
- IIIrd Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland; Collegium Medicum - Faculty of Medicine, WSB University, Dąbrowa Górnicza, Poland
| | - Olgun Elicin
- Department of Radiation Oncology and Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Krug
- Department of Radiation Oncology, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - Daniel Schmidhalter
- Department of Radiation Oncology and Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marta Bogowicz
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Lukasz Dolla
- Radiotherapy Planning Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Stefanie Ehrbar
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Jens Fleckenstein
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Domingo Granero
- Department of Radiation Oncology, Hospital General Valencia, Valencia, Spain
| | - Dominik Henzen
- Department of Radiation Oncology and Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Coen Hurkmans
- Department of Radiation Oncology, Catharina Hospital, Eindhoven, The Netherlands; Department of Electrical Engineering and Department of Applied Physics, Technical University Eindhoven, The Netherlands
| | - Anne Kluge
- Department for Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lukas Knybel
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Sandy Loopeker
- Department of Radiation Oncology, Amsterdam UMC, Radiation Oncology, Amsterdam, The Netherlands
| | - Alfredo Mirandola
- Radiation Oncology Clinical Department, National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Veronica Richetto
- Medical Physics Unit, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Gianluisa Sicignano
- Department of Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Veronique Vallet
- Department of Radiophysics, Lausanne University Hospital, Lausanne, Switzerland
| | - Bram van Asselen
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Esben Worm
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joost Verhoeff
- Department of Radiation Oncology, Amsterdam UMC, Radiation Oncology, Amsterdam, The Netherlands; Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martin Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mauro Iori
- Department of Medical Physics, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center of Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
2
|
Miszczyk M, Hoeksema WF, Kuna K, Blamek S, Cuculich PS, Grehn M, Molon G, Nowicka Z, van der Ree MH, Robinson CG, Sajdok M, Verhoeff JJC, Postema PG, Blanck O. Stereotactic arrhythmia radioablation (STAR)-A systematic review and meta-analysis of prospective trials on behalf of the STOPSTORM.eu consortium. Heart Rhythm 2025; 22:80-89. [PMID: 39032525 DOI: 10.1016/j.hrthm.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Stereotactic arrhythmia radioablation (STAR) is a noninvasive treatment of refractory ventricular tachycardia (VT). In this study, we aimed to systematically review prospective trials on STAR and pool harmonized outcome measures in a meta-analysis. After registration in the International Prospective Register of Systematic Reviews (PROSPERO: CRD42023439666), we searched OVID Medline, OVID Embase, Web of Science Core Collection, the Cochrane Central Register of Controlled Trials, and Google Scholar on November 9, 2023, to identify reports describing results of prospective trials evaluating STAR for VT. Risk of bias was assessed using the Risk Of Bias In Non-randomized Studies of Interventions tool. Meta-analysis was performed using generalized linear mixed models. We identified 10 prospective trials in which 82 patients were treated with STAR between 2016 and 2022. The 90-day rate of treatment-related grade ≥3 adverse events was 0.10 (95% confidence interval [CI] 0.04-0.2). The proportions of patients achieving given VT burden reductions were 0.61 (95% CI 0.45-0.74) for ≥95%, 0.80 (95% CI 0.62-0.91) for ≥75%, and 0.9 (95% CI 0.77-0.96) for ≥50% in 63 evaluable patients. The 1-year overall survival rate was 0.73 (95% CI 0.61-0.83) in 81 patients, 1-year freedom from recurrence was 0.30 (95% CI 0.16-0.49) in 61 patients, and 1-year recurrence-free survival was 0.21 in 60 patients (95% CI 0.08-0.46). Limitations include methodological heterogeneity across studies and moderate to significant risk of bias. In conclusion, STAR is a promising treatment method, characterized by moderate toxicity. We observed 1-year mortality of ≈27% in this population of critically ill patients suffering from refractory VT. Most patients experience a significant reduction in VT burden; however, 1-year recurrence rates are high. STAR should still be considered an investigational approach and recommended to patients primarily within the context of prospective trials.
Collapse
Affiliation(s)
- Marcin Miszczyk
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Collegium Medicum - Faculty of Medicine, WSB University, Dąbrowa Górnicza, Poland.
| | - Wiert F Hoeksema
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC Location University of Amsterdam, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Kasper Kuna
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Sławomir Blamek
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Phillip S Cuculich
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Giulio Molon
- Department of Cardiology, IRCCS S.Cuore Don Calabria, Negrar VR, Italy
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Martijn H van der Ree
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC Location University of Amsterdam, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Clifford G Robinson
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mateusz Sajdok
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland; Department of Electrocardiology, Upper Silesian Medical Center of the Medical University of Silesia, Katowice, Poland; Doctoral School of the Medical University of Silesia, Katowice, Poland
| | - Joost J C Verhoeff
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter G Postema
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC Location University of Amsterdam, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
3
|
Kawamura M, Shimojo M, Tatsugami F, Hirata K, Fujita S, Ueda D, Matsui Y, Fushimi Y, Fujioka T, Nozaki T, Yamada A, Ito R, Fujima N, Yanagawa M, Nakaura T, Tsuboyama T, Kamagata K, Naganawa S. Stereotactic arrhythmia radioablation for ventricular tachycardia: a review of clinical trials and emerging roles of imaging. JOURNAL OF RADIATION RESEARCH 2024:rrae090. [PMID: 39656944 DOI: 10.1093/jrr/rrae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/17/2024] [Indexed: 12/17/2024]
Abstract
Ventricular tachycardia (VT) is a severe arrhythmia commonly treated with implantable cardioverter defibrillators, antiarrhythmic drugs and catheter ablation (CA). Although CA is effective in reducing recurrent VT, its impact on survival remains uncertain, especially in patients with extensive scarring. Stereotactic arrhythmia radioablation (STAR) has emerged as a novel treatment for VT in patients unresponsive to CA, leveraging techniques from stereotactic body radiation therapy used in cancer treatments. Recent clinical trials and case series have demonstrated the short-term efficacy and safety of STAR, although long-term outcomes remain unclear. Imaging techniques, such as electroanatomical mapping, contrast-enhanced magnetic resonance imaging and nuclear imaging, play a crucial role in treatment planning by identifying VT substrates and guiding target delineation. However, challenges persist owing to the complex anatomy and variability in target volume definitions. Advances in imaging and artificial intelligence are expected to improve the precision and efficacy of STAR. The exact mechanisms underlying the antiarrhythmic effects of STAR, including potential fibrosis and improvement in cardiac conduction, are still being explored. Despite its potential, STAR should be cautiously applied in prospective clinical trials, with a focus on optimizing dose delivery and understanding long-term outcomes. Collaborative efforts are necessary to standardize treatment strategies and enhance the quality of life for patients with refractory VT.
Collapse
Affiliation(s)
- Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masafumi Shimojo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University, Kita15, Nishi7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daiju Ueda
- Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akira Yamada
- Medical Data Science Course, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita15, Nishi7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho,Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
4
|
Kim H, Park S, Kim J, Kim JS, Kim DW, Kim N, Uhm JS, Kim D, Pak HN, Hong CS, Yoon HI. Reinforcing treatment and evaluation workflow of stereotactic ablative body radiotherapy for refractory ventricular tachycardia. Radiat Oncol J 2024; 42:319-329. [PMID: 39748532 DOI: 10.3857/roj.2024.00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/21/2024] [Indexed: 01/04/2025] Open
Abstract
PURPOSE Cardiac radioablation is a novel, non-invasive treatment for ventricular tachycardia (VT), involving a single fractional stereotactic ablative body radiotherapy (SABR) session with a prescribed dose of 25 Gy. This complex procedure requires a detailed workflow and stringent dose constraints compared to conventional radiation therapy. This study aims to establish a consistent institutional workflow for single-fraction cardiac VT-SABR, emphasizing robust plan evaluation and quality assurance. MATERIALS AND METHODS The study developed a consistent institutional workflow for VT-SABR, including computed tomography (CT) simulation, target volume definition, treatment planning, robust plan evaluation, quality assurance, and image-guided strategy. The workflow was implemented for two patients with cardiac arrhythmia. Accurate target volume definition using planning CT images and electronic anatomical mapping was critical. A four-dimensional (4D) cone-beam CT (CBCT) and breath-hold electrocardiographic gated CT images reliably detected target motion. RESULTS The resulting plans exhibited a conformity index greater than 0.7 and a gradient index around G4.0. Dose constraints for the planning target volume (PTV) aimed for 95% or higher PTV dose coverage, with a maximum dose of 200% or lower. However, one case did not meet the PTV dose coverage due to the proximity of the PTV to gastrointestinal organs. Plans adhered to dose constraints for organs at risk near the heart, but meeting constraints for specific cardiac sub-structures was challenging and dependent on PTV location. CONCLUSION The plans demonstrated robustness against respiratory motion and patient positional uncertainty through a robust evaluation function. The 4D and intra-fractional CBCT were effective in verifying target motion and setup stability.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangjoon Park
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihun Kim
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Wook Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae-Sun Uhm
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Daehoon Kim
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chae-Seon Hong
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Konermann SL, Gerard IJ, Bernier ML, Hijal T, Stroian G, Kopek N, Alfieri J, El-Hamedi L, Pater P. The conversion of electroanatomic maps for compatibility with treatment planning systems in cardiac radioablation target volume definition. Med Phys 2024. [PMID: 39612368 DOI: 10.1002/mp.17531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Cardiac radioablation (CRA) is a new and promising treatment modality for patients with ventricular tachycardia refractory to standard-of-care treatment. Electroanatomic maps are used to define radiation target volumes; however, there is currently no native method to import electroanatomic maps into the treatment planning system (TPS). PURPOSE To develop Edico, a semi-automated tool to enable electroanatomic map import into a TPS, by converting electroanatomic maps to a Digital Imaging and COmmunications in Medicine (DICOM) standard. The overall aim is to facilitate target volume delineation and improve workflow efficiency in treating patients. METHODS Edico imports voltage and spatial data from electroanatomic maps and sorts these into voxels to be exported in a DICOM format, with each voxel containing the average voltage value of the data that falls within it. Three different rectangular electroanatomic maps were created and processed using Edico to ensure that expected features are maintained through processing. A sensitivity analysis of voxel size was completed using 19 different electroanatomic maps processed at five different sets of voxel dimensions, for a total of 95 resulting voxelized datasets. The coefficient of variation in each populated voxel in the datasets was analyzed to determine which voxel sizes are necessary to ensure that data loss is kept to a minimum throughout processing, despite averaging. Five electroanatomic maps were used to re-contour clinical target volumes and planning target volumes for previously-treated patients with their electroanatomic maps now directly registered to their planning computed tomography (CT) scans. RESULTS All three rectangular test electroanatomic maps were processed as expected. All tested voxel sizes resulted in low coefficients of variation overall, with the exception of the largest voxel size of 1.8 × 1.8 × 8 mm. When using Edico, a user should choose voxel dimensions similar to or smaller than those of a planning CT. Of five pairs of clinical and planning target volumes from previously treated patients, adjustments were made to four (80%), retrospectively, using the electroanatomic maps generated using Edico, registered to the patients' planning CTs. CONCLUSIONS Edico provides a reliable solution for electroanatomic map import into a TPS and facilitates clinical and planning target volume identification in CRA.
Collapse
Affiliation(s)
- Sarah L Konermann
- Medical Physics Unit, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Ian J Gerard
- Division of Radiation Oncology, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Martin L Bernier
- Division of Cardiology, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Tarek Hijal
- Division of Radiation Oncology, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Division of Radiation Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Gabriela Stroian
- Medical Physics Unit, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Department of Medical Physics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Neil Kopek
- Division of Radiation Oncology, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Division of Radiation Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Joanne Alfieri
- Division of Radiation Oncology, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Division of Radiation Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Lynn El-Hamedi
- Biosense-Webster, Johnson & Johnson, Markham, Ontario, Canada
| | - Piotr Pater
- Medical Physics Unit, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Department of Medical Physics, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Hohmann S, Xie J, Eckl M, Grehn M, Karfoul N, Janorschke C, Merten R, Rudic B, Buergy D, Lyan E, Krug D, Mehrhof F, Boldt LH, Corradini S, Fanslau H, Kaestner L, Zaman A, Giordano FA, Duncker D, Dunst J, Tilz RR, Schweikard A, Blanck O, Boda-Heggemann J. Semi-automated reproducible target transfer for cardiac radioablation - A multi-center cross-validation study within the RAVENTA trial. Radiother Oncol 2024; 200:110499. [PMID: 39242029 DOI: 10.1016/j.radonc.2024.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Stereotactic arrhythmia radioablation (STAR) is a therapeutic option for ventricular tachycardia (VT) where catheter-based ablation is not feasible or has previously failed. Target definition and its transfer from electro-anatomic maps (EAM) to radiotherapy treatment planning systems (TPS) is challenging and operator-dependent. Software solutions have been developed to register EAM with cardiac CT and semi-automatically transfer 2D target surface data into 3D CT volume coordinates. Results of a cross-validation study of two conceptually different software solutions using data from the RAVENTA trial (NCT03867747) are reported. METHODS Clinical Target Volumes (CTVs) were created from target regions delineated on EAM using two conceptually different approaches by separate investigators on data of 10 patients, blinded to each other's results. Targets were transferred using 3D-3D registration and 2D-3D registration, respectively. The resulting CTVs were compared in a core-lab using two complementary analysis software packages for structure similarity and geometric characteristics. RESULTS Volumes and surface areas of the CTVs created by both methods were comparable: 14.88 ± 11.72 ml versus 15.15 ± 11.35 ml and 44.29 ± 33.63 cm2 versus 46.43 ± 35.13 cm2. The Dice-coefficient was 0.84 ± 0.04; median surface-distance and Hausdorff-distance were 0.53 ± 0.37 mm and 6.91 ± 2.26 mm, respectively. The 3D-center-of-mass difference was 3.62 ± 0.99 mm. Geometrical volume similarity was 0.94 ± 0.05 %. CONCLUSION The STAR targets transferred from EAM to TPS using both software solutions resulted in nearly identical 3D structures. Both solutions can be used for QA (quality assurance) and EAM-to-TPS transfer of STAR-targets. Semi-automated methods could potentially help to avoid mistargeting in STAR and offer standardized workflows for methodically harmonized treatments.
Collapse
Affiliation(s)
- Stephan Hohmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Jingyang Xie
- Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Germany
| | - Miriam Eckl
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Germany
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Nizar Karfoul
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Christian Janorschke
- Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Germany
| | - Roland Merten
- Department of Radiotherapy, Hannover Medical School, Hannover, Germany
| | - Boris Rudic
- Department of Internal Medicine I, Section for Electrophysiology and Rhythmology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Mannheim, Germany
| | - Daniel Buergy
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Germany
| | - Evgeny Lyan
- Department of Internal Medicine III, Section for Electrophysiology und Rhythmology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - David Krug
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Felix Mehrhof
- Department of Radiation Oncology, Charité University Medicine Berlin, Germany
| | - Leif-Hendrik Boldt
- Department of Cardiology, Charité University Medicine Berlin, Berlin, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Hannah Fanslau
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Germany
| | - Lena Kaestner
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Germany
| | - Adrian Zaman
- Department of Internal Medicine III, Section for Electrophysiology und Rhythmology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Germany
| | - David Duncker
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Roland R Tilz
- Department of Rhythmology, University Heart Center Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Kiel, Lübeck, Germany
| | - Achim Schweikard
- Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Germany.
| |
Collapse
|
7
|
Li G, Wang G, Wei W, Li Z, Xiao Q, He H, Luo D, Chen L, Li J, Zhang X, Song Y, Bai S. Cardiorespiratory motion characteristics and their dosimetric impact on cardiac stereotactic body radiotherapy. Med Phys 2024; 51:8551-8567. [PMID: 38994881 DOI: 10.1002/mp.17284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Cardiac stereotactic body radiotherapy (CSBRT) is an emerging and promising noninvasive technique for treating refractory arrhythmias utilizing highly precise, single or limited-fraction high-dose irradiations. This method promises to revolutionize the treatment of cardiac conditions by delivering targeted therapy with minimal exposure to surrounding healthy tissues. However, the dynamic nature of cardiorespiratory motion poses significant challenges to the precise delivery of dose in CSBRT, introducing potential variabilities that can impact treatment efficacy. The complexities of the influence of cardiorespiratory motion on dose distribution are compounded by interplay and blurring effects, introducing additional layers of dose uncertainty. These effects, critical to the understanding and improvement of the accuracy of CSBRT, remain unexplored, presenting a gap in current clinical literature. PURPOSE To investigate the cardiorespiratory motion characteristics in arrhythmia patients and the dosimetric impact of interplay and blurring effects induced by cardiorespiratory motion on CSBRT plan quality. METHODS The position and volume variations in the substrate target and cardiac substructures were evaluated in 12 arrhythmia patients using displacement maximum (DMX) and volume metrics. Moreover, a four-dimensional (4D) dose reconstruction approach was employed to examine the dose uncertainty of the cardiorespiratory motion. RESULTS Cardiac pulsation induced lower DMX than respiratory motion but increased the coefficient of variation and relative range in cardiac substructure volumes. The mean DMX of the substrate target was 0.52 cm (range: 0.26-0.80 cm) for cardiac pulsation and 0.82 cm (range: 0.32-2.05 cm) for respiratory motion. The mean DMX of the cardiac structure ranged from 0.15 to 1.56 cm during cardiac pulsation and from 0.35 to 1.89 cm during respiratory motion. Cardiac pulsation resulted in an average deviation of -0.73% (range: -4.01%-4.47%) in V25 between the 3D and 4D doses. The mean deviations in the homogeneity index (HI) and gradient index (GI) were 1.70% (range: -3.10%-4.36%) and 0.03 (range: -0.14-0.11), respectively. For cardiac substructures, the deviations in D50 due to cardiac pulsation ranged from -1.88% to 1.44%, whereas the deviations in Dmax ranged from -2.96% to 0.88% of the prescription dose. By contrast, the respiratory motion led to a mean deviation of -1.50% (range: -10.73%-4.23%) in V25. The mean deviations in HI and GI due to respiratory motion were 4.43% (range: -3.89%-13.98%) and 0.18 (range: -0.01-0.47) (p < 0.05), respectively. Furthermore, the deviations in D50 and Dmax in cardiac substructures for the respiratory motion ranged from -0.28% to 4.24% and -4.12% to 1.16%, respectively. CONCLUSIONS Cardiorespiratory motion characteristics vary among patients, with the respiratory motion being more significant. The intricate cardiorespiratory motion characteristics and CSBRT plan complexity can induce substantial dose uncertainty. Therefore, assessing individual motion characteristics and 4D dose reconstruction techniques is critical for implementing CSBRT without compromising efficacy and safety.
Collapse
Affiliation(s)
- Guangjun Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangyu Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weige Wei
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhibin Li
- Department of Radiotherapy & Oncology, The First Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Qing Xiao
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiping He
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dashuang Luo
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Chen
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangyu Zhang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Song
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sen Bai
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Kaya YS, Stoks J, Hazelaar C, van Elmpt W, Gommers S, Volders PGA, Verhoeven K, ter Bekke RMA. 3D-targeted, electrocardiographic imaging-aided stereotactic radioablation for ventricular tachycardia storm: a case report. Eur Heart J Case Rep 2024; 8:ytae541. [PMID: 39678105 PMCID: PMC11638725 DOI: 10.1093/ehjcr/ytae541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 12/17/2024]
Abstract
Background Stereotactic arrhythmia radioablation (STAR) is a promising non-invasive therapy for patients with ventricular tachycardia (VT). Accurate identification of the arrhythmogenic volume, or clinical target volume (CTV), on the radiotherapy (RT) 4D planning computed tomography (CT) scan is key for STAR efficacy and safety. This case report illustrates our workflow of electro-structural image integration for CTV delineation. Case summary A 72-year-old man with ischaemic cardiomyopathy and VT storm, despite two (endocardial and epicardial) catheter-based ablations, was consented for STAR. A 3D electro-structural arrhythmia model was generated from co-registered electroanatomical voltage and activation maps, electrocardiographic (ECG) imaging, and the cardiac CT angiography scan (in ADAS 3D), pinpointing the VT isthmus and inferoapical VT exit. At this location, an area with short recovery times was found with ECG imaging. A multidisciplinary team delineated the CTV on the transmural ventricular myocardium, which was fused with the 4D planning CT scan using a digital images and communication in medicine (DICOM) radiotherapy file. The CTV was 63% smaller compared with using the conventional American Heart Association 17-segment approach (11 vs. 24 cm3). A single fraction of 25 Gy was delivered to the internal target volume. After an 8-week blanking period, no VT recurrences or radiation-related side-effects were noted. Eight months later, the patient died from end-stage heart failure. Discussion We report a novel workflow for 3D-targeted and ECG imaging-aided CTV delineation for STAR, resulting in a smaller irradiated volume compared with segmental approaches. Acute and intermediate outcome and safety were favourable. Non-invasive ECG imaging at baseline and during induced VT holds promise for STAR guidance.
Collapse
Affiliation(s)
- Yeşim S Kaya
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, Postbus 5800, 6202 AZ Maastricht, The Netherlands
| | - Job Stoks
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, Postbus 5800, 6202 AZ Maastricht, The Netherlands
| | - Colien Hazelaar
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - Suzanne Gommers
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Postbus 5800, 6202 AZ Maastricht, The Netherlands
| | - Paul G A Volders
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, Postbus 5800, 6202 AZ Maastricht, The Netherlands
| | - Karolien Verhoeven
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - Rachel M A ter Bekke
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, Postbus 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
9
|
Brooks-Pearson R, Pilling K, Ormston B, MacKenzie L, Huntley C, Kerr A, Crouch R, Richmond N, van der Putten M, Atherton P. Cardiac SABR: Image matching techniques for accurate treatment delivery. Radiography (Lond) 2024; 30:1677-1686. [PMID: 39214787 DOI: 10.1016/j.radi.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/12/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Ventricular tachycardia is an irregular heartbeat conventionally treated using invasive cardiac catheter ablation and medication. However, when standard treatments have been exhausted, cardiac SABR provides a final treatment option to this high-mortality condition. Complex diagnostic mapping and planning scans enable multi-disciplinary target delineation for a 25Gy single fraction. However, organs at risk (OAR) near the target make this treatment challenging to plan and deliver. Publications from cardiologists report the efficacy of cardiac SABR, however there is limited data on the treatment delivery and image matching of this complex procedure. METHODS Four specialist therapeutic radiographers experienced in cardiac SABR reviewed 40 CBCTs from 10 patients treated in the UK. Each therapeutic radiographer conducted five image matches: a manual match (manual), an automatic match to the heart structure (auto) and the auto match followed by manual adjustment to the PTV (PTV), all using three degrees of freedom (DoF) only. The auto and PTV matches were also repeated using 6DoF. Inter-observer variability was quantified using 95% limits of agreement from a modified Bland-Altman analysis. RESULTS The limits of agreement were smallest in the automatic matches suggesting the algorithm is reliable. A manual adjustment from the auto match to the PTV is clinically appropriate to optimise target coverage. The limits of agreement were smaller in the 6DoF PTV match 1.06 mm, 1.24 mm, 1.68 mm than the 3DoF PTV match 1.57 mm, 2.06 mm, 2.11 mm (lateral, vertical, longitudinal). CONCLUSION The 6DoF CBCT image match has less variability and therefore suggest using a 6DoF couch for treatment delivery. IMPLICATIONS FOR PRACTICE Cardiac SABR CBCT image matching at treatment delivery is complex, optimisation of CBCT acquisition parameters and therapeutic radiographer training is essential prior to implementation.
Collapse
Affiliation(s)
- R Brooks-Pearson
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Northern Centre for Cancer Care, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Newcastle University, United Kingdom.
| | - K Pilling
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Northern Centre for Cancer Care, Newcastle upon Tyne, United Kingdom.
| | - B Ormston
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Northern Centre for Cancer Care, Newcastle upon Tyne, United Kingdom.
| | - L MacKenzie
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Northern Centre for Cancer Care, Newcastle upon Tyne, United Kingdom.
| | - C Huntley
- South Tees Hospitals NHS Foundation Trust, Radiotherapy, James Cook University Hospital, Middlesbrough, United Kingdom.
| | - A Kerr
- South Tees Hospitals NHS Foundation Trust, Radiotherapy, James Cook University Hospital, Middlesbrough, United Kingdom.
| | - R Crouch
- Sheffield Teaching Hospitals NHS Foundation Trust, Radiotherapy, Weston Park Hospital, Sheffield, United Kingdom.
| | - N Richmond
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Northern Centre for Cancer Care, Newcastle upon Tyne, United Kingdom.
| | - M van der Putten
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Northern Centre for Cancer Care, Newcastle upon Tyne, United Kingdom.
| | - P Atherton
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Northern Centre for Cancer Care, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
10
|
Romanazzi I, Di Monaco A, Bonaparte I, Valenti N, Surgo A, Di Guglielmo F, Fiorentino A, Grimaldi M. Noninvasive Mapping System for the Stereotactic Radioablation Treatment of Ventricular Tachycardia: A Case Description. J Cardiovasc Dev Dis 2024; 11:239. [PMID: 39195147 DOI: 10.3390/jcdd11080239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECTIVES Sustained monomorphic ventricular tachycardia (SMVT) is a life-threatening condition that is often observed in patients with structural heart disease. Catheter ablation (CA) ablation is an effective and well-established treatment for the scar-related ventricular tachycardias (VTs). Sometimes, due to patient fragility or contraindications to CA, a noninvasive procedure is required. In these cases, VT ablation with stereotactic arrhythmia radioablation (STAR) for SMVTs supported by the CardioInsight mapping system seems to be a promising and effective noninvasive approach. METHODS AND RESULTS We report a case of a 55-year-old male smoker and heavy alcohol consumer who developed ischemic heart disease and frequent refractory SMVT relative to antiarrhythmic drugs. Catheter ablation was not practicable due to the presence of an apical thrombosis in the left ventricle. The CardioInsightTM system (Cardioinsight Technologies Inc., Cleveland, OH, USA) was useful for noninvasively mapping the VTs, identifying two target areas on the septum and anterior wall of the left ventricle. A personalized STAR treatment plan was carefully designed, and it was delivered in a few minutes. During follow-up, a significant reduction in the arrhythmia burden was documented. CONCLUSIONS Stereotactic arrhythmia radioablation supported by the CardioInsight system could be an alternative treatment for VTs when catheter ablation is not possible. Larger studies are needed to investigate this technique.
Collapse
Affiliation(s)
- Imma Romanazzi
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, 70021 Bari, Italy
| | - Antonio Di Monaco
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, 70021 Bari, Italy
| | - Ilaria Bonaparte
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, 70021 Bari, Italy
| | - Noemi Valenti
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, 70021 Bari, Italy
| | - Alessia Surgo
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, 70021 Bari, Italy
| | - Fiorella Di Guglielmo
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, 70021 Bari, Italy
| | - Alba Fiorentino
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, 70021 Bari, Italy
- Department of Medicine, LUM University, 70010 Casamassima, Italy
| | - Massimo Grimaldi
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, 70021 Bari, Italy
| |
Collapse
|
11
|
Kovacs B, Lehmann HI, Manninger M, Saguner AM, Futyma P, Duncker D, Chun J. Stereotactic arrhythmia radioablation and its implications for modern cardiac electrophysiology: results of an EHRA survey. Europace 2024; 26:euae110. [PMID: 38666444 PMCID: PMC11086561 DOI: 10.1093/europace/euae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Stereotactic arrhythmia radioablation (STAR) is a treatment option for recurrent ventricular tachycardia/fibrillation (VT/VF) in patients with structural heart disease (SHD). The current and future role of STAR as viewed by cardiologists is unknown. The study aimed to assess the current role, barriers to application, and expected future role of STAR. An online survey consisting of 20 questions on baseline demographics, awareness/access, current use, and the future role of STAR was conducted. A total of 129 international participants completed the survey [mean age 43 ± 11 years, 25 (16.4%) female]. Ninety-one (59.9%) participants were electrophysiologists. Nine participants (7%) were unaware of STAR as a therapeutic option. Sixty-four (49.6%) had access to STAR, while 62 (48.1%) had treated/referred a patient for treatment. Common primary indications for STAR were recurrent VT/VF in SHD (45%), recurrent VT/VF without SHD (7.8%), or premature ventricular contraction (3.9%). Reported main advantages of STAR were efficacy in the treatment of arrhythmias not amenable to conventional treatment (49%) and non-invasive treatment approach with overall low expected acute and short-term procedural risk (23%). Most respondents have foreseen a future clinical role of STAR in the treatment of VT/VF with or without underlying SHD (72% and 75%, respectively), although only a minority expected a first-line indication for it (7% and 5%, respectively). Stereotactic arrhythmia radioablation as a novel treatment option of recurrent VT appears to gain acceptance within the cardiology community. Further trials are critical to further define efficacy, patient populations, as well as the appropriate clinical use for the treatment of VT.
Collapse
Affiliation(s)
- Boldizsar Kovacs
- Department of Cardiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, 48109 MI, USA
- Department of Cardiology, University Heart Center Zurich, Raemistrasse 100, Zurich 8091, Switzerland
| | - Helge Immo Lehmann
- Department of Cardiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, 48109 MI, USA
- Corrigan Minehan Heart Center, Massachusetts General Hospital, 55 Fruit St, Boston, 02114 MA, USA
| | - Martin Manninger
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Ardan Muammer Saguner
- Department of Cardiology, University Heart Center Zurich, Raemistrasse 100, Zurich 8091, Switzerland
| | - Piotr Futyma
- Medical College, University of Rzeszów and St. Joseph’s Heart Rhythm Center, Rzeszów, Poland
| | - David Duncker
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Julian Chun
- Cardioangiologisches Centrum Bethanien, Agaplesion Bethanien Krankenhaus, Frankfurt, Germany
| |
Collapse
|
12
|
Rosu-Bubulac M, Trankle CR, Mankad P, Grizzard JD, Ellenbogen KA, Jordan JH, Weiss E. Institutional experience report on the target contouring workflow in the radiotherapy department for stereotactic arrhythmia radioablation delivered on conventional linear accelerators. Strahlenther Onkol 2024; 200:83-96. [PMID: 37872398 DOI: 10.1007/s00066-023-02159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE In stereotactic arrhythmia radioablation (STAR), the target is defined using multiple imaging studies and a multidisciplinary team consisting of electrophysiologist, cardiologist, cardiac radiologist, and radiation oncologist collaborate to identify the target and delineate it on the imaging studies of interest. This report describes the workflow employed in our radiotherapy department to transfer the target identified based on electrophysiology and cardiology imaging to the treatment planning image set. METHODS The radiotherapy team was presented with an initial target in cardiac axes orientation, contoured on a wideband late gadolinium-enhanced (WB-LGE) cardiac magnetic resonance (CMR) study, which was subsequently transferred to the computed tomography (CT) scan used for treatment planning-i.e., the average intensity projection (AIP) image set derived from a 4D CT-via an axial CMR image set, using rigid image registration focused on the target area. The cardiac and the respiratory motion of the target were resolved using ciné-CMR and 4D CT imaging studies, respectively. RESULTS The workflow was carried out for 6 patients and resulted in an internal target defined in standard anatomical orientation that encompassed the cardiac and the respiratory motion of the initial target. CONCLUSION An image registration-based workflow was implemented to render the STAR target on the planning image set in a consistent manner, using commercial software traditionally available for radiation therapy.
Collapse
Affiliation(s)
- Mihaela Rosu-Bubulac
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Cory R Trankle
- Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Pranav Mankad
- Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - John D Grizzard
- Department of Radiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kenneth A Ellenbogen
- Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer H Jordan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
13
|
Rigal L, Benali K, Barré V, Bougault M, Bellec J, Crevoisier RD, Martins R, Simon A. Multimodal fusion workflow for target delineation in cardiac radioablation of ventricular tachycardia. Med Phys 2024; 51:292-305. [PMID: 37455674 DOI: 10.1002/mp.16613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Cardiac radioablation (CR) is an innovative treatment to ablate cardiac arrythmia sources by radiation therapy. CR target delineation is a challenging task requiring the exploitation of highly different imaging modalities, including cardiac electro-anatomical mapping (EAM). PURPOSE In this work, a data integration process is proposed to alleviate the tediousness of CR target delineation by generating a fused representation of the heart, including all the information of interest resulting from the analysis and registration of electro-anatomical data, PET scan and planning computed tomography (CT) scan. The proposed process was evaluated by cardiologists during delineation trials. METHODS The data processing pipeline was composed of the following steps. The cardiac structures of interest were segmented from cardiac CT scans using a deep learning method. The EAM data was registered to the cardiac CT scan using a point cloud based registration method. The PET scan was registered using rigid image registration. The EAM and PET information, as well as the myocardium thickness, were projected on the surface of the 3D mesh of the left ventricle. The target was identified by delineating a path on this surface that was further projected to the thickness of the myocardium to create the target volume. This process was evaluated by comparison with a standard slice-by-slice delineation with mental EAM registration. Four cardiologists delineated targets for three patients using both methods. The variability of target volumes, and the ease of use of the proposed method, were evaluated. RESULTS All cardiologists reported being more confident and efficient using the proposed method. The inter-clinician variability in delineated target volume was systematically lower with the proposed method (average dice score of 0.62 vs. 0.32 with a classical method). Delineation times were also improved. CONCLUSIONS A data integration process was proposed and evaluated to fuse images of interest for CR target delineation. It effectively reduces the tediousness of CR target delineation, while improving inter-clinician agreement on target volumes. This study is still to be confirmed by including more clinicians and patient data to the experiments.
Collapse
Affiliation(s)
- Louis Rigal
- Univ Rennes, CHU Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, Rennes, France
| | - Karim Benali
- Univ Rennes, CHU Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, Rennes, France
- Department of Cardiology, Saint-Etienne University Hospital, Saint-Priest-En-Jarez, France
| | - Valentin Barré
- Department of Cardiology, Rennes University Hospital, Rennes, France
| | - Mathilde Bougault
- Department of Cardiology, Rennes University Hospital, Rennes, France
| | - Julien Bellec
- Department of Cardiology, Rennes University Hospital, Rennes, France
- Medical Physics Department, CLCC Eugène Marquis, Rennes, France
| | - Renaud De Crevoisier
- Univ Rennes, CHU Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, Rennes, France
| | - Raphaël Martins
- Univ Rennes, CHU Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, Rennes, France
| | - Antoine Simon
- Univ Rennes, CHU Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, Rennes, France
| |
Collapse
|
14
|
Di Monaco A, Gregucci F, Bonaparte I, Romanazzi I, Troisi F, Surgo A, Vitulano N, Quadrini F, Valenti N, Carbonara R, Di Guglielmo FC, Ludovico E, Calbi R, Guida P, Ciliberti MP, Fiorentino A, Grimaldi M. Linear accelerator-based stereotactic arrhythmia radioablation for paroxysmal atrial fibrillation in elderly: a prospective phase II trial. Europace 2023; 25:euad344. [PMID: 37988294 PMCID: PMC10700012 DOI: 10.1093/europace/euad344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
AIMS Stereotactic arrhythmia radioablation (STAR) is a novel therapeutic approach for cardiac arrhythmias. The aim of this trial is to investigate the feasibility of STAR for the treatment of paroxysmal atrial fibrillation (AF) in elderly patients. METHODS AND RESULTS Inclusion criteria were age >70 years, symptomatic AF, antiarrhythmic drugs failure, or intolerance. All patients underwent to 4D cardiac computed tomography simulation. The clinical target volume was identified in the area around pulmonary veins (PV). Stereotactic arrhythmia radioablation was performed with a total dose of 25 Gy (single fraction) delivered in 3 min. Twenty patients were enrolled and 18 underwent STAR. One patient withdrew informed consent before treatment and one patient was excluded due to unfavourable oesophagus position. With a median follow-up (FU) of 16 months (range 12-23), no acute toxicity more than Grade 3 was reported. Five patients had a Grade 1 oesophagitis 24 h after STAR; eight patients had an asymptomatic Grade 1 pericardial effusion, and one patient had a torsade de pointes treated effectively by electrical cardioversion and subsequent cardiac implantable cardioverter-defibrillator implantation. Most patients had a significant reduction in AF episodes. Five patients, due to arrhythmias recurrences after STAR, performed electrophysiological study documenting successful PV isolation. Finally, a significant improvement of quality of life was documented (48 ± 15 at enrolment vs. 75 ± 15 at 12 months FU; P < 0.001). CONCLUSION The present phase II trial demonstrated the feasibility of STAR in paroxysmal AF elderly patients and its potential role in increasing the quality of life. Surely, more robust data are needed about safety and efficacy. TRIAL REGISTRATION ClinicalTrials.gov: NCT04575662.
Collapse
Affiliation(s)
- Antonio Di Monaco
- Department of Cardiology, General Regional Hospital ‘F. Miulli’, Acquaviva delle Fonti 70021, Bari, Italy
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Luigi Pinto 71122 Foggia, Italy
| | - Fabiana Gregucci
- Department of Radiation Oncology, General Regional Hospital ‘F. Miulli’, Acquaviva delle Fonti, Bari, Italy
| | - Ilaria Bonaparte
- Department of Radiation Oncology, General Regional Hospital ‘F. Miulli’, Acquaviva delle Fonti, Bari, Italy
| | - Imma Romanazzi
- Department of Cardiology, General Regional Hospital ‘F. Miulli’, Acquaviva delle Fonti 70021, Bari, Italy
| | - Federica Troisi
- Department of Cardiology, General Regional Hospital ‘F. Miulli’, Acquaviva delle Fonti 70021, Bari, Italy
| | - Alessia Surgo
- Department of Radiation Oncology, General Regional Hospital ‘F. Miulli’, Acquaviva delle Fonti, Bari, Italy
| | - Nicola Vitulano
- Department of Cardiology, General Regional Hospital ‘F. Miulli’, Acquaviva delle Fonti 70021, Bari, Italy
| | - Federico Quadrini
- Department of Cardiology, General Regional Hospital ‘F. Miulli’, Acquaviva delle Fonti 70021, Bari, Italy
| | - Noemi Valenti
- Department of Cardiology, General Regional Hospital ‘F. Miulli’, Acquaviva delle Fonti 70021, Bari, Italy
| | - Roberta Carbonara
- Department of Radiation Oncology, General Regional Hospital ‘F. Miulli’, Acquaviva delle Fonti, Bari, Italy
| | | | - Elena Ludovico
- Department of Radiology, General Regional Hospital ‘F. Miulli’, Acquaviva delle Fonti, Bari, Italy
| | - Roberto Calbi
- Department of Radiology, General Regional Hospital ‘F. Miulli’, Acquaviva delle Fonti, Bari, Italy
| | - Pietro Guida
- Department of Cardiology, General Regional Hospital ‘F. Miulli’, Acquaviva delle Fonti 70021, Bari, Italy
| | - Maria Paola Ciliberti
- Department of Radiation Oncology, General Regional Hospital ‘F. Miulli’, Acquaviva delle Fonti, Bari, Italy
| | - Alba Fiorentino
- Department of Radiation Oncology, General Regional Hospital ‘F. Miulli’, Acquaviva delle Fonti, Bari, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy
| | - Massimo Grimaldi
- Department of Cardiology, General Regional Hospital ‘F. Miulli’, Acquaviva delle Fonti 70021, Bari, Italy
| |
Collapse
|
15
|
Balgobind BV, Visser J, Grehn M, Marquard Knap M, de Ruysscher D, Levis M, Alcantara P, Boda-Heggemann J, Both M, Cozzi S, Cvek J, Dieleman EMT, Elicin O, Giaj-Levra N, Jumeau R, Krug D, Algara López M, Mayinger M, Mehrhof F, Miszczyk M, Pérez-Calatayud MJ, van der Pol LHG, van der Toorn PP, Vitolo V, Postema PG, Pruvot E, Verhoeff JC, Blanck O. Refining critical structure contouring in STereotactic Arrhythmia Radioablation (STAR): Benchmark results and consensus guidelines from the STOPSTORM.eu consortium. Radiother Oncol 2023; 189:109949. [PMID: 37827279 DOI: 10.1016/j.radonc.2023.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND AND PURPOSE In patients with recurrent ventricular tachycardia (VT), STereotactic Arrhythmia Radioablation (STAR) shows promising results. The STOPSTORM.eu consortium was established to investigate and harmonise STAR treatment in Europe. The primary goals of this benchmark study were to standardise contouring of organs at risk (OAR) for STAR, including detailed substructures of the heart, and accredit each participating centre. MATERIALS AND METHODS Centres within the STOPSTORM.eu consortium were asked to delineate 31 OAR in three STAR cases. Delineation was reviewed by the consortium expert panel and after a dedicated workshop feedback and accreditation was provided to all participants. Further quantitative analysis was performed by calculating DICE similarity coefficients (DSC), median distance to agreement (MDA), and 95th percentile distance to agreement (HD95). RESULTS Twenty centres participated in this study. Based on DSC, MDA and HD95, the delineations of well-known OAR in radiotherapy were similar, such as lungs (median DSC = 0.96, median MDA = 0.1 mm and median HD95 = 1.1 mm) and aorta (median DSC = 0.90, median MDA = 0.1 mm and median HD95 = 1.5 mm). Some centres did not include the gastro-oesophageal junction, leading to differences in stomach and oesophagus delineations. For cardiac substructures, such as chambers (median DSC = 0.83, median MDA = 0.2 mm and median HD95 = 0.5 mm), valves (median DSC = 0.16, median MDA = 4.6 mm and median HD95 = 16.0 mm), coronary arteries (median DSC = 0.4, median MDA = 0.7 mm and median HD95 = 8.3 mm) and the sinoatrial and atrioventricular nodes (median DSC = 0.29, median MDA = 4.4 mm and median HD95 = 11.4 mm), deviations between centres occurred more frequently. After the dedicated workshop all centres were accredited and contouring consensus guidelines for STAR were established. CONCLUSION This STOPSTORM multi-centre critical structure contouring benchmark study showed high agreement for standard radiotherapy OAR. However, for cardiac substructures larger disagreement in contouring occurred, which may have significant impact on STAR treatment planning and dosimetry evaluation. To standardize OAR contouring, consensus guidelines for critical structure contouring in STAR were established.
Collapse
Affiliation(s)
- Brian V Balgobind
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands.
| | - Jorrit Visser
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Dirk de Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University, Maastricht, the Netherlands
| | - Mario Levis
- Department of Oncology, University of Torino, Torino, Italy
| | - Pino Alcantara
- Department of Radiation Oncology, Hospital Clínico San Carlos, Faculty of Medicine, University Complutense of Madrid, Madrid, Spain
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Salvatore Cozzi
- Radiation Oncology Unit, Azienda USL-IRCCS, Reggio Emilia, Italy; Radiation Oncology Department, Centre Léon Bérard, Lyon, France
| | - Jakub Cvek
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Edith M T Dieleman
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Niccolò Giaj-Levra
- Department of Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Raphaël Jumeau
- Department of Radio-Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - David Krug
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Manuel Algara López
- Department of Radiotherapy, Hospital del Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Michael Mayinger
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - Felix Mehrhof
- Department for Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcin Miszczyk
- IIIrd Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | | | - Luuk H G van der Pol
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Viviana Vitolo
- Radiation Oncology Clinical Department, National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Pieter G Postema
- Department of Cardiology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joost C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
16
|
Miszczyk M, Sajdok M, Bednarek J, Latusek T, Wojakowski W, Tomasik B, Wita K, Jadczyk T, Kurzelowski R, Drzewiecka A, Cybulska M, Gardas R, Jarosiński G, Dolla Ł, Grządziel A, Zub K, Bekman A, Kaminiów K, Kozub A, Gołba KS, Blamek S. Stereotactic management of arrhythmia - radiosurgery in treatment of ventricular tachycardia (SMART-VT). Results of a prospective safety trial. Radiother Oncol 2023; 188:109857. [PMID: 37597807 DOI: 10.1016/j.radonc.2023.109857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND AND PURPOSE Despite its increasing popularity, there are limited prospective data on stereotactic arrhythmia radioablation (STAR). In this trial, we assessed the safety and efficacy of STAR in patients with ventricular tachycardia (VT), focusing on early treatment-related grade ≥ 3 adverse events (AE). MATERIALS AND METHODS This prospective trial was designed for adults with VT recurrence following catheter ablation (CA) despite adequate pharmacotherapy, or contraindications to CA. A single dose of 25 Gy was delivered to the arrhythmia substrate defined on electro-anatomic mapping and cardiac-gated CT. The primary endpoint was safety, defined as two or fewer treatment-related grade ≥ 3 AEs during the first three months in 11 patients. Additional endpoints included treatment efficacy, clinical and biological markers of cardiac injury, and quality of life. RESULTS Eleven patients with a median age of 67 years, structural heart disease, and a clinically significant recurrence of VT despite adequate pharmacotherapy and 1-4 previous CAs were enrolled between 2020/09 and 2022/10. Following the treatment, one patient developed a possibly treatment-related grade ≥ 3 AE, a grade 4 heart failure exacerbation at 87 days, which resolved after conservative treatment. There was a total 84.3% reduction in VT burden in 10 evaluable patients; however, VT recurrence was eventually observed in eight, and three patients required additional CAs. Three deaths due to unrelated causes were recorded. CONCLUSIONS STAR appears to be safe and efficient. It is a promising treatment for selected patients; however, long-term outcomes remain to be evaluated, and controlled trials comparing STAR with standards of care are missing.
Collapse
Affiliation(s)
- Marcin Miszczyk
- III(rd) Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice branch, Wybrzeże Armii Krajowej 15 44-102, Gliwice, Poland.
| | - Mateusz Sajdok
- Department of Electrocardiology, Upper-Silesian Heart Center, 7th Medical University of Silesia Hospital, Ziołowa 45/47 40-635, Katowice, Poland
| | - Jacek Bednarek
- Department of Electrocardiology and Heart Failure, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Ziołowa 45/47 40-635, Katowice, Poland; Department of Cardiology and Structural Heart Diseases, Faculty of Health Sciences in Katowice, Medical University of Silesia, Ziołowa 45/47 40-635, Katowice, Poland; Department of Electrocardiology, John Paul II Hospital, Prądnicka 80 31-202, Kraków, Poland
| | - Tomasz Latusek
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice branch, Wybrzeże Armii Krajowej 15 44-102, Gliwice, Poland
| | - Wojciech Wojakowski
- Department of Cardiology and Structural Heart Diseases, Faculty of Health Sciences in Katowice, Medical University of Silesia, Ziołowa 45/47 40-635, Katowice, Poland
| | - Bartłomiej Tomasik
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, Mariana Smoluchowskiego 17 80-214, Gdańsk, Poland
| | - Krystian Wita
- I(st) Department of Cardiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ziołowa 47 40-635, Katowice, Poland
| | - Tomasz Jadczyk
- Department of Cardiology and Structural Heart Diseases, Faculty of Health Sciences in Katowice, Medical University of Silesia, Ziołowa 45/47 40-635, Katowice, Poland; Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne's University Hospital, Pekařská 53 602 00, Brno, Czechia
| | - Radosław Kurzelowski
- Department of Cardiology and Structural Heart Diseases, Faculty of Health Sciences in Katowice, Medical University of Silesia, Ziołowa 45/47 40-635, Katowice, Poland
| | - Anna Drzewiecka
- Department of Electrocardiology, Upper-Silesian Heart Center, 7th Medical University of Silesia Hospital, Ziołowa 45/47 40-635, Katowice, Poland
| | - Magdalena Cybulska
- Department of Electrocardiology, Upper-Silesian Heart Center, 7th Medical University of Silesia Hospital, Ziołowa 45/47 40-635, Katowice, Poland; Department of Electrocardiology and Heart Failure, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Ziołowa 45/47 40-635, Katowice, Poland; CT and MRI Department, Voxel S.A, Radiowa 2 44-100, Gliwice, Poland
| | - Rafał Gardas
- Department of Electrocardiology, Upper-Silesian Heart Center, 7th Medical University of Silesia Hospital, Ziołowa 45/47 40-635, Katowice, Poland; Department of Electrocardiology and Heart Failure, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Ziołowa 45/47 40-635, Katowice, Poland
| | - Grzegorz Jarosiński
- Department of Electrocardiology, Upper-Silesian Heart Center, 7th Medical University of Silesia Hospital, Ziołowa 45/47 40-635, Katowice, Poland
| | - Łukasz Dolla
- Radiotherapy Planning Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice branch, Wybrzeże Armii Krajowej 15 44-102, Gliwice, Poland
| | - Aleksandra Grządziel
- Radiotherapy Planning Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice branch, Wybrzeże Armii Krajowej 15 44-102, Gliwice, Poland
| | - Kamil Zub
- Department of Electrocardiology, Upper-Silesian Heart Center, 7th Medical University of Silesia Hospital, Ziołowa 45/47 40-635, Katowice, Poland
| | - Adam Bekman
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice branch, Wybrzeże Armii Krajowej 15 44-102, Gliwice, Poland
| | - Konrad Kaminiów
- III(rd) Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice branch, Wybrzeże Armii Krajowej 15 44-102, Gliwice, Poland
| | - Anna Kozub
- III(rd) Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice branch, Wybrzeże Armii Krajowej 15 44-102, Gliwice, Poland
| | - Krzysztof S Gołba
- III(rd) Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice branch, Wybrzeże Armii Krajowej 15 44-102, Gliwice, Poland; Department of Electrocardiology and Heart Failure, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Ziołowa 45/47 40-635, Katowice, Poland
| | - Sławomir Blamek
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice branch, Wybrzeże Armii Krajowej 15 44-102, Gliwice, Poland
| |
Collapse
|
17
|
Kaestner L, Boda-Heggemann J, Fanslau H, Xie J, Schweikard A, Giordano FA, Blanck O, Rudic B. Electroanatomical mapping after cardiac radioablation for treatment of incessant electrical storm: a case report from the RAVENTA trial. Strahlenther Onkol 2023; 199:1018-1024. [PMID: 37698592 PMCID: PMC10598131 DOI: 10.1007/s00066-023-02136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Electroanatomical mapping (EAM)-guided stereotactic arrhythmia radioablation (STAR) is a novel noninvasive therapy option for patients with monomorphic ventricular tachycardia (VT) refractory to antiarrhythmic drugs and/or urgent catheter ablation (CA). Data on success rates in an emergency situation such as electrical storm (ES) are rare. We present a case of a patient with an initially very poor life expectancy after extensive myocardial infarction with therapy-resistant ES, not amendable for further antiarrhythmic drug therapy, implantable cardioverter-defibrillator implantation, or repeated CA who was introduced to the radiation oncology department for emergency STAR as a bail-out therapy. METHODS Target volume definition and transfer from EAM to CT were validated and quality assured with a semi-automatic, dedicated visualization tool (CARDIO-RT). Emergency STAR was performed with 25 Gy in the framework of the RAVENTA study. The VT burden gradually decreased after STAR; however, a second VT morphology occurred, which was successfully treated with EAM-guided CA 12 days after STAR. RESULTS The second EAM-guided CA showed areas of low voltage in the irradiated segments, indicating a precise targeting and early functional response to STAR. The patient remained free of any VT recurrence or any radiation-related toxicities and in good general condition during the recent follow-up of 18 months. CONCLUSION The case highlights the possible approach, caveats, difficulties, and prognosis of a patient severely affected by therapy-resistant VT in whom CA could not lead to VT suppression. Further studies of putative mechanisms of STAR in the acute and chronic phase of this novel therapy are warranted.
Collapse
Affiliation(s)
- Lena Kaestner
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Judit Boda-Heggemann
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Hannah Fanslau
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Jingyang Xie
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Achim Schweikard
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Frank A Giordano
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Boris Rudic
- I. Department of Medicine: Cardiology, Angiology, Hemostaseology and Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- DZHK (German Centre for Cardiovascular Research) partner site Mannheim, Mannheim, Germany
| |
Collapse
|
18
|
Herrera Siklody C, Schiappacasse L, Jumeau R, Reichlin T, Saguner AM, Andratschke N, Elicin O, Schreiner F, Kovacs B, Mayinger M, Huber A, Verhoeff JJC, Pascale P, Solana Muñoz J, Luca A, Domenichini G, Moeckli R, Bourhis J, Ozsahin EM, Pruvot E. Recurrences of ventricular tachycardia after stereotactic arrhythmia radioablation arise outside the treated volume: analysis of the Swiss cohort. Europace 2023; 25:euad268. [PMID: 37695314 PMCID: PMC10551232 DOI: 10.1093/europace/euad268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/16/2023] [Indexed: 09/12/2023] Open
Abstract
AIMS Stereotactic arrhythmia radioablation (STAR) has been recently introduced for the management of therapy-refractory ventricular tachycardia (VT). VT recurrences have been reported after STAR but the mechanisms remain largely unknown. We analysed recurrences in our patients after STAR. METHODS AND RESULTS From 09.2017 to 01.2020, 20 patients (68 ± 8 y, LVEF 37 ± 15%) suffering from refractory VT were enrolled, 16/20 with a history of at least one electrical storm. Before STAR, an invasive electroanatomical mapping (Carto3) of the VT substrate was performed. A mean dose of 23 ± 2 Gy was delivered to the planning target volume (PTV). The median ablation volume was 26 mL (range 14-115) and involved the interventricular septum in 75% of patients. During the first 6 months after STAR, VT burden decreased by 92% (median value, from 108 to 10 VT/semester). After a median follow-up of 25 months, 12/20 (60%) developed a recurrence and underwent a redo ablation. VT recurrence was located in the proximity of the treated substrate in nine cases, remote from the PTV in three cases and involved a larger substrate over ≥3 LV segments in two cases. No recurrences occurred inside the PTV. Voltage measurements showed a significant decrease in both bipolar and unipolar signal amplitude after STAR. CONCLUSION STAR is a new tool available for the treatment of VT, allowing for a significant reduction of VT burden. VT recurrences are common during follow-up, but no recurrences were observed inside the PTV. Local efficacy was supported by a significant decrease in both bipolar and unipolar signal amplitude.
Collapse
Affiliation(s)
| | - Luis Schiappacasse
- Department of Radiation Oncology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Raphaël Jumeau
- Department of Radiation Oncology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Tobias Reichlin
- Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, Universitätsspital Zürich, University Hospital Zürich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, Universitätsspital Zürich, University Hospital Zürich, Zurich, Switzerland
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | | | - Boldizsar Kovacs
- Department of Cardiology, Universitätsspital Zürich, University Hospital Zürich, Zurich, Switzerland
| | - Michael Mayinger
- Department of Radiation Oncology, Universitätsspital Zürich, University Hospital Zürich, Zurich, Switzerland
| | - Adrian Huber
- Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrizio Pascale
- Department of Cardiology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Jorge Solana Muñoz
- Department of Cardiology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Adrian Luca
- Department of Cardiology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Giulia Domenichini
- Department of Cardiology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Raphael Moeckli
- Department of Radiation Oncology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Esat M Ozsahin
- Department of Radiation Oncology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Etienne Pruvot
- Department of Cardiology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
19
|
Fast MF, Lydiard S, Boda-Heggemann J, Tanadini-Lang S, Muren LP, Clark CH, Blanck O. Precision requirements in stereotactic arrhythmia radioablation for ventricular tachycardia. Phys Imaging Radiat Oncol 2023; 28:100508. [PMID: 38026083 PMCID: PMC10679852 DOI: 10.1016/j.phro.2023.100508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Affiliation(s)
- Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Germany
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland
| | - Ludvig P Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Catharine H Clark
- Radiotherapy Physics, University College London Hospital, 250 Euston Rd, London NW1 2PG, UK
- Department of Medical Physics and Bioengineering, University College London, Malet Place, London WC1E 6BT, UK
- Medical Physics Dept, National Physical Laboratory, Hampton Rd, London TW11 0PX, UK
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Strasse 3, Kiel 24105, Germany
| |
Collapse
|
20
|
van der Ree MH, Cuculich PS, van Herk M, Hugo GD, Balt JC, Bates M, Ho G, Pruvot E, Herrera-Siklody C, Hoeksema WF, Lee J, Lloyd MS, Kemme MJB, Sacher F, Tixier R, Verhoeff JJC, Balgobind BV, Robinson CG, Rasch CRN, Postema PG. Interobserver variability in target definition for stereotactic arrhythmia radioablation. Front Cardiovasc Med 2023; 10:1267800. [PMID: 37799779 PMCID: PMC10547862 DOI: 10.3389/fcvm.2023.1267800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
Background Stereotactic arrhythmia radioablation (STAR) is a potential new therapy for patients with refractory ventricular tachycardia (VT). The arrhythmogenic substrate (target) is synthesized from clinical and electro-anatomical information. This study was designed to evaluate the baseline interobserver variability in target delineation for STAR. Methods Delineation software designed for research purposes was used. The study was split into three phases. Firstly, electrophysiologists delineated a well-defined structure in three patients (spinal canal). Secondly, observers delineated the VT-target in three patients based on case descriptions. To evaluate baseline performance, a basic workflow approach was used, no advanced techniques were allowed. Thirdly, observers delineated three predefined segments from the 17-segment model. Interobserver variability was evaluated by assessing volumes, variation in distance to the median volume expressed by the root-mean-square of the standard deviation (RMS-SD) over the target volume, and the Dice-coefficient. Results Ten electrophysiologists completed the study. For the first phase interobserver variability was low as indicated by low variation in distance to the median volume (RMS-SD range: 0.02-0.02 cm) and high Dice-coefficients (mean: 0.97 ± 0.01). In the second phase distance to the median volume was large (RMS-SD range: 0.52-1.02 cm) and the Dice-coefficients low (mean: 0.40 ± 0.15). In the third phase, similar results were observed (RMS-SD range: 0.51-1.55 cm, Dice-coefficient mean: 0.31 ± 0.21). Conclusions Interobserver variability is high for manual delineation of the VT-target and ventricular segments. This evaluation of the baseline observer variation shows that there is a need for methods and tools to improve variability and allows for future comparison of interventions aiming to reduce observer variation, for STAR but possibly also for catheter ablation.
Collapse
Affiliation(s)
- Martijn H. van der Ree
- Department of Cardiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, Netherlands
| | - Phillip S. Cuculich
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, United States
| | - Marcel van Herk
- Department of Radiation Oncology, Manchester Academic Health Centre, University of Manchester, Manchester, United Kingdom
| | - Geoffrey D. Hugo
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jippe C. Balt
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, Netherlands
| | - Matthew Bates
- Department of Cardiology, South Tees Hospitals NHS Foundation Trust, Middleborough, United Kingdom
| | - Gordon Ho
- Department of Medicine, Division of Cardiology Cardiac Electrophysiology, Cardiovascular Institute, University of California San Diego, San Diego, CA, United States
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Claudia Herrera-Siklody
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Wiert F. Hoeksema
- Department of Cardiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, Netherlands
| | - Justin Lee
- Department of Immunity, Infection and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Michael S. Lloyd
- Section of Cardiac Electrophysiology, Emory University, Atlanta, GA, United States
| | - Michiel J. B. Kemme
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, Netherlands
- Department of Cardiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Frederic Sacher
- Cardiac Arrhythmia Department, IHU LIRYC, Bordeaux University Hospital, Bordeaux, France
| | - Romain Tixier
- Cardiac Arrhythmia Department, IHU LIRYC, Bordeaux University Hospital, Bordeaux, France
| | | | | | - Clifford G. Robinson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Pieter G. Postema
- Department of Cardiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, Netherlands
| |
Collapse
|
21
|
Krug D, Zaman A, Eidinger L, Grehn M, Boda-Heggemann J, Rudic B, Mehrhof F, Boldt LH, Hohmann S, Merten R, Buergy D, Fleckenstein J, Kluge A, Rogge A, Both M, Rades D, Tilz RR, Olbrich D, König IR, Siebert FA, Schweikard A, Vonthein R, Bonnemeier H, Dunst J, Blanck O. Radiosurgery for ventricular tachycardia (RAVENTA): interim analysis of a multicenter multiplatform feasibility trial. Strahlenther Onkol 2023:10.1007/s00066-023-02091-9. [PMID: 37285038 DOI: 10.1007/s00066-023-02091-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/23/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Single-session cardiac stereotactic radiation therapy (SBRT) has demonstrated promising results for patients with refractory ventricular tachycardia (VT). However, the full safety profile of this novel treatment remains unknown and very limited data from prospective clinical multicenter trials are available. METHODS The prospective multicenter multiplatform RAVENTA (radiosurgery for ventricular tachycardia) study assesses high-precision image-guided cardiac SBRT with 25 Gy delivered to the VT substrate determined by high-definition endocardial and/or epicardial electrophysiological mapping in patients with refractory VT ineligible for catheter ablation and an implanted cardioverter defibrillator (ICD). Primary endpoint is the feasibility of full-dose application and procedural safety (defined as an incidence of serious [grade ≥ 3] treatment-related complications ≤ 5% within 30 days after therapy). Secondary endpoints comprise VT burden, ICD interventions, treatment-related toxicity, and quality of life. We present the results of a protocol-defined interim analysis. RESULTS Between 10/2019 and 12/2021, a total of five patients were included at three university medical centers. In all cases, the treatment was carried out without complications. There were no serious potentially treatment-related adverse events and no deterioration of left ventricular ejection fraction upon echocardiography. Three patients had a decrease in VT episodes during follow-up. One patient underwent subsequent catheter ablation for a new VT with different morphology. One patient with local VT recurrence died 6 weeks after treatment in cardiogenic shock. CONCLUSION The interim analysis of the RAVENTA trial demonstrates early initial feasibility of this new treatment without serious complications within 30 days after treatment in five patients. Recruitment will continue as planned and the study has been expanded to further university medical centers. TRIAL REGISTRATION NUMBER NCT03867747 (clinicaltrials.gov). Registered March 8, 2019. Study start: October 1, 2019.
Collapse
Affiliation(s)
- David Krug
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany.
| | - Adrian Zaman
- Klinik für Innere Medizin III, Kardiologie, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Lina Eidinger
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany
- Klinik für Innere Medizin III, Kardiologie, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Melanie Grehn
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany
| | - Judit Boda-Heggemann
- Universitätsmedizin Mannheim, Klinik für Strahlentherapie und Radioonkologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Boris Rudic
- Universitätsmedizin Mannheim, Medizinische Klinik I, Abteilung für Elektrophysiologie und Rhythmologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Felix Mehrhof
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leif-Hendrik Boldt
- Medizinische Klinik mit Schwerpunkt Kardiologie (CVK), Abteilung für Elektrophysiologie und Rhythmologie, Charité Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Stephan Hohmann
- Hannover Herzrhythmus Centrum, Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Roland Merten
- Klinik für Strahlentherapie und Spezielle Onkologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Daniel Buergy
- Universitätsmedizin Mannheim, Klinik für Strahlentherapie und Radioonkologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Jens Fleckenstein
- Universitätsmedizin Mannheim, Klinik für Strahlentherapie und Radioonkologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Anne Kluge
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Rogge
- Klinisches Ethikkomitee, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Marcus Both
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Dirk Rades
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Roland Richard Tilz
- Klinik für Rhythmologie, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Denise Olbrich
- Zentrum für Klinische Studien, Universität zu Lübeck, Lübeck, Germany
| | - Inke R König
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Frank-Andre Siebert
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany
| | - Achim Schweikard
- Institut für Robotik und Kognitive Systeme, Universität zu Lübeck, Lübeck, Germany
| | - Reinhard Vonthein
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Hendrik Bonnemeier
- Klinik für Innere Medizin III, Kardiologie, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
- Klinik für Kardiologie, Helios Klinik Cuxhaven, Cuxhaven, Germany
| | - Jürgen Dunst
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany
| | - Oliver Blanck
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus L, 24105, Kiel, Germany
| |
Collapse
|
22
|
Mehrhof F, Bergengruen P, Gerds-Li JH, Jahn A, Kluge AK, Parwani A, Zips D, Boldt LH, Schönrath F. Cardiac radioablation of incessant ventricular tachycardia in patients with terminal heart failure under permanent left ventricular assist device therapy-description of two cases. Strahlenther Onkol 2023; 199:511-519. [PMID: 36750509 PMCID: PMC10133058 DOI: 10.1007/s00066-023-02045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/08/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE Cardiac radioablation (cRA) using a stereotactic single-session radioablative approach has recently been described as a possible treatment option for patients with otherwise untreatable recurrent ventricular tachycardia (VT). There is very limited experience in cRA for patients undergoing left ventricular assist device (LVAD) therapy. We present clinical experiences of two patients treated with cRA for incessant VT under long-term LVAD therapy. METHODS Two male patients (54 and 61 years old) with terminal heart failure under LVAD therapy (both patients for 8 years) showed incessant VT despite extensive antiarrhythmic drug therapy and repeated catheter ablation. cRA with a single dose of 25 Gy was applied as a last resort strategy under compassionate use in both patients following an electroanatomical mapping procedure. RESULTS Both patients displayed ongoing VT during and after the cRA procedure. Repeated attempts at post-procedural rhythm conversion failed in both patients; however, one patient was hemodynamically stabilized and could be discharged home for several months before falling prey to a fatal bleeding complication. The second patient initially stabilized for a few days following cRA before renewed acceleration of running VT required bilateral ablation of the stellate ganglion; the patient died 50 days later. No immediate side effects of cRA were detected in either patient. CONCLUSION cRA might serve as a last resort strategy for patients with terminal heart failure undergoing LVAD therapy and displaying incessant VT. Intermediate- and long-term outcomes of these seriously ill patients often remain poor; therefore, best supportive care strategies should also be evaluated as long as no clear beneficial effects of cRA procedures can be shown. For patients treated with cRA under running ventricular rhythm abnormality, strategies for post-procedural generation of stabilized rhythm have to be established.
Collapse
Affiliation(s)
- Felix Mehrhof
- Department for Radiation Oncology, Charité-University Medicine Berlin, Berlin, Germany.
| | - Paula Bergengruen
- Department for Radiation Oncology, Charité-University Medicine Berlin, Berlin, Germany
| | - Jin-Hong Gerds-Li
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
| | - Andrea Jahn
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
| | - Anne Kathrin Kluge
- Department for Radiation Oncology, Charité-University Medicine Berlin, Berlin, Germany
| | - Abdul Parwani
- Department for Cardiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Daniel Zips
- Department for Radiation Oncology, Charité-University Medicine Berlin, Berlin, Germany
| | - Leif-Hendrik Boldt
- Department for Cardiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Felix Schönrath
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research) Partnersite Berlin, Berlin, Germany
- Charité-University Medicine Berlin, Berlin, Germany
| |
Collapse
|
23
|
Grehn M, Mandija S, Miszczyk M, Krug D, Tomasik B, Stickney KE, Alcantara P, Alongi F, Anselmino M, Aranda RS, Balgobind BV, Boda-Heggemann J, Boldt LH, Bottoni N, Cvek J, Elicin O, De Ferrari GM, Hassink RJ, Hazelaar C, Hindricks G, Hurkmans C, Iotti C, Jadczyk T, Jiravsky O, Jumeau R, Kristiansen SB, Levis M, López MA, Martí-Almor J, Mehrhof F, Møller DS, Molon G, Ouss A, Peichl P, Plasek J, Postema PG, Quesada A, Reichlin T, Rordorf R, Rudic B, Saguner AM, ter Bekke RMA, Torrecilla JL, Troost EGC, Vitolo V, Andratschke N, Zeppenfeld K, Blamek S, Fast M, de Panfilis L, Blanck O, Pruvot E, Verhoeff JJC. STereotactic Arrhythmia Radioablation (STAR): the Standardized Treatment and Outcome Platform for Stereotactic Therapy Of Re-entrant tachycardia by a Multidisciplinary consortium (STOPSTORM.eu) and review of current patterns of STAR practice in Europe. Europace 2023; 25:1284-1295. [PMID: 36879464 PMCID: PMC10105846 DOI: 10.1093/europace/euac238] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/18/2022] [Indexed: 03/08/2023] Open
Abstract
The EU Horizon 2020 Framework-funded Standardized Treatment and Outcome Platform for Stereotactic Therapy Of Re-entrant tachycardia by a Multidisciplinary (STOPSTORM) consortium has been established as a large research network for investigating STereotactic Arrhythmia Radioablation (STAR) for ventricular tachycardia (VT). The aim is to provide a pooled treatment database to evaluate patterns of practice and outcomes of STAR and finally to harmonize STAR within Europe. The consortium comprises 31 clinical and research institutions. The project is divided into nine work packages (WPs): (i) observational cohort; (ii) standardization and harmonization of target delineation; (iii) harmonized prospective cohort; (iv) quality assurance (QA); (v) analysis and evaluation; (vi, ix) ethics and regulations; and (vii, viii) project coordination and dissemination. To provide a review of current clinical STAR practice in Europe, a comprehensive questionnaire was performed at project start. The STOPSTORM Institutions' experience in VT catheter ablation (83% ≥ 20 ann.) and stereotactic body radiotherapy (59% > 200 ann.) was adequate, and 84 STAR treatments were performed until project launch, while 8/22 centres already recruited VT patients in national clinical trials. The majority currently base their target definition on mapping during VT (96%) and/or pace mapping (75%), reduced voltage areas (63%), or late ventricular potentials (75%) during sinus rhythm. The majority currently apply a single-fraction dose of 25 Gy while planning techniques and dose prescription methods vary greatly. The current clinical STAR practice in the STOPSTORM consortium highlights potential areas of optimization and harmonization for substrate mapping, target delineation, motion management, dosimetry, and QA, which will be addressed in the various WPs.
Collapse
Affiliation(s)
- Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Strasse 3, Kiel 24105, Germany
| | - Stefano Mandija
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Marcin Miszczyk
- IIIrd Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Ul. Wybrzeze Armii Krajowej, Gliwice 44102, Poland
| | - David Krug
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Strasse 3, Kiel 24105, Germany
| | - Bartłomiej Tomasik
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Ul. Wybrzeze Armii Krajowej, Gliwice 44102, Poland
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdansk, M. Sklodowskiel-Curie 3a, Gdansk 80210, Poland
| | - Kristine E Stickney
- Research Support Office, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Pino Alcantara
- Department of Radiation Oncology, Hospital Clínico San Carlos, Faculty of Medicine, University Complutense of Madrid, Profesor Martin Lagos, Madrid 28040, Spain
| | - Filippo Alongi
- Department of Advanced Radiation Oncology, IRCCS Sacro Cuore Don Calabria Hospital, University of Brescia, Via San Zeno in Monte 23, Verona 37129, Italy
| | - Matteo Anselmino
- Division of Cardiology, Cardiovascular and Thoracic Department, ‘Città della Salute e della Scienza’ Hospital, Via Giuseppe Verdi 8, Torino 10124, Italy
- Department of Medical Sciences, University of Turin, Via Verdi 8, Torino 10124, Italy
| | - Ricardo Salgado Aranda
- Electrophysiology Unit, Department of Cardiology, Hospital Clínico San Carlos Madrid, Professor Martin Lagos, Madrid 28040, Spain
| | - Brian V Balgobind
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, Amsterdam 1105AZ, The Netherlands
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Leif-Hendrik Boldt
- Department of Rhythmology, Charité—University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Nicola Bottoni
- Cardiology Arrhythmology Center, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, Reggio Emilia 42100, Italy
| | - Jakub Cvek
- Department of Oncology, University Hospital and Faculty of Medicine, Listopadu 1790, Ostrava Poruba 70852, Czech Republic
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern 3010, Switzerland
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Cardiovascular and Thoracic Department, ‘Città della Salute e della Scienza’ Hospital, Via Giuseppe Verdi 8, Torino 10124, Italy
| | - Rutger J Hassink
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Colien Hazelaar
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, P. Debyelaan 25, Maastricht 6229 HX, The Netherlands
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Struempellstrasse 39, Leipzig 04289, Germany
| | - Coen Hurkmans
- Department of Radiation Oncology, Catharina Hospital, Michelangelolaan 2, Eindhoven 5623 EJ, The Netherlands
| | - Cinzia Iotti
- Radiation Oncology Unit, Clinical Cancer Centre, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, Reggio Emilia 42100, Italy
| | - Tomasz Jadczyk
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Ul. Poniatowskiego 15, Katowice 40055, Poland
- Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Otakar Jiravsky
- Cardiocenter, Hospital Agel Trinec Podlesi and Masaryk University, Konska 453, Trinec 73961, Czech Republic
| | - Raphaël Jumeau
- Department of Radio-Oncology, Lausanne University Hospital, Rue du Bugnon 21, Lausanne 1011, Switzerland
| | - Steen Buus Kristiansen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - Mario Levis
- Department of Oncology, University of Torino, Via Giuseppe Verdi 8, Torino 10124, Italy
| | - Manuel Algara López
- Department of Radiation Oncology, Hospital del Mar, Universitat Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques, Paseo Maritim 25-29, Barcelona 08003, Spain
| | - Julio Martí-Almor
- Department of Cardiology, Hospital del Mar, Universitat Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques, Paseo Maritim 25-29, Barcelona 08003, Spain
| | - Felix Mehrhof
- Department for Radiation Oncology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ditte Sloth Møller
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - Giulio Molon
- Department of Cardiology, IRCCS Sacro Cuore Don Calabria Hospital, Via San Zeno in Monte 23, Verona 37129, Italy
| | - Alexandre Ouss
- Department of Cardiology, Catharina Hospital, Michelangelolaan 2, Eindhoven 5623 EJ, The Netherlands
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Videnska 9, Prague 14000, Czech Republic
| | - Jiri Plasek
- Department of Cardiovascular Medicine, University Hospital Ostrava, Listopadu 1790. Ostrava Poruba 70852, Czech Republic
| | - Pieter G Postema
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, Amsterdam 1105AZ, The Netherlands
| | - Aurelio Quesada
- Arrhythmia Unit, Department of Cardiology, Consorcio Hospital General Universitario de Valencia, Av Tres Cruces 2, Valencia 46014, Spain
| | - Tobias Reichlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern 3010, Switzerland
| | - Roberto Rordorf
- Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Camillo Golgi Avenue 5, Pavia 27100, Italy
| | - Boris Rudic
- Department of Medicine I, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Ardan M Saguner
- Arrhythmia Unit, Department of Cardiology, University Hospital Zurich, Ramistrasse 71, Zurich 8006, Switzerland
| | - Rachel M A ter Bekke
- Department of Cardiology, Maastricht University Medical Center, P. Debyelaan 25, Maastricht 6229 HX, The Netherlands
| | - José López Torrecilla
- Department of Radiation Oncology, Hospital General Valencia, Av Tres Cruces 2, Valencia 46014, Spain
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus. Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, Dresden 01307, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, Dresden 01328, Germany
| | - Viviana Vitolo
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Strada Campeggi 53, Pavia PV27100, Italy
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, Ramistrasse 71, Zurich 8006, Switzerland
| | - Katja Zeppenfeld
- Unit of Clinical Electrophysiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Slawomir Blamek
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Ul. Wybrzeze Armii Krajowej, Gliwice 44102, Poland
| | - Martin Fast
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Ludovica de Panfilis
- Bioethics Unit, Azienda Unità Sanitaria Locale—IRCCS, Via Amendola 2, Reggio Emilia 42100, Italy
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Strasse 3, Kiel 24105, Germany
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 21, Lausanne 1011, Switzerland
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
24
|
Bonaparte I, Gregucci F, Di Monaco A, Troisi F, Surgo A, Ludovico E, Carbonara R, Paulicelli E, Sanfrancesco G, De Pascali C, Vitulano N, Quadrini F, Ciliberti MP, Romanazzi I, Di Guglielmo FC, Cusumano D, Calbi R, Grimaldi M, Fiorentino A. Phase II Trial of LINAC-Based STereotactic Arrhythmia Radioablation (STAR) for Paroxysmal Atrial Fibrillation in Elderly: Planning and Dosimetric Point of View. J Pers Med 2023; 13:jpm13040596. [PMID: 37108982 PMCID: PMC10143465 DOI: 10.3390/jpm13040596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Purpose: Approaching treatment for elderly patients with atrial fibrillation is difficult. A prospective phase II trial evaluating LINAC-based stereotactic arrhythmia radioablation (STAR) safety in this population started in 2021. Dosimetric and planning data were reported. Materials and Methods: A vac-lock bag was used for immobilization in the supine position and a computed tomography (CT, 1 mm) was performed. The clinical target volume (CTV) was defined as the area around the pulmonary veins. An internal target volume (ITV) was added to the CTV to compensate heart and respiratory movement. The planning target volume (PTV) was defined by adding 0–3 mm to the ITV. STAR was performed during free-breathing with a PTV prescription total dose (Dp) of 25 Gy/1 fraction. Flattening filter-free volumetric-modulated arc therapy plans were generated, optimized, and delivered by TrueBeamTM. Image-guided radiotherapy with cone-beam CT and surface-guided radiotherapy with Align-RT (Vision RT) were employed. Results: From May 2021 to March 2022, 10 elderly patients were treated. Mean CTVs, ITVs, and PTVs were 23.6 cc, 44.32 cc, and 62.9 cc, respectively; the mean prescription isodose level and D2% were 76.5% and 31.2 Gy, respectively. The average heart and left anterior descending artery (LAD) Dmean were 3.9 and 6.3 Gy, respectively; the mean Dmax for LAD, spinal cord, left and right bronchus, and esophagus were 11.2, 7.5, 14.3, 12.4, and 13.6 Gy, respectively. The overall treatment time (OTT) was 3 min. Conclusions: The data showed an optimal target coverage, sparing surrounding tissue, in 3 min of OTT. LINAC-based STAR for AF could represent a valid non-invasive alternative for elderly patients who were excluded from catheter ablation.
Collapse
|
25
|
STereotactic Arrhythmia Radioablation: current status of the art. The old world and the new world connected. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396922000401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Mayinger M, Boda-Heggemann J, Mehrhof F, Krug D, Hohmann S, Xie J, Ehrbar S, Kovacs B, Merten R, Grehn M, Zaman A, Fleckenstein J, Kaestner L, Buergy D, Rudic B, Kluge A, Boldt LH, Dunst J, Bonnemeier H, Saguner AM, Andratschke N, Blanck O, Schweikard A. Quality assurance process within the RAdiosurgery for VENtricular TAchycardia (RAVENTA) trial for the fusion of electroanatomical mapping and radiotherapy planning imaging data in cardiac radioablation. Phys Imaging Radiat Oncol 2022; 25:100406. [PMID: 36655216 PMCID: PMC9841340 DOI: 10.1016/j.phro.2022.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
A novel quality assurance process for electroanatomical mapping (EAM)-to-radiotherapy planning imaging (RTPI) target transport was assessed within the multi-center multi-platform framework of the RAdiosurgery for VENtricular TAchycardia (RAVENTA) trial. A stand-alone software (CARDIO-RT) was developed to enable platform independent registration of EAM and RTPI of the left ventricle (LV), based on pre-generated radiotherapy contours (RTC). LV-RTC were automatically segmented into the American-Heart-Association 17-segment-model and a manual 3D-3D method based on EAM 3D-geometry data and a semi-automated 2D-3D method based on EAM screenshot projections were developed. The quality of substrate transfer was evaluated in five clinical cases and the structural analyses showed substantial differences between manual target transfer and target transport using CARDIO-RT.
Collapse
Affiliation(s)
- Michael Mayinger
- Department of Radiation Oncology, University Hospital Zürich, University of Zürich, Zürich, Switzerland,Corresponding author.
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Felix Mehrhof
- Department of Radiation Oncology, Charité University Medicine Berlin, Berlin, Germany
| | - David Krug
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stephan Hohmann
- Department of Cardiology and Angiology, Hannover Heart Rhythm Center, Hannover Medical School, Hannover, Germany
| | - Jingyang Xie
- Institute for Robotics and Cognitive Systems, Univesity of Lübeck, Lübeck, Germany
| | - Stefanie Ehrbar
- Department of Radiation Oncology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Boldizsar Kovacs
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Switzerland
| | - Roland Merten
- Department of Radiotherapy, Hannover Medical School, Hannover, Germany
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Adrian Zaman
- Department of Internal Medicine III, Section for Electrophysiology und Rhythmology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jens Fleckenstein
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Kaestner
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Buergy
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Boris Rudic
- Medizinische Klinik I, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Kluge
- Department of Radiation Oncology, Charité University Medicine Berlin, Berlin, Germany
| | - Leif-Hendrik Boldt
- Department of Cardiology, University Medicine Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Hendrik Bonnemeier
- Department of Internal Medicine III, Section for Electrophysiology und Rhythmology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ardan M. Saguner
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Achim Schweikard
- Institute for Robotics and Cognitive Systems, Univesity of Lübeck, Lübeck, Germany
| |
Collapse
|
27
|
Haskova J, Sramko M, Cvek J, Kautzner J. Stereotactic Radiotherapy in the Management of Ventricular Tachycardias: More Questions than Answers? Card Electrophysiol Clin 2022; 14:779-792. [PMID: 36396193 DOI: 10.1016/j.ccep.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Stereotactic body radiotherapy is a recent promising therapeutic alternative in cases of failed catheter ablation for recurrent ventricular tachycardias (VTs) in patients with structural heart disease. Initial clinical experience with a single radiation dose of 25 Gy shows reasonable efficacy in the reduction of VT recurrences with acceptable acute toxicity. Many unanswered questions remain, including unknown mechanism of action, variable time to effect, optimal method of substrate targeting, long-term safety, and definition of an optimal candidate for this treatment."
Collapse
Affiliation(s)
- Jana Haskova
- Department of Cardiology, IKEM, Vídeňská 1958/9, Prague 140 21, Czech Republic.
| | - Marek Sramko
- Department of Cardiology, IKEM, Vídeňská 1958/9, Prague 140 21, Czech Republic
| | - Jakub Cvek
- Department of Oncology, University Hospital Ostrava and Ostrava University Medical School, 17 listopadu 1790/5, Ostrava-Poruba 708 00 Czech Republic
| | - Josef Kautzner
- Department of Cardiology, IKEM, Vídeňská 1958/9, Prague 140 21, Czech Republic; Palacky University Medical School, Olomouc, Czech Republic
| |
Collapse
|
28
|
Herrera Siklody C, Pruvot E, Pascale P, Le Bloa M, Teres C, Domenichini G, Porretta A, Bourhis J, Schiappacasse L. Refractory ventricular tachycardia treated by a second session of stereotactic arrhythmia radioablation. Clin Transl Radiat Oncol 2022; 37:89-93. [PMID: 36118122 PMCID: PMC9478870 DOI: 10.1016/j.ctro.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/05/2022] Open
Abstract
Arrhythmia radioablation (STAR) is effective in refractory ventricular tachycardia. We report the first cases of successful re-irradiation of arrhythmogenic substrate. No radiation toxicity was observed after the second STAR. Caution is advised as data on early and late toxicities remain scarce.
Purpose Stereotactic arrhythmia radioablation (STAR) is an effective treatment for refractory ventricular tachycardia (VT), but recurrences after STAR were recently published. Herein, we report two cases of successful re-irradiation of the arrhythmogenic substrate. Cases We present two cases of re-irradiation after recurrence of a previously treated VT with radioablation at a dose of 20 Gy. The VT exit was localized on the border zone of the irradiated volume, which responded positively to re-irradiation at follow-up. Conclusion These two cases show the technical feasibility of re-irradiation to control recurrent VT after a first STAR.
Collapse
|
29
|
van der Ree MH, Visser J, Planken RN, Dieleman EM, Boekholdt SM, Balgobind BV, Postema PG. Standardizing the Cardiac Radioablation Targeting Workflow: Enabling Semi-Automated Angulation and Segmentation of the Heart According to the American Heart Association Segmented Model. Adv Radiat Oncol 2022; 7:100928. [PMID: 35387177 PMCID: PMC8978276 DOI: 10.1016/j.adro.2022.100928] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2022] [Indexed: 11/04/2022] Open
Abstract
Purpose Cardiac radioablation has evolved as a potential treatment modality for therapy-refractory ventricular tachycardia. To standardize cardiac radioablation treatments, promote accurate communication and target identification, and to assess toxicity, robust, and reproducible methods for angulation and cardiac segmentation are paramount. In this study, we developed and evaluated a tool for semiautomated angulation and segmentation according to the American Heart Association 17-segment model. Methods and Materials The semiautomated angulation and segmentation of the planning-computed tomography (CT) was based on an in-house developed tool requiring placement of only 4 point-markers and a rotation matrix. For angulation, 2 markers defining the cardiac long-axis were placed: at the cardiac apex and at the center of the mitral valve. A rotation matrix was derived that angulates the CT volume, resulting in the cardiac short axis. Segmentation was subsequently performed based on marking the 2 left ventricular hinge points. To evaluate reproducibility, 5 observers independently placed markers in planning CTs of 6 patients. Results The root mean square of the standard deviation for the angulation and segmentation marker positions were ≤0.5 cm. The 17 segments were subsequently generated and compared between the observers resulting in a median Dice coefficient of 0.8 (interquartile range: 0.70-0.87) and a median of the mean Hausdorff distance of 0.09 cm (interquartile range: 0.05-0.17). The interquartile ranges of Euler angles α and β, determined by the angulation markers, was less than 3 degrees for all patients except one. For the γ angle, determined by the hinge point markers, the interquartile range was up to 12 degrees. Conclusions In this study a method for semiautomatic angulation and segmentation of the heart for cardiac radioablation according to the American Heart Association Segmented Model is presented and evaluated. Based on our results we believe that the segmentation is reproducible and that it can be used to promote communication between radiation oncology and cardiology, enables cardiology-oriented targeting and permits focused toxicity evaluations.
Collapse
Affiliation(s)
- Martijn H. van der Ree
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jorrit Visser
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - R. Nils Planken
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Edith M.T. Dieleman
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - S. Matthijs Boekholdt
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Brian V. Balgobind
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter G. Postema
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Shangguan W, Xu G, Wang X, Zhang N, Liu X, Li G, Tse G, Liu T. Stereotactic Radiotherapy: An Alternative Option for Refractory Ventricular Tachycardia to Drug and Ablation Therapy. J Clin Med 2022; 11:jcm11123549. [PMID: 35743614 PMCID: PMC9225049 DOI: 10.3390/jcm11123549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Refractory ventricular tachycardia (VT) often occurs in the context of organic heart disease. It is associated with significantly high mortality and morbidity rates. Antiarrhythmic drugs and catheter ablation represent the two main treatment options for refractory VT, but their use can be associated with inadequate therapeutic responses and procedure-related complications. Stereotactic body radiotherapy (SBRT) is extensively applied in the precision treatment of solid tumors, with excellent therapeutic responses. Recently, this highly precise technology has been applied for radioablation of VT, and its early results demonstrate a favorable safety profile. This review presents the potential value of SBRT in refractory VT.
Collapse
Affiliation(s)
- Wenfeng Shangguan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
| | - Gang Xu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
| | - Xin Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
| | - Nan Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
| | - Xingpeng Liu
- Department of Heart Center, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd., Chaoyang District, Beijing 100020, China;
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
- Kent and Medway Medical School, Canterbury CT2 7FS, UK
- Correspondence: (G.T.); (T.L.)
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
- Correspondence: (G.T.); (T.L.)
| |
Collapse
|
31
|
Kluge A, Ehrbar S, Grehn M, Fleckenstein J, Baus WW, Siebert FA, Schweikard A, Andratschke N, Mayinger MC, Boda-Heggemann J, Buergy D, Celik E, Krug D, Kovacs B, Saguner AM, Rudic B, Bergengruen P, Boldt LH, Stauber A, Zaman A, Bonnemeier H, Dunst J, Budach V, Blanck O, Mehrhof F. Treatment Planning for Cardiac Radioablation: Multicenter Multiplatform Benchmarking for the XXX Trial. Int J Radiat Oncol Biol Phys 2022; 114:360-372. [PMID: 35716847 DOI: 10.1016/j.ijrobp.2022.06.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/15/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Cardiac radioablation is a novel treatment option for patients with refractory ventricular tachycardia (VT) unsuitable for catheter ablation. The quality of treatment planning depends on dose specifications, platform capabilities, and experience of the treating staff. To harmonize the treatment planning, benchmarking of this process is necessary for multicenter clinical studies such as the XXX trial. METHODS AND MATERIALS Planning computed tomography data and consensus structures from three patients were sent to five academic centers for independent plan development using a variety of platforms and techniques with the XXX study protocol serving as guideline. Three-dimensional dose distributions and treatment plan details were collected and analyzed. In addition, an objective relative plan quality ranking system for VT treatments was established. RESULTS For each case, three coplanar volumetric modulated arc (VMAT) plans for C-arm linear accelerators (LINAC) and three non-coplanar treatment plans for robotic arm LINAC were generated. All plans were suitable for clinical applications with minor deviations from study guidelines in most centers. Eleven of 18 treatment plans showed maximal one minor deviation each for target and cardiac substructures. However, dose-volume histograms showed substantial differences: in one case, the PTV≥30Gy ranged from 0.0% to 79.9% and the RIVA V14Gy ranged from 4.0% to 45.4%. Overall, the VMAT plans had steeper dose gradients in the high dose region, while the plans for the robotic arm LINAC had smaller low dose regions. Thereby, VMAT plans required only about half as many monitor units, resulting in shorter delivery times, possibly an important factor in treatment outcome. CONCLUSIONS Cardiac radioablation is feasible with robotic arm and C-arm LINAC systems with comparable plan quality. Although cross-center training and best practice guidelines have been provided, further recommendations, especially for cardiac substructures, and ranking of dose guidelines will be helpful to optimize cardiac radioablation outcomes.
Collapse
Affiliation(s)
- Anne Kluge
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Ehrbar
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jens Fleckenstein
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang W Baus
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frank-Andre Siebert
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Achim Schweikard
- University of Lübeck, Institute for Robotic and Cognitive Systems, Lübeck, Germany
| | - Nicolaus Andratschke
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Michael C Mayinger
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Buergy
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eren Celik
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Krug
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Boldizsar Kovacs
- Universitäres Herzzentrum, Klinik für Kardiologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Ardan M Saguner
- Universitäres Herzzentrum, Klinik für Kardiologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Boris Rudic
- Medizinische Klinik, Universitätsmedizin Mannheim and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Paula Bergengruen
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leif-Hendrik Boldt
- Med. Klinik m.S. Kardiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annina Stauber
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Adrian Zaman
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Hendrik Bonnemeier
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Volker Budach
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Felix Mehrhof
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
32
|
Kashani R, Cao M, Carlson DJ. Radiation Therapy for the Treatment of Cardiac Arrhythmias. Int J Radiat Oncol Biol Phys 2022; 112:577-580. [DOI: 10.1016/j.ijrobp.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
[Cardiac stereotactic radiotherapy induces electrical conduction reprogramming]. Strahlenther Onkol 2021; 198:209-211. [PMID: 34928433 PMCID: PMC8789705 DOI: 10.1007/s00066-021-01891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/04/2022]
|
34
|
Lee J, Bates M, Shepherd E, Riley S, Henshaw M, Metherall P, Daniel J, Blower A, Scoones D, Wilkinson M, Richmond N, Robinson C, Cuculich P, Hugo G, Seller N, McStay R, Child N, Thornley A, Kelland N, Atherton P, Peedell C, Hatton M. Cardiac stereotactic ablative radiotherapy for control of refractory ventricular tachycardia: initial UK multicentre experience. Open Heart 2021; 8:openhrt-2021-001770. [PMID: 34815300 PMCID: PMC8611439 DOI: 10.1136/openhrt-2021-001770] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022] Open
Abstract
Background Options for patients with ventricular tachycardia (VT) refractory to antiarrhythmic drugs and/or catheter ablation remain limited. Stereotactic radiotherapy has been described as a novel treatment option. Methods Seven patients with recurrent refractory VT, deemed high risk for either first time or redo invasive catheter ablation, were treated across three UK centres with non-invasive cardiac stereotactic ablative radiotherapy (SABR). Prior catheter ablation data and non-invasive mapping were combined with cross-sectional imaging to generate radiotherapy plans with aim to deliver a single 25 Gy treatment. Shared planning and treatment guidelines and prospective peer review were used. Results Acute suppression of VT was seen in all seven patients. For five patients with at least 6 months follow-up, overall reduction in VT burden was 85%. No high-grade radiotherapy treatment-related side effects were documented. Three deaths (two early, one late) occurred due to heart failure. Conclusions Cardiac SABR showed reasonable VT suppression in a high-risk population where conventional treatment had failed.
Collapse
Affiliation(s)
- Justin Lee
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Matthew Bates
- Department of Cardiology, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Ewen Shepherd
- Department of Cardiology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Stephen Riley
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Michael Henshaw
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Peter Metherall
- 3D Lab, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Jim Daniel
- Department of Oncology, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Alison Blower
- Department of Oncology, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - David Scoones
- Department of Pathology, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Michele Wilkinson
- Northern Centre for Cancer Care, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Neil Richmond
- Northern Centre for Cancer Care, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Clifford Robinson
- Center for Noninvasive Cardiac Radioablation, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Phillip Cuculich
- Center for Noninvasive Cardiac Radioablation, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Geoffrey Hugo
- Center for Noninvasive Cardiac Radioablation, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Neil Seller
- Department of Cardiology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ruth McStay
- Department of Radiology, Newcastle NHS Hospitals Foundation Trust, Newcastle Upon Tyne, UK
| | - Nicholas Child
- Department of Cardiology, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Andrew Thornley
- Department of Cardiology, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Nicholas Kelland
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Philip Atherton
- Northern Centre for Cancer Care, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Clive Peedell
- Department of Oncology, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Matthew Hatton
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
35
|
Krug D, Blanck O, Andratschke N, Guckenberger M, Jumeau R, Mehrhof F, Boda-Heggemann J, Seidensaal K, Dunst J, Pruvot E, Scholz E, Saguner AM, Rudic B, Boldt LH, Bonnemeier H. Recommendations regarding cardiac stereotactic body radiotherapy for treatment refractory ventricular tachycardia. Heart Rhythm 2021; 18:2137-2145. [PMID: 34380072 DOI: 10.1016/j.hrthm.2021.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ventricular tachycardia (VT) is a potentially lethal complication of structural heart disease. Despite optimal management, a subgroup of patients continue to suffer from recurrent VT. Recently, cardiac stereotactic body radiotherapy (CSBRT) has been introduced as a treatment option in patients with VT refractory to antiarrhythmic drugs and catheter ablation. OBJECTIVE The purpose of this study was to establish an expert consensus regarding the conduct and use of CSBRT for refractory VT. METHODS We conducted a modified Delphi process. Thirteen experts from institutions from Germany and Switzerland participated in the modified Delphi process. Statements regarding the following topics were generated: treatment setting, institutional expertise and technical requirements, patient selection, target volume definition, and monitoring during and after CSBRT. Agreement was rated on a 5-point Likert scale. Cutoffs for agreement were defined in analogy to the RAND methodology. RESULTS There was strong agreement regarding the experimental status of the procedure and the preference for treatment in clinical trials. CSBRT should be conducted at specialized centers with a strong expertise in the management of patients with ventricular arrhythmias and in stereotactic body radiotherapy for moving targets. CSBRT should be restricted to patients with refractory VT with optimal antiarrhythmic medication who underwent prior catheter ablation or have contraindications. Target volume delineation for CSBRT is complex. Therefore, interdisciplinary processes that should include cardiology/electrophysiology and radiation oncology as well as medical physics, radiology, and nuclear medicine are needed. Optimal follow-up is required. CONCLUSION Prospective trials and pooled registries are needed to gain further insight into this promising treatment option for patients with refractory VT.
Collapse
Affiliation(s)
- David Krug
- Department of Radiation Oncology, University Hospital Schleswig-Holstein, Kiel, Germany.
| | - Oliver Blanck
- Department of Radiation Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | - Raphael Jumeau
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Radiation Oncology Institute, Hirslanden Clinique Bois-Cerf, Lausanne, Switzerland
| | - Felix Mehrhof
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eberhard Scholz
- Department of Cardiology, Heidelberg Center for Heart Rhythm Disorders (HCR), University of Heidelberg, Heidelberg, Germany
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland
| | - Boris Rudic
- Department of Internal Medicine I, Section for Electrophysiology und Rhythmology, University Medical Center Mannheim, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Leif-Hendrik Boldt
- Department of Internal Medicine and Cardiology, Charité University Medicine Berlin-Campus Virchow Klinikum, Berlin, Germany
| | - Hendrik Bonnemeier
- Department of Internal Medicine III, Section for Electrophysiology und Rhythmology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
36
|
Krug D, Blanck O, Dunst J, Bonnemeier H. Stereotactic ablative radiotherapy for cardiac arrhythmia - A rising STAR? Trends Cardiovasc Med 2021; 32:297-298. [PMID: 34062260 DOI: 10.1016/j.tcm.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/24/2022]
Affiliation(s)
- D Krug
- Department of Radiation Oncology, University Hospital Schleswig- Holstein, Campus Kiel, Arnold-Heller-Str. 3, Haus L, Kiel 24105, Germany.
| | - O Blanck
- Department of Radiation Oncology, University Hospital Schleswig- Holstein, Campus Kiel, Arnold-Heller-Str. 3, Haus L, Kiel 24105, Germany
| | - J Dunst
- Department of Radiation Oncology, University Hospital Schleswig- Holstein, Campus Kiel, Arnold-Heller-Str. 3, Haus L, Kiel 24105, Germany
| | - H Bonnemeier
- Department of Internal Medicine III, Section for Electrophysiology und Rhythmology, University Hospital Schleswig- Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
37
|
Miszczyk M, Jadczyk T, Gołba K, Wojakowski W, Wita K, Bednarek J, Blamek S. Clinical Evidence behind Stereotactic Radiotherapy for the Treatment of Ventricular Tachycardia (STAR)-A Comprehensive Review. J Clin Med 2021; 10:jcm10061238. [PMID: 33802802 PMCID: PMC8002399 DOI: 10.3390/jcm10061238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
The electrophysiology-guided noninvasive cardiac radioablation, also known as STAR (stereotactic arrhythmia radioablation) is an emerging treatment method for persistent ventricular tachycardia. Since its first application in 2012 in Stanford Cancer Institute, and a year later in University Hospital Ostrava, Czech Republic, the authors from all around the world have published case reports and case series, and several prospective trials were established. In this article, we would like to discuss the available clinical evidence, analyze the potentially clinically relevant differences in methodology, and address some of the unique challenges that come with this treatment method.
Collapse
Affiliation(s)
- Marcin Miszczyk
- IIIrd Department of Radiotherapy and Chemotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland
- Correspondence: ; Tel.: +48-663-040-809
| | - Tomasz Jadczyk
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, 40-055 Katowice, Poland; (T.J.); (W.W.)
- International Clinical Research Center, Interventional Cardiac Electrophysiology Group, St. Anne’s University Hospital Brno, 664/53 Brno, Czech Republic
| | - Krzysztof Gołba
- Upper-Silesian Heart Center, Department of Electrocardiology, 40-055 Katowice, Poland;
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, 40-055 Katowice, Poland
| | - Wojciech Wojakowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, 40-055 Katowice, Poland; (T.J.); (W.W.)
| | - Krystian Wita
- First Department of Cardiology, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Jacek Bednarek
- Department of Electrocardiology, John Paul II Hospital, 31-202 Cracow, Poland;
| | - Sławomir Blamek
- Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| |
Collapse
|