1
|
Tengler B, Künzel LA, Hagmüller M, Mönnich D, Boeke S, Wegener D, Gani C, Zips D, Thorwarth D. Full daily re-optimization improves plan quality during online adaptive radiotherapy. Phys Imaging Radiat Oncol 2024; 29:100534. [PMID: 38298884 PMCID: PMC10827578 DOI: 10.1016/j.phro.2024.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Background and purpose Daily online treatment plan adaptation requires a fast workflow and planning process. Current online planning consists of adaptation of a predefined reference plan, which might be suboptimal in cases of large anatomic changes. The aim of this study was to investigate plan quality differences between the current online re-planning approach and a complete re-optimization. Material and methods Magnetic resonance linear accelerator reference plans for ten prostate cancer patients were automatically generated using particle swarm optimization (PSO). Adapted plans were created for each fraction using (1) the current re-planning approach and (2) full PSO re-optimization and evaluated overall compliance with institutional dose-volume criteria compared to (3) clinically delivered fractions. Relative volume differences between reference and daily anatomy were assessed for planning target volumes (PTV60, PTV57.6), rectum and bladder and correlated with dose-volume results. Results The PSO approach showed significantly higher adherence to dose-volume criteria than the reference approach and clinical fractions (p < 0.001). In 74 % of PSO plans at most one criterion failed compared to 56 % in the reference approach and 41 % in clinical plans. A fair correlation between PTV60 D98% and relative bladder volume change was observed for the reference approach. Bladder volume reductions larger than 50 % compared to the reference plan recurrently decreased PTV60 D98% below 56 Gy. Conclusion Complete re-optimization maintained target coverage and organs at risk sparing even after large anatomic variations. Re-planning based on daily magnetic resonance imaging was sufficient for small variations, while large variations led to decreasing target coverage and organ-at-risk sparing.
Collapse
Affiliation(s)
- Benjamin Tengler
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Luise A. Künzel
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Markus Hagmüller
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - David Mönnich
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Daniel Wegener
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics. Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Germany
| |
Collapse
|
2
|
Knäusl B, Belotti G, Bertholet J, Daartz J, Flampouri S, Hoogeman M, Knopf AC, Lin H, Moerman A, Paganelli C, Rucinski A, Schulte R, Shimizu S, Stützer K, Zhang X, Zhang Y, Czerska K. A review of the clinical introduction of 4D particle therapy research concepts. Phys Imaging Radiat Oncol 2024; 29:100535. [PMID: 38298885 PMCID: PMC10828898 DOI: 10.1016/j.phro.2024.100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Background and purpose Many 4D particle therapy research concepts have been recently translated into clinics, however, remaining substantial differences depend on the indication and institute-related aspects. This work aims to summarise current state-of-the-art 4D particle therapy technology and outline a roadmap for future research and developments. Material and methods This review focused on the clinical implementation of 4D approaches for imaging, treatment planning, delivery and evaluation based on the 2021 and 2022 4D Treatment Workshops for Particle Therapy as well as a review of the most recent surveys, guidelines and scientific papers dedicated to this topic. Results Available technological capabilities for motion surveillance and compensation determined the course of each 4D particle treatment. 4D motion management, delivery techniques and strategies including imaging were diverse and depended on many factors. These included aspects of motion amplitude, tumour location, as well as accelerator technology driving the necessity of centre-specific dosimetric validation. Novel methodologies for X-ray based image processing and MRI for real-time tumour tracking and motion management were shown to have a large potential for online and offline adaptation schemes compensating for potential anatomical changes over the treatment course. The latest research developments were dominated by particle imaging, artificial intelligence methods and FLASH adding another level of complexity but also opportunities in the context of 4D treatments. Conclusion This review showed that the rapid technological advances in radiation oncology together with the available intrafractional motion management and adaptive strategies paved the way towards clinical implementation.
Collapse
Affiliation(s)
- Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Belotti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Mischa Hoogeman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Antje C Knopf
- Institut für Medizintechnik und Medizininformatik Hochschule für Life Sciences FHNW, Muttenz, Switzerland
| | - Haibo Lin
- New York Proton Center, New York, NY, USA
| | - Astrid Moerman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Reinhard Schulte
- Division of Biomedical Engineering Sciences, School of Medicine, Loma Linda University
| | - Shing Shimizu
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kristin Stützer
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - Xiaodong Zhang
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Katarzyna Czerska
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| |
Collapse
|
3
|
Young T, Lee M, Johnston M, Nguyen T, Ko R, Arumugam S. Assessment of interfraction dose variation in pancreas SBRT using daily simulation MR images. Phys Eng Sci Med 2023; 46:1619-1627. [PMID: 37747645 DOI: 10.1007/s13246-023-01324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Pancreatic Cancer is associated with poor treatment outcomes compared to other cancers. High local control rates have been achieved by using hypofractionated stereotactic body radiotherapy (SBRT) to treat pancreatic cancer. Challenges in delivering SBRT include close proximity of several organs at risk (OARs) and target volume inter and intra fraction positional variations. Magnetic resonance image (MRI) guided radiotherapy has shown potential for online adaptive radiotherapy for pancreatic cancer, with superior soft tissue contrast compared to CT. The aim of this study was to investigate the variability of target and OAR volumes for different treatment approaches for pancreatic cancer, and to assess the suitability of utilizing a treatment-day MRI for treatment planning purposes. Ten healthy volunteers were scanned on a Siemens Skyra 3 T MRI scanner over two sessions (approximately 3 h apart), per day over 5 days to simulate an SBRT daily simulation scan for treatment planning. A pretreatment scan was also done to simulate patient setup and treatment. A 4D MRI scan was taken at each session for internal target volume (ITV) generation and assessment. For each volunteer a treatment plan was generated in the Raystation treatment planning system (TPS) following departmental protocols on the day one, first session dataset (D1S1), with bulk density overrides applied to enable dose calculation. This treatment plan was propagated through other imaging sessions, and the dose calculated. An additional treatment plan was generated on each first session of each day (S1) to simulate a daily replan process, with this plan propagated to the second session of the day. These accumulated mock treatment doses were assessed against the original treatment plan through DVH comparison of the PTV and OAR volumes. The generated ITV showed large variations when compared to both the first session ITV and daily ITV, with an average magnitude of 22.44% ± 13.28% and 25.83% ± 37.48% respectively. The PTV D95 was reduced by approximately 23.3% for both plan comparisons considered. Surrounding OARs had large variations in dose, with the small bowel V30 increasing by 128.87% when compared to the D1S1 plan, and 43.11% when compared to each daily S1 plan. Daily online adaptive radiotherapy is required for accurate dose delivery for pancreas cancer in the absence of additional motion management and tumour tracking techniques.
Collapse
Affiliation(s)
- Tony Young
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia.
- Ingham Institute, Sydney, Australia.
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, Australia.
| | - Mark Lee
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
| | | | - Theresa Nguyen
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
| | - Rebecca Ko
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
| | - Sankar Arumugam
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
- Ingham Institute, Sydney, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
4
|
Young T, Dowling J, Rai R, Liney G, Greer P, Thwaites D, Holloway L. Clinical validation of MR imaging time reduction for substitute/synthetic CT generation for prostate MRI-only treatment planning. Phys Eng Sci Med 2023; 46:1015-1021. [PMID: 37219797 PMCID: PMC10480277 DOI: 10.1007/s13246-023-01268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/26/2023] [Indexed: 05/24/2023]
Abstract
Radiotherapy treatment planning based only on magnetic resonance imaging (MRI) has become clinically achievable. Though computed tomography (CT) is the gold standard for radiotherapy imaging, directly providing the electron density values needed for planning calculations, MRI has superior soft tissue visualisation to guide treatment planning decisions and optimisation. MRI-only planning removes the need for the CT scan, but requires generation of a substitute/synthetic/pseudo CT (sCT) for electron density information. Shortening the MRI imaging time would improve patient comfort and reduce the likelihood of motion artefacts. A volunteer study was previously carried out to investigate and optimise faster MRI sequences for a hybrid atlas-voxel conversion to sCT for prostate treatment planning. The aim of this follow-on study was to clinically validate the performance of the new optimised sequence for sCT generation in a treated MRI-only prostate patient cohort. 10 patients undergoing MRI-only treatment were scanned on a Siemens Skyra 3T MRI as part of the MRI-only sub-study of the NINJA clinical trial (ACTRN12618001806257). Two sequences were used, the standard 3D T2-weighted SPACE sequence used for sCT conversion which has been previously validated against CT, and a modified fast SPACE sequence, selected based on the volunteer study. Both were used to generate sCT scans. These were then compared to evaluate the fast sequence conversion for anatomical and dosimetric accuracy against the clinically approved treatment plans. The average Mean Absolute Error (MAE) for the body was 14.98 ± 2.35 HU, and for bone was 40.77 ± 5.51 HU. The external volume contour comparison produced a Dice Similarity Coefficient (DSC) of at least 0.976, and an average of 0.985 ± 0.004, and the bony anatomy contour comparison a DSC of at least 0.907, and an average of 0.950 ± 0.018. The fast SPACE sCT agreed with the gold standard sCT within an isocentre dose of -0.28% ± 0.16% and an average gamma pass rate of 99.66% ± 0.41% for a 1%/1 mm gamma tolerance. In this clinical validation study, the fast sequence, which reduced the required imaging time by approximately a factor of 4, produced an sCT with similar clinical dosimetric results compared to the standard sCT, demonstrating its potential for clinical use for treatment planning.
Collapse
Affiliation(s)
- Tony Young
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, Australia
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, Australia
| | - Jason Dowling
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, Australia
- CSIRO Health and Biosecurity, The Australian e-Health & Research Centre, Brisbane, QLD Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW Australia
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW Australia
| | - Robba Rai
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW Australia
| | - Gary Liney
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW Australia
| | - Peter Greer
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW Australia
- Calvary Mater Newcastle Hospital, Newcastle, NSW Australia
| | - David Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, Australia
| | - Lois Holloway
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, Australia
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW Australia
| |
Collapse
|
5
|
Trnkova P, Zhang Y, Toshito T, Heijmen B, Richter C, Aznar MC, Albertini F, Bolsi A, Daartz J, Knopf AC, Bertholet J. A survey of practice patterns for adaptive particle therapy for interfractional changes. Phys Imaging Radiat Oncol 2023; 26:100442. [PMID: 37197154 PMCID: PMC10183663 DOI: 10.1016/j.phro.2023.100442] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Background and purpose Anatomical changes may compromise the planned target coverage and organs-at-risk dose in particle therapy. This study reports on the practice patterns for adaptive particle therapy (APT) to evaluate current clinical practice and wishes and barriers to further implementation. Materials and methods An institutional questionnaire was distributed to PT centres worldwide (7/2020-6/2021) asking which type of APT was used, details of the workflow, and what the wishes and barriers to implementation were. Seventy centres from 17 countries participated. A three-round Delphi consensus analysis (10/2022) among the authors followed to define recommendations on required actions and future vision. Results Out of the 68 clinically operational centres, 84% were users of APT for at least one treatment site with head and neck being most common. APT was mostly performed offline with only two online APT users (plan-library). No centre used online daily re-planning. Daily 3D imaging was used for APT by 19% of users. Sixty-eight percent of users had plans to increase their use or change their technique for APT. The main barrier was "lack of integrated and efficient workflows". Automation and speed, reliable dose deformation for dose accumulation and higher quality of in-room volumetric imaging were identified as the most urgent task for clinical implementation of online daily APT. Conclusion Offline APT was implemented by the majority of PT centres. Joint efforts between industry research and clinics are needed to translate innovations into efficient and clinically feasible workflows for broad-scale implementation of online APT.
Collapse
Affiliation(s)
- Petra Trnkova
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Corresponding author.
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Toshiyuki Toshito
- Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Ben Heijmen
- Department of Radiotherapy, Erasmus University Medical Center (Erasmus MC), Rotterdam, the Netherlands
| | - Christian Richter
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
| | - Marianne C. Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Alessandra Bolsi
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | - Antje C. Knopf
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Institute for Medical Engineering and Medical Informatics, School of Life Science FHNW, Muttenz, Switzerland
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
6
|
Paronetto C, den Toom W, Milder MTW, van Norden Y, Baak R, Heijmen BJM, Méndez Romero A. Inter- and intrafraction dose variations in robotic stereotactic body radiation therapy (SBRT) for perihilar cholangiocarcinoma in the prospective phase I STRONG trial. Front Oncol 2023; 13:1114737. [PMID: 36969072 PMCID: PMC10032458 DOI: 10.3389/fonc.2023.1114737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Using fiducial-marker-based robotic respiratory tumor tracking, we treated perihilar cholangiocarcinoma patients in the STRONG trial with 15 daily fractions of 4 Gy. For each of the included patients, in-room diagnostic-quality repeat CTs (rCT) were acquired pre- and post-dose delivery in 6 treatment fractions to analyze inter- and intrafraction dose variations. Planning CTs (pCTs) and rCTs were acquired in expiration breath-hold. Analogous to treatment, spine and fiducials were used to register rCTs with pCTs. In each rCT, all OARs were contoured, and the target was rigidly copied from the pCT based on grey values. The rCTs acquired were used to calculate the doses to be delivered through the treatment-unit settings. On average, target doses in rCTs and pCTs were similar. However, due to target displacements relative to the fiducials in rCTs, 10% of the rCTs showed PTV coverage losses of >10%. Although target coverages had been planned below desired values in order to protect OARs, many pre-rCTs contained OAR constraint violations: 44.4% for the 6 major constraints. Most OAR dose differences between pre- and post-rCTs were not statistically significant. The dose deviations observed in repeat CTs represent opportunities for more advanced adaptive approaches to enhancing SBRT treatment quality.
Collapse
Affiliation(s)
- Chiara Paronetto
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Radiotherapy, Istituto Oncologico Veneto (IOV), Padova, Italy
- *Correspondence: Chiara Paronetto, ,
| | - Wilhelm den Toom
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Maaike T. W. Milder
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Yvette van Norden
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rogier Baak
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ben J. M. Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Alejandra Méndez Romero
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
7
|
Molinelli S, Vai A, Russo S, Loap P, Meschini G, Paganelli C, Barcellini A, Vitolo V, Orlandi E, Ciocca M. The role of multiple anatomical scenarios in plan optimization for carbon ion radiotherapy of pancreatic cancer. Radiother Oncol 2022; 176:1-8. [PMID: 36113776 DOI: 10.1016/j.radonc.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE /OBJECTIVE To quantify benefits of robust optimization on multiple 4DCT acquisitions combined with off-line treatment adaptation for neoadjuvant carbon ion therapy (CIRT) of pancreatic cancer. MATERIAL/METHODS For 10 previously treated patients, 4DCTs were acquired around -15 (CTPlan), -5 (RE1), -1 (RE2) and +6 (RE3) days from RT start. Treatment plans were newly optimized to a dose prescription of 38.4 Gy(RBE) (8 fractions) with a constraint of 38 Gy(RBE) to 1% of the gastrointestinal organs at risk volume (D1%). Three strategies were tested: (A) robust optimization on CTPlan maximum exhale (0Ex) with 3 mm set-up, 3% range uncertainty, including 30%-inhale; (B) addition of the RE1-0Ex scenario; (C) plan recalculation at each REi and adaptation (RPi) according to deviation thresholds from clinical goals. The cumulative variation of target coverage and GI-OARs doses was evaluated. Duodenum contours of all 4DCTs of each patient were registered on CTPlan-0Ex. The capacity of pre-RT acquisitions to predict duodenum position was investigated by computing the intersection of contours at CTplan, RE1, or their union, with respect to subsequent 4DCTs and the CTV, coupled with increasing margin. RESULTS (A) No recalculation exceeded the D1% constraint. (B) The inclusion of RE1-0Ex in the optimization problem improved inter-fraction robustness on a patient-specific basis, but was non-significant on average. (C) Half of the plans would be re-optimized to recover target coverage and/or minimize duodenum dose, at least once. A significant difference was observed between pre-RT duodenum contours when intersecting subsequent contours, either with a margin expansion. CONCLUSION Anatomical variations highlighted at multiple REi proved that a fast and efficient online adaptation is essential to optimize treatment quality of CIRT for pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | - Pierre Loap
- Institut Curie, Department of Radiation Oncology, Paris, France
| | - Giorgia Meschini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Chiara Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | | | | | | | - Mario Ciocca
- Dipartimento Clinico, Fondazione CNAO, Pavia, Italy
| |
Collapse
|
8
|
Kim M, Schiff JP, Price A, Laugeman E, Samson PP, Kim H, Badiyan SN, Henke LE. The first reported case of a patient with pancreatic cancer treated with cone beam computed tomography-guided stereotactic adaptive radiotherapy (CT-STAR). Radiat Oncol 2022; 17:157. [PMID: 36100866 PMCID: PMC9472353 DOI: 10.1186/s13014-022-02125-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Online adaptive stereotactic radiotherapy allows for improved target and organ at risk (OAR) delineation and inter-fraction motion management via daily adaptive planning. The use of adaptive SBRT for the treatment of pancreatic cancer (performed until now using only MRI or CT on rails-guided adaptive radiotherapy), has yielded promising outcomes. Herein we describe the first reported case of cone beam CT-guided stereotactic adaptive radiotherapy (CT-STAR) for the treatment of pancreatic cancer. CASE PRESENTATION A 61-year-old female with metastatic pancreatic cancer presented for durable palliation of a symptomatic primary pancreatic mass. She was prescribed 35 Gy/5 fractions utilizing CT-STAR. The patient was simulated utilizing an end-exhale CT with intravenous and oral bowel contrast. Both initial as well as daily adapted plans were created adhering to a strict isotoxicity approach in which coverage was sacrificed to meet critical luminal gastrointestinal OAR hard constraints. Kilovoltage cone beam CTs were acquired on each day of treatment and the radiation oncologist edited OAR contours to reflect the patient's anatomy-of-the-day. The initial and adapted plan were compared using dose volume histogram objectives, and the superior plan was delivered. Use of the initial treatment plan would have resulted in nine critical OAR hard constraint violations. The adapted plans achieved hard constraints in all five fractions for all four critical luminal gastrointestinal structures. CONCLUSIONS We report the successful treatment of a patient with pancreatic cancer treated with CT-STAR. Prior to this treatment, the delivery of ablative adaptive radiotherapy for pancreatic cancer was limited to clinics with MR-guided and CT-on-rails adaptive SBRT technology and workflows. CT-STAR is a promising modality with which to deliver stereotactic adaptive radiotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Minsol Kim
- Department of Electrical and Computer Engineering, School of Engineering and Applied Science, University of Virginia, 351 McCormick Rd, Charlottsville, VA, 22904, USA
| | - Joshua P Schiff
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA.
| | - Alex Price
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Eric Laugeman
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Pamela P Samson
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Hyun Kim
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Shahed N Badiyan
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Lauren E Henke
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Schiff JP, Price AT, Stowe HB, Laugeman E, Chin RI, Hatscher C, Pryser E, Cai B, Hugo GD, Kim H, Badiyan SN, Robinson CG, Henke LE. Simulated computed tomography-guided stereotactic adaptive radiotherapy (CT-STAR) for the treatment of locally advanced pancreatic cancer. Radiother Oncol 2022; 175:144-151. [PMID: 36063981 DOI: 10.1016/j.radonc.2022.08.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE We conducted a prospective, in silico imaging clinical trial to evaluate the feasibility and potential dosimetric benefits of computed tomography-guided stereotactic adaptive radiotherapy (CT-STAR) for the treatment of locally advanced pancreatic cancer (LAPC). MATERIALS AND METHODS Eight patients with LAPC received five additional CBCTs on the ETHOS system before or after their standard of care radiotherapy treatment. Initial plans were created based on their initial simulation anatomy (PI) and emulated adaptive plans were created based on their anatomy-of-the-day (PA). The prescription was 50 Gy/5 fractions. Plans were created under a strict isotoxicity approach, in which organ-at-risk (OAR) constraints were prioritized over planning target volume coverage. The PI was evaluated on the patient's anatomy-of-the-day, compared to the daily PA, and the superior plan was selected. Feasibility was defined as successful completion of the workflow in compliance with strict OAR constraints in ≥80% of fractions. RESULTS CT-STAR was feasible in silico for LAPC and improved OAR and/or target dosimetry in 100% of fractions. Use of the PI based on the patient's anatomy-of-the-day would have yielded a total of 94 OAR constraint violations and ≥1 hard constraint violation in 40/40 fractions. In contrast, 39/40 PA met all OAR constraints. In one fraction, the PA minimally exceeded the large bowel constraint, although dosimetrically improved compared to the PI. Total workflow time per fraction was 36.28 minutes (27.57-55.86). CONCLUSION CT-STAR for the treatment of LAPC cancer proved feasible and was dosimetrically superior to non-adapted CT-stereotactic body radiotherapy.
Collapse
Affiliation(s)
- Joshua P Schiff
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA.
| | - Alex T Price
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA.
| | - Hayley B Stowe
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA.
| | - Eric Laugeman
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA.
| | - Re-I Chin
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA.
| | - Casey Hatscher
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA.
| | - Eleanor Pryser
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA.
| | - Bin Cai
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75390, USA.
| | - Geoffrey D Hugo
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA.
| | - Hyun Kim
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA.
| | - Shahed N Badiyan
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA.
| | - Clifford G Robinson
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA.
| | - Lauren E Henke
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Milder MT, Magallon-Baro A, den Toom W, de Klerck E, Luthart L, Nuyttens JJ, Hoogeman MS. Technical feasibility of online adaptive stereotactic treatments in the abdomen on a robotic radiosurgery system. Phys Imaging Radiat Oncol 2022; 23:103-108. [PMID: 35928600 PMCID: PMC9344339 DOI: 10.1016/j.phro.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Maaike T.W. Milder
- Corresponding author at: Department of Radiation Oncology, Erasmus MC – Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
11
|
Magallon-Baro A, Milder MTW, Granton PV, den Toom W, Nuyttens JJ, Hoogeman MS. Impact of Using Unedited CT-Based DIR-Propagated Autocontours on Online ART for Pancreatic SBRT. Front Oncol 2022; 12:910792. [PMID: 35756687 PMCID: PMC9213731 DOI: 10.3389/fonc.2022.910792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To determine the dosimetric impact of using unedited autocontours in daily plan adaptation of patients with locally advanced pancreatic cancer (LAPC) treated with stereotactic body radiotherapy using tumor tracking. Materials and Methods The study included 98 daily CT scans of 35 LAPC patients. All scans were manually contoured (MAN), and included the PTV and main organs-at-risk (OAR): stomach, duodenum and bowel. Precision and MIM deformable image registration (DIR) methods followed by contour propagation were used to generate autocontour sets on the daily CT scans. Autocontours remained unedited, and were compared to MAN on the whole organs and at 3, 1 and 0.5 cm from the PTV. Manual and autocontoured OAR were used to generate daily plans using the VOLO™ optimizer, and were compared to non-adapted plans. Resulting planned doses were compared based on PTV coverage and OAR dose-constraints. Results Overall, both algorithms reported a high agreement between unclipped MAN and autocontours, but showed worse results when being evaluated on the clipped structures at 1 cm and 0.5 cm from the PTV. Replanning with unedited autocontours resulted in better OAR sparing than non-adapted plans for 95% and 84% plans optimized using Precision and MIM autocontours, respectively, and obeyed OAR constraints in 64% and 56% of replans. Conclusion For the majority of fractions, manual correction of autocontours could be avoided or be limited to the region closest to the PTV. This practice could further reduce the overall timings of adaptive radiotherapy workflows for patients with LAPC.
Collapse
Affiliation(s)
- Alba Magallon-Baro
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Maaike T W Milder
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Patrick V Granton
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wilhelm den Toom
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joost J Nuyttens
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mischa S Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
12
|
Chuong MD, Herrera R, Kaiser A, Rubens M, Romaguera T, Alvarez D, Kotecha R, Hall MD, McCulloch J, Ucar A, DeZarraga F, Aparo S, Joseph S, Asbun H, Jimenez R, Narayanan G, Gutierrez AN, Mittauer KE. Induction Chemotherapy and Ablative Stereotactic Magnetic Resonance Image-Guided Adaptive Radiation Therapy for Inoperable Pancreas Cancer. Front Oncol 2022; 12:888462. [PMID: 35814383 PMCID: PMC9259801 DOI: 10.3389/fonc.2022.888462] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Radiation therapy (RT) dose for inoperable pancreatic ductal adenocarcinoma (PDAC) has historically been non-ablative to avoid injuring gastrointestinal (GI) organs at risk (OARs). Accruing data suggest that dose escalation, in select patients, may significantly improve clinical outcomes. Early results of ablative stereotactic magnetic resonance image-guided adaptive radiation therapy (A-SMART) have been encouraging, although long-term outcomes are not well understood. Methods A single institution retrospective analysis was performed of inoperable non-metastatic PDAC patients who received induction chemotherapy then 5-fraction A-SMART on a 0.35T-MR Linac from 2018-2021. Results Sixty-two patients were evaluated with a median age of 66 years (range 35-91) and nearly all achieved Eastern Cooperative Oncology Group (ECOG) performance status 0-1 (96.8%). Locally advanced disease was common (72.6%), otherwise borderline resectable (22.6%), or medically inoperable (4.8%). All received induction chemotherapy for a median 4.2 months (range, 0.2-13.3) most commonly FOLFIRINOX (n=43; 69.4%). Median prescribed dose was 50 Gy (range 40-50); median biologically effective dose (BED10) was 100 Gy10. The median local control (LC), progression-free survival (PFS), and overall survival (OS) from diagnosis were not reached, 20 months, and 23 months, respectively. Also, 2-year LC, PFS, and OS were 68.8%, 40.0%, and 45.5%, respectively. Acute and late grade 3+ toxicity rates were 4.8% and 4.8%, respectively. Conclusions To our knowledge, this is the largest series of induction chemotherapy followed by ablative 5-fraction SMART delivered on an MR Linac for inoperable PDAC. The potential for this novel treatment strategy is to achieve long-term LC and OS, compared to chemotherapy alone, and warrants prospective evaluation.
Collapse
Affiliation(s)
- Michael D. Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
- *Correspondence: Michael D. Chuong,
| | - Roberto Herrera
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Adeel Kaiser
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Muni Rubens
- Office of Clinical Research, Miami Cancer Institute, Miami, FL, United States
| | - Tino Romaguera
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Diane Alvarez
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Matthew D. Hall
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - James McCulloch
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Antonio Ucar
- Department of Medical Oncology, Miami Cancer Institute, Miami, FL, United States
| | - Fernando DeZarraga
- Department of Medical Oncology, Miami Cancer Institute, Miami, FL, United States
| | - Santiago Aparo
- Department of Medical Oncology, Miami Cancer Institute, Miami, FL, United States
| | - Sarah Joseph
- Department of Medical Oncology, Miami Cancer Institute, Miami, FL, United States
| | - Horacio Asbun
- Department of Surgical Oncology, Miami Cancer Institute, Miami, FL, United States
| | - Ramon Jimenez
- Department of Surgical Oncology, Miami Cancer Institute, Miami, FL, United States
| | | | - Alonso N. Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Kathryn E. Mittauer
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
13
|
Hall WA, Paulson E, Li XA, Erickson B, Schultz C, Tree A, Awan M, Low DA, McDonald BA, Salzillo T, Glide-Hurst CK, Kishan AU, Fuller CD. Magnetic resonance linear accelerator technology and adaptive radiation therapy: An overview for clinicians. CA Cancer J Clin 2022; 72:34-56. [PMID: 34792808 PMCID: PMC8985054 DOI: 10.3322/caac.21707] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy (RT) continues to play an important role in the treatment of cancer. Adaptive RT (ART) is a novel method through which RT treatments are evolving. With the ART approach, computed tomography or magnetic resonance (MR) images are obtained as part of the treatment delivery process. This enables the adaptation of the irradiated volume to account for changes in organ and/or tumor position, movement, size, or shape that may occur over the course of treatment. The advantages and challenges of ART maybe somewhat abstract to oncologists and clinicians outside of the specialty of radiation oncology. ART is positioned to affect many different types of cancer. There is a wide spectrum of hypothesized benefits, from small toxicity improvements to meaningful gains in overall survival. The use and application of this novel technology should be understood by the oncologic community at large, such that it can be appropriately contextualized within the landscape of cancer therapies. Likewise, the need to test these advances is pressing. MR-guided ART (MRgART) is an emerging, extended modality of ART that expands upon and further advances the capabilities of ART. MRgART presents unique opportunities to iteratively improve adaptive image guidance. However, although the MRgART adaptive process advances ART to previously unattained levels, it can be more expensive, time-consuming, and complex. In this review, the authors present an overview for clinicians describing the process of ART and specifically MRgART.
Collapse
MESH Headings
- History, 20th Century
- History, 21st Century
- Humans
- Magnetic Resonance Imaging, Interventional/history
- Magnetic Resonance Imaging, Interventional/instrumentation
- Magnetic Resonance Imaging, Interventional/methods
- Magnetic Resonance Imaging, Interventional/trends
- Neoplasms/diagnostic imaging
- Neoplasms/radiotherapy
- Particle Accelerators
- Radiation Oncology/history
- Radiation Oncology/instrumentation
- Radiation Oncology/methods
- Radiation Oncology/trends
- Radiotherapy Planning, Computer-Assisted/history
- Radiotherapy Planning, Computer-Assisted/instrumentation
- Radiotherapy Planning, Computer-Assisted/methods
- Radiotherapy Planning, Computer-Assisted/trends
Collapse
Affiliation(s)
- William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - X. Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Beth Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christopher Schultz
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison Tree
- The Royal Marsden National Health Service Foundation Trust and the Institute of Cancer Research, London, United Kingdom
| | - Musaddiq Awan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel A. Low
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Brigid A. McDonald
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Travis Salzillo
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Carri K. Glide-Hurst
- Department of Radiation Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Amar U. Kishan
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Clifton D. Fuller
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Niedzielski JS, Liu Y, Ng SSW, Martin RM, Perles LA, Beddar S, Rebueno N, Koay EJ, Taniguchi C, Holliday EB, Das P, Smith GL, Minsky BD, Ludmir EB, Herman JM, Koong A, Sawakuchi GO. Dosimetric Uncertainties Resulting From Interfractional Anatomic Variations for Patients Receiving Pancreas Stereotactic Body Radiation Therapy and Cone Beam Computed Tomography Image Guidance. Int J Radiat Oncol Biol Phys 2021; 111:1298-1309. [PMID: 34400267 DOI: 10.1016/j.ijrobp.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE To estimate the effects of interfractional anatomic changes on dose to organs at risk (OARs) and tumors, as measured with cone beam computed tomography (CBCT) image guidance for pancreatic stereotactic body radiation therapy. METHODS AND MATERIALS We evaluated 11 patients with pancreatic cancer whom were treated with stereotactic body radiation therapy (33-40 Gy in 5 fractions) using daily CT-on-rails (CTOR) image guidance immediately before treatment with breath-hold motion management. CBCT alignment was simulated in the treatment planning software by aligning the original planning CT to each fractional CTOR image set via fiducial markers. CTOR data sets were used to calculate fractional doses after alignment by applying the rigid shift of the planning CT and CTOR image sets to the planning treatment isocenter and recalculating the fractional dose. Accumulated dose to the gross tumor volume (GTV), tumor vessel interface, duodenum, small bowel, and stomach were calculated by summing the 5 fractional absolute dose-volume histograms into a single dose-volume histogram for comparison with the original planned dose. RESULTS Four patients had a GTV D100% of at least 1.5 Gy less than the fractional planned value in several fractions; 4 patients had fractional underestimation of duodenum dose by 1.0 Gy per fraction. The D1.0 cm3 <35 Gy constraint was violated for at least 1 OAR in 3 patients, with either the duodenum (n = 2) or small bowel (n = 1) D1.0 cm3 being higher on the accumulated dose distribution (P = .01). D100% was significantly lower according to accumulated dose GTV (P = .01) and tumor vessel interface (P = .02), with 4 and 2 patients having accumulated D100% ≥4 Gy lower than the planned value for the GTV and tumor vessel interface, respectively. CONCLUSIONS For some patients, CBCT image guidance based on fiducial alignment may cause large dosimetric uncertainties for OARs and target structures, according to accumulated dose.
Collapse
Affiliation(s)
| | - Yufei Liu
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Sylvia S W Ng
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | | | - Luis A Perles
- Department of Radiation Physics, UT-MD Anderson Cancer Center
| | - Sam Beddar
- Department of Radiation Physics, UT-MD Anderson Cancer Center
| | - Neal Rebueno
- Department of Radiation Physics, UT-MD Anderson Cancer Center
| | - Eugene J Koay
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | | | - Emma B Holliday
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Prajnan Das
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Grace L Smith
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Bruce D Minsky
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Ethan B Ludmir
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Joseph M Herman
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Albert Koong
- Department of Radiation Oncology, UT-MD Anderson Cancer Center
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, UT-MD Anderson Cancer Center; Graduate School of Biomedical Sciences, UT-MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|