1
|
Liu L, Yi G, Li X, Chen C, Chen K, He H, Li J, Cai F, Peng Y, Yang Z, Zhang X. IL-17A's role in exacerbating radiation-induced lung injury: Autophagy impairment via the PP2A-mTOR pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1872:119864. [PMID: 39437853 DOI: 10.1016/j.bbamcr.2024.119864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/17/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Radiation-induced lung injury (RILI) is a serious complication of radiotherapy, and the role of IL-17A in this process is not well understood. While IL-17A has been shown to modulate autophagy, conflicting reports exist regarding its activation or inhibition of autophagy. This study investigates the role of IL-17A in RILI and its effects on autophagy via the PP2A-mTOR pathway, with a focus on the PP2A B56α subunit. METHODS C57BL/6J mice and human lung epithelial cells (BEAS-2B) were exposed to radiation with or without recombinant IL-17A. Autophagy markers were analyzed using Western blotting, immunofluorescence, and autophagy flux assays. PP2A activity, specifically the B56α subunit, was measured. A PP2A agonist (DT-061) was used to verify its role in reversing IL-17A-mediated autophagy inhibition. RESULTS IL-17A inhibited autophagy in lung epithelial cells exposed to radiation by suppressing PP2A activity, particularly through downregulation of the B56α subunit, leading to mTOR activation and reduced autophagosome formation. Treatment with DT-061 restored autophagic activity and improved cell viability. These findings align with reports suggesting that IL-17A inhibits autophagy in certain contexts, while other studies have shown opposing effects. CONCLUSION IL-17A inhibits autophagy in RILI through the PP2A B56α-mTOR pathway, exacerbating lung damage. Further research is needed to clarify the role of IL-17A in different cell types and conditions. Targeting the IL-17A-PP2A B56α-mTOR axis may offer new therapeutic strategies for RILI management.
Collapse
Affiliation(s)
- Liangzhong Liu
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing 404100, China
| | - GuangMing Yi
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiaohong Li
- Nursing Department, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing 404100, China
| | - Cai Chen
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Kehong Chen
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hengqiu He
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jinjin Li
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Fanghao Cai
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yuan Peng
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhenzhou Yang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Xiaoyue Zhang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
2
|
Zhang Y, Lyu Q, Han X, Wang X, Liu R, Hao J, Zhang L, Chen XM. Proteomic analysis of multiple organ dysfunction induced by rhabdomyolysis. J Proteomics 2024; 298:105138. [PMID: 38403185 DOI: 10.1016/j.jprot.2024.105138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Rhabdomyolysis (RM) leads to dysfunction in the core organs of kidney, lung and heart, which is an important reason for the high mortality and disability rate of this disease. However, there is a lack of systematic research on the characteristics of rhabdomyolysis-induced injury in various organs and the underlying pathogenetic mechanisms, and especially the interaction between organs. We established a rhabdomyolysis model, observed the structural and functional changes in kidney, heart, and lung. It is observed that rhabdomyolysis results in significant damage in kidney, lung and heart of rats, among which the pathological damage of kidney and lung was significant, and of heart was relatively light. Meanwhile, we analyzed the differentially expressed proteins (DEPs) in the kidney, heart and lung between the RM group and the sham group based on liquid chromatography-tandem mass spectrometry (LC-MS/MS). In our study, Serpina3n was significantly up-regulated in the kidney, heart and lung. Serpina3n is a secreted protein and specifically inhibits a variety of proteases and participates in multiple physiological processes such as complement activation, inflammatory responses, apoptosis pathways, and extracellular matrix metabolism. It is inferred that Serpina3n may play an important role in multiple organ damage caused by rhabdomyolysis and could be used as a potential biomarker. This study comprehensively describes the functional and structural changes of kidney, heart and lung in rats after rhabdomyolysis, analyzes the DEPs of kidney, heart and lung, and determines the key role of Serpina3n in multiple organ injury caused by rhabdomyolysis. SIGNIFICANCE: This study comprehensively describes the functional and structural changes of kidney, heart and lung in rats after rhabdomyolysis, analyzes the DEPs of kidney, heart and lung, and determines the key role of Serpina3n in multiple organ injury caused by rhabdomyolysis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; Graduate School of Chinese PLA General Hospital, Beijing 100853, China
| | - Qiang Lyu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiao Han
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; Graduate School of Chinese PLA General Hospital, Beijing 100853, China
| | - Xu Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Ran Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Jing Hao
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Li Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| | - Xiang-Mei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| |
Collapse
|
3
|
Zheng J, Wu J, Xie L, Huang Y, Hong J, Chen C. Paclitaxel Aggravating Radiation-Induced Pulmonary Fibrosis Is Associated with the Down-Regulation of the Negative Regulatory Function of Spry2. J Pharmacol Exp Ther 2024; 389:197-207. [PMID: 37918858 DOI: 10.1124/jpet.123.001695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Paclitaxel (PTX) is capable of aggravating radiation-induced pulmonary fibrosis (RIPF), but the mechanism is unknown. Spry2 is a negative regulator of receptor tyrosine kinase-related Ras/Raf/extracellular signal regulated kinase (ERK) pathway. This experiment was aimed at exploring whether the aggravation of RIPF by PTX is related to Spry2. The RIPF model was established with C57BL/6 mice by thoracic irradiation, and PTX was administered concurrently. Western blot was used to detect the expression level of ERK signaling molecules and the distribution of Spry2 in the plasma membrane/cytoplasm. Co-immunoprecipitation (co-IP) and immunofluorescence were used to observe the colocalization of Spry2 with the plasma membrane and tubulin. The results showed that PTX-concurrent radiotherapy could aggravate fibrotic lesions in RIPF, downregulate the content of membrane Spry2, and upregulate the levels of p-c-Raf and p-ERK in lung tissue. It was found that knockdown of Spry2 in fibroblast abolished the upregulation of p-c-Raf and p-ERK by PTX. Both co-IP results and immunofluorescence staining showed that PTX increased the binding of Spry2 to tubulin, and microtubule depolymerizing agents could abolish PTX's inhibition of Spry2 membrane distribution and inhibit PTX's upregulation of Raf/ERK signaling. Both nintedanib and ERK inhibitor were effective in relieving PTX-exacerbated RIPF. Taken together, the mechanism of PTX's aggravating RIPF was related to its ability to enhance Spry2's binding to tubulin, thus attenuating Spry2's negative regulation on Raf/ERK pathway. SIGNIFICANCE STATEMENT: This study revealed that paclitaxel (PTX) concurrent radiation therapy exacerbates radiation-induced pulmonary fibrosis during the treatment of thoracic tumors, which is associated with PTX restraining Spry2 and upregulating the Raf/extracellular signal regulated kinase signaling pathway, and provided drug targets for mitigating this complication.
Collapse
Affiliation(s)
- Jianxing Zheng
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China (J.Z.); Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China (J.W., J.H.); School of Pharmacy (L.X., Y.H., C.C.) and Fujian Key Laboratory of Natural Medicine Pharmacology (C.C.), Fujian Medical University, Fuzhou, China; and Key Laboratory of Radiation Biology of Fujian higher education institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China (J.H.)
| | - Jiandong Wu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China (J.Z.); Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China (J.W., J.H.); School of Pharmacy (L.X., Y.H., C.C.) and Fujian Key Laboratory of Natural Medicine Pharmacology (C.C.), Fujian Medical University, Fuzhou, China; and Key Laboratory of Radiation Biology of Fujian higher education institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China (J.H.)
| | - Lingfeng Xie
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China (J.Z.); Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China (J.W., J.H.); School of Pharmacy (L.X., Y.H., C.C.) and Fujian Key Laboratory of Natural Medicine Pharmacology (C.C.), Fujian Medical University, Fuzhou, China; and Key Laboratory of Radiation Biology of Fujian higher education institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China (J.H.)
| | - Yihao Huang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China (J.Z.); Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China (J.W., J.H.); School of Pharmacy (L.X., Y.H., C.C.) and Fujian Key Laboratory of Natural Medicine Pharmacology (C.C.), Fujian Medical University, Fuzhou, China; and Key Laboratory of Radiation Biology of Fujian higher education institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China (J.H.)
| | - Jinsheng Hong
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China (J.Z.); Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China (J.W., J.H.); School of Pharmacy (L.X., Y.H., C.C.) and Fujian Key Laboratory of Natural Medicine Pharmacology (C.C.), Fujian Medical University, Fuzhou, China; and Key Laboratory of Radiation Biology of Fujian higher education institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China (J.H.)
| | - Chun Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China (J.Z.); Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China (J.W., J.H.); School of Pharmacy (L.X., Y.H., C.C.) and Fujian Key Laboratory of Natural Medicine Pharmacology (C.C.), Fujian Medical University, Fuzhou, China; and Key Laboratory of Radiation Biology of Fujian higher education institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China (J.H.)
| |
Collapse
|
4
|
Rios CI, DiCarlo AL, Harrison L, Prasanna PGS, Buchsbaum JC, Rudokas MW, Gomes L, Winters TA. Advanced Technologies in Radiation Research. Radiat Res 2024; 201:338-365. [PMID: 38453643 PMCID: PMC11046920 DOI: 10.1667/rade-24-00003.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
The U.S. Government is committed to maintaining a robust research program that supports a portfolio of scientific experts who are investigating the biological effects of radiation exposure. On August 17 and 18, 2023, the Radiation and Nuclear Countermeasures Program, within the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), partnered with the National Cancer Institute, NIH, the National Aeronautics and Space Administration, and the Radiation Injury Treatment Network to convene a workshop titled, Advanced Technologies in Radiation Research (ATRR), which focused on the use of advanced technologies under development or in current use to accelerate radiation research. This meeting report provides a comprehensive overview of the research presented at the workshop, which included an assembly of subject matter experts from government, industry, and academia. Topics discussed during the workshop included assessments of acute and delayed effects of radiation exposure using modalities such as clustered regularly interspaced short palindromic repeats (CRISPR) - based gene editing, tissue chips, advanced computing, artificial intelligence, and immersive imaging techniques. These approaches are being applied to develop products to diagnose and treat radiation injury to the bone marrow, skin, lung, and gastrointestinal tract, among other tissues. The overarching goal of the workshop was to provide an opportunity for the radiation research community to come together to assess the technological landscape through sharing of data, methodologies, and challenges, followed by a guided discussion with all participants. Ultimately, the organizers hope that the radiation research community will benefit from the workshop and seek solutions to scientific questions that remain unaddressed. Understanding existing research gaps and harnessing new or re-imagined tools and methods will allow for the design of studies to advance medical products along the critical path to U.S. Food and Drug Administration approval.
Collapse
Affiliation(s)
- Carmen I. Rios
- Radiation and Nuclear Countermeasures Program/Division of Allergy, Immunology, and Transplantation/National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program/Division of Allergy, Immunology, and Transplantation/National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIH), Rockville, Maryland
| | - Lynn Harrison
- Division of Biological and Physical Sciences/National Aeronautics and Space Administration, Houston, Texas
| | - Pataje G. S. Prasanna
- Division of Cancer Treatment and Diagnosis/National Cancer Institute/NIH, Gaithersburg, Maryland
| | - Jeffrey C. Buchsbaum
- Division of Cancer Treatment and Diagnosis/National Cancer Institute/NIH, Gaithersburg, Maryland
| | - Michael W. Rudokas
- Radiation and Nuclear Countermeasures Program/Division of Allergy, Immunology, and Transplantation/National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIH), Rockville, Maryland
| | - Lauren Gomes
- Radiation and Nuclear Countermeasures Program/Division of Allergy, Immunology, and Transplantation/National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program/Division of Allergy, Immunology, and Transplantation/National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
5
|
Farh MEA, Kim HJ, Kim SY, Lee JH, Lee H, Cui R, Han S, Kim DW, Park S, Lee YJ, Lee YS, Sohn I, Cho J. Transcriptional Changes in Radiation-Induced Lung Injury: A Comparative Analysis of Two Radiation Doses for Preclinical Research. Int J Mol Sci 2024; 25:3766. [PMID: 38612576 PMCID: PMC11011446 DOI: 10.3390/ijms25073766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In a recent stereotactic body radiation therapy animal model, radiation pneumonitis and radiation pulmonary fibrosis were observed at around 2 and 6 weeks, respectively. However, the molecular signature of this model remains unclear. This study aimed to examine the molecular characteristics at these two stages using RNA-seq analysis. Transcriptomic profiling revealed distinct transcriptional patterns for each stage. Inflammatory response and immune cell activation were involved in both stages. Cell cycle processes and response to type II interferons were observed during the inflammation stage. Extracellular matrix organization and immunoglobulin production were noted during the fibrosis stage. To investigate the impact of a 10 Gy difference on fibrosis progression, doses of 45, 55, and 65 Gy were tested. A dose of 65 Gy was selected and compared with 75 Gy. The 65 Gy dose induced inflammation and fibrosis as well as the 75 Gy dose, but with reduced lung damage, fewer inflammatory cells, and decreased collagen deposition, particularly during the inflammation stage. Transcriptomic analysis revealed significant overlap, but differences were observed and clarified in Gene Ontology and KEGG pathway analysis, potentially influenced by changes in interferon-gamma-mediated lipid metabolism. This suggests the suitability of 65 Gy for future preclinical basic and pharmaceutical research connected with radiation-induced lung injury.
Collapse
Affiliation(s)
- Mohamed El-Agamy Farh
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
- Drug Development Team, ARONTIER, Co., Ltd., Seoul 06735, Republic of Korea;
| | - Hyun-Jin Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| | - Sang-Yeon Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| | - Jae-Hee Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| | - Hajeong Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| | - Ronglan Cui
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| | - Soorim Han
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| | - Dong Wook Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| | - Sunjoo Park
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| | - Yoon-Jin Lee
- Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea;
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Science, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Insuk Sohn
- Drug Development Team, ARONTIER, Co., Ltd., Seoul 06735, Republic of Korea;
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| |
Collapse
|
6
|
Dasgupta Q, Jiang A, Wen AM, Mannix RJ, Man Y, Hall S, Javorsky E, Ingber DE. A human lung alveolus-on-a-chip model of acute radiation-induced lung injury. Nat Commun 2023; 14:6506. [PMID: 37845224 PMCID: PMC10579267 DOI: 10.1038/s41467-023-42171-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Acute exposure to high-dose gamma radiation due to radiological disasters or cancer radiotherapy can result in radiation-induced lung injury (RILI), characterized by acute pneumonitis and subsequent lung fibrosis. A microfluidic organ-on-a-chip lined by human lung alveolar epithelium interfaced with pulmonary endothelium (Lung Alveolus Chip) is used to model acute RILI in vitro. Both lung epithelium and endothelium exhibit DNA damage, cellular hypertrophy, upregulation of inflammatory cytokines, and loss of barrier function within 6 h of radiation exposure, although greater damage is observed in the endothelium. The radiation dose sensitivity observed on-chip is more like the human lung than animal preclinical models. The Alveolus Chip is also used to evaluate the potential ability of two drugs - lovastatin and prednisolone - to suppress the effects of acute RILI. These data demonstrate that the Lung Alveolus Chip provides a human relevant alternative for studying the molecular basis of acute RILI and may be useful for evaluation of new radiation countermeasure therapeutics.
Collapse
Affiliation(s)
- Queeny Dasgupta
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02215, USA
| | - Amanda Jiang
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02215, USA
| | - Amy M Wen
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02215, USA
| | - Robert J Mannix
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yuncheng Man
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02215, USA
| | - Sean Hall
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02215, USA
| | - Emilia Javorsky
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02215, USA
| | - Donald E Ingber
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02215, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Satyamitra MM, Cassatt DR, Molinar-Inglis O, Rios CI, Taliaferro LP, Winters TA, DiCarlo AL. The NIAID/RNCP Biodosimetry Program: An Overview. Cytogenet Genome Res 2023; 163:89-102. [PMID: 37742625 PMCID: PMC10946631 DOI: 10.1159/000534213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Established in 2004, the Radiation and Nuclear Countermeasures Program (RNCP), within the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health has the central mission to advance medical countermeasure mitigators/therapeutics, and biomarkers and technologies to assess, triage, and inform medical management of patients experiencing acute radiation syndrome and/or the delayed effects of acute radiation exposure. The RNCP biodosimetry mission space encompasses: (1) basic research to elucidate novel approaches for rapid and accurate assessment of radiation exposure, (2) studies to support advanced development for US Food and Drug Administration (FDA) clearance of promising triage or treatment devices/approaches, (3) characterization of biomarkers and/or assays to determine degree of tissue or organ dose that can predict outcome of radiation injuries (i.e., organ failure, morbidity, and/or mortality), and (4) outreach efforts to facilitate interactions with researchers developing cutting edge biodosimetry approaches. Thus far, no biodosimetry device has been FDA cleared for use during a radiological/nuclear incident. At NIAID, advancement of radiation biomarkers and biodosimetry approaches is facilitated by a variety of funding mechanisms (grants, contracts, cooperative and interagency agreements, and Small Business Innovation Research awards), with the objective of advancing devices and assays toward clearance, as outlined in the FDA's Radiation Biodosimetry Medical Countermeasure Devices Guidance. The ultimate goal of the RNCP biodosimetry program is to develop and establish accurate and reliable biodosimetry tools that will improve radiation preparedness and ultimately save lives during a radiological or nuclear incident.
Collapse
Affiliation(s)
- Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Olivia Molinar-Inglis
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| |
Collapse
|
8
|
Ni J, Guo T, Zhou Y, Jiang S, Zhang L, Zhu Z. STING signaling activation modulates macrophage polarization via CCL2 in radiation-induced lung injury. J Transl Med 2023; 21:590. [PMID: 37667317 PMCID: PMC10476398 DOI: 10.1186/s12967-023-04446-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is a prevalent complication of thoracic radiotherapy in cancer patients. A comprehensive understanding of the underlying mechanisms of RILI is essential for the development of effective prevention and treatment strategies. METHODS To investigate RILI, we utilized a mouse model that received 12.5 Gy whole-thoracic irradiation. The evaluation of RILI was performed using a combination of quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), histology, western blot, immunohistochemistry, RNA sequencing, and flow cytometry. Additionally, we established a co-culture system consisting of macrophages, lung epithelial cells, and fibroblasts for in vitro studies. In this system, lung epithelial cells were irradiated with a dose of 4 Gy, and we employed STING knockout macrophages. Translational examinations were conducted to explore the relationship between STING expression in pre-radiotherapy lung tissues, dynamic changes in circulating CCL2, and the development of RILI. RESULTS Our findings revealed significant activation of the cGAS-STING pathway and M1 polarization of macrophages in the lungs of irradiated mice. In vitro studies demonstrated that the deficiency of cGAS-STING signaling led to impaired macrophage polarization and RILI. Through RNA sequencing, cytokine profiling, and rescue experiments using a CCL2 inhibitor called Bindarit, we identified the involvement of CCL2 in the regulation of macrophage polarization and the development of RILI. Moreover, translational investigations using patient samples collected before and after thoracic radiotherapy provided additional evidence supporting the association between cGAS-STING signaling activity, CCL2 upregulation, and the development of radiation pneumonitis. CONCLUSIONS The cGAS-STING signaling pathway plays a crucial role in regulating the recruitment and polarization of macrophages, partly through CCL2, during the pathogenesis of RILI.
Collapse
Affiliation(s)
- Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Shanshan Jiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Long Zhang
- University of Shanghai for Science and Technology and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, Institute of Biomedical Sciences and Clinical Technology Transformation, School of Health Science and Engineering, University of Shanghai for Science and Technology, 580 Jungong Road, Shanghai, 200093, China.
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Sakagami M, Inokuchi H, Mukumoto N, Itoyama H, Hamaura N, Yamagishi M, Mukumoto N, Matsuda S, Kabata D, Shibuya K. Clinical features and risk factors for interstitial lung disease spreading in low-dose irradiated areas after definitive radiotherapy with or without durvalumab consolidation therapy for patients with non-small cell lung cancer. Radiat Oncol 2023; 18:87. [PMID: 37217919 DOI: 10.1186/s13014-023-02276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND The current standard of care for patients with unresectable locally advanced non-small cell lung cancer (NSCLC) is chemoradiotherapy (CRT) combined with durvalumab consolidation therapy. However, radiotherapy (RT) always carries the risk of radiation pneumonitis (RP), which can preclude durvalumab continuation. In particular, the spread of interstitial lung disease (ILD) in low-dose areas or extending beyond the RT field often makes it difficult to determine the safety of continuation or rechallenging of durvalumab. Thus, we retrospectively analyzed ILD/RP after definitive RT with and without durvalumab, with assessment of radiologic features and dose distribution in RT. METHODS We retrospectively evaluated the clinical records, CT imaging, and radiotherapy planning data of 74 patients with NSCLC who underwent definitive RT at our institution between July 2016 and July 2020. We assessed the risk factors for recurrence within one year and occurrence of ILD/RP. RESULTS Kaplan-Meier method showed that ≥ 7 cycles of durvalumab significantly improved 1-year progression free survival (PFS) (p < 0.001). Nineteen patients (26%) were diagnosed with ≥ Grade 2 and 7 (9.5%) with ≥ Grade 3 ILD/RP after completing RT. There was no significant correlation between durvalumab administration and ≥ Grade 2 ILD/RP. Twelve patients (16%) developed ILD/RP that spread outside the high-dose (> 40 Gy) area, of whom 8 (67%) had ≥ Grade 2 and 3 (25%) had Grade 3 symptoms. In unadjusted and multivariate Cox proportional-hazards models adjusted for V20 (proportion of the lung volume receiving ≥ 20 Gy), high HbA1c level was significantly correlated with ILD/RP pattern spreading outside the high-dose area (hazard ratio, 1.842; 95% confidence interval, 1.35-2.51). CONCLUSIONS Durvalumab improved 1-year PFS without increasing the risk of ILD/RP. Diabetic factors were associated with ILD/RP distribution pattern spreading in the lower dose area or outside RT fields, with a high rate of symptoms. Further study of the clinical background of patients including diabetes is needed to safely increase the number of durvalumab doses after CRT.
Collapse
Affiliation(s)
- Mai Sakagami
- Department of Radiation Oncology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| | - Haruo Inokuchi
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroshige Itoyama
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Nobunari Hamaura
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Mutsumi Yamagishi
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Naoki Mukumoto
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shogo Matsuda
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Daijiro Kabata
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Keiko Shibuya
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
10
|
Thakur P, Olson JD, Dugan GO, Daniel Bourland J, Kock ND, Mark Cline J. Quantitative Assessment and Comparative Analysis of Longitudinal Lung CT Scans of Chest-Irradiated Nonhuman Primates. Radiat Res 2023; 199:39-47. [PMID: 36394559 PMCID: PMC9987082 DOI: 10.1667/rade-21-00225.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
Computed tomography (CT) imaging has been used to diagnose radiation-induced lung injury for decades. However, histogram-based quantitative tools have rarely been applied to assess lung abnormality due to radiation-induced lung injury (RILI). Here, we used first-order summary statistics to derive and assess threshold measures extracted from whole lung histograms of CT radiodensity in rhesus macaques. For the present study, CT scans of animals exposed to 10 Gy of whole thorax irradiation were utilized from a previous study spanning 2-9 months postirradiation. These animals were grouped into survivors and non-survivors based on their clinical and experimental endpoints. We quantified the change in lung attenuation after irradiation relative to baseline using three density parameters; average lung density (ALD), percent change in hyper-dense lung volume (PCHV), hyperdense volume as a percent of total volume (PCHV/TV) at 2-month intervals and compared each parameter between the two irradiated groups (non-survivors and survivors). We also correlated our results with histological findings. All the three indices (ALD, PCHV, PCHV/TV) obtained from density histograms showed a significant increase in lung injury in non-survivors relative to survivors, with PCHV relatively more sensitive to detect early RILI changes. We observed a significant positive correlation between histologic pneumonitis scores and each of the three CT measurements, indicating that CT density is useful as a surrogate for histologic disease severity in RILI. CT-based three density parameters, ALD, PCHV, PCHV/TV, may serve as surrogates for likely histopathology patterns in future studies of RILI disease progression.
Collapse
Affiliation(s)
- Priyanka Thakur
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1040
| | - John D. Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1040
| | - Gregory O Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1040
| | - J. Daniel Bourland
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1040
| | - Nancy D. Kock
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1040
| | - J. Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1040
| |
Collapse
|
11
|
Identification of biomarkers and candidate small-molecule drugs in lipopolysaccharide (LPS)-induced acute lung injury by bioinformatics analysis. Allergol Immunopathol (Madr) 2023; 51:44-53. [PMID: 36617821 DOI: 10.15586/aei.v51i1.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND/OBJECTIVE Acute lung injury (ALI) is a critical clinical syndrome with high rates of incidence and mortality. However, its molecular mechanism remains unclear. The current work aimed to explore the molecular mechanisms of ALI by identifying different expression genes (DEGs) and candidate drugs using a combination of chip analysis and experimental validation. METHODS Three microarray datasets were downloaded from Gene Expression Omnibus (GEO) database to obtain DEGs. We conducted a Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway-enrichment analyses of overlapping DEGs among three databases. The expression level of key gene was verified by Western blotting analysis in LPS-treated ALI cell models. Finally, we predicted the candidate drugs targeting the key gene that might be effective for ALI treatment, and the role of candidate drug in treating ALI was verified by investigation. RESULTS A total 29 overlapping DEGs were up-regulated in LPS-induced ALI groups. They were enriched in inflammation and inflammation-related pathways. Serpin family A member 3 (SERPINA3) was defined as a key gene because it was associated with inflammation pathway and up-regulated in microarray datasets in LPS-induced ALI. In LPS-induced human bronchial epithelial cells transformed with Ad12-SV40-2B (BEAS-2B) cells, SERPINA3 was enhanced. Pyridoxal phosphate as an upstream drug of SERPINA3 could improve cell viability and reduce expression inflammatory factors in LPS-treated BEAS-2B cells. CONCLUSION Our study suggested that pyridoxal phosphate could be a candidate drug targeting SERPINA3 gene in LPS-induced ALI. It has protective and anti-inflammatory effects in BEAS-2B cells, and may become a potential novel treatment for ALI.
Collapse
|
12
|
Guo X, Du L, Ma N, Zhang P, Wang Y, Han Y, Huang X, Zhang Q, Tan X, Lei X, Qu B. Monophosphoryl lipid A ameliorates radiation-induced lung injury by promoting the polarization of macrophages to the M1 phenotype. J Transl Med 2022; 20:597. [DOI: 10.1186/s12967-022-03804-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Radiation-induced lung injury (RILI) often occurs during clinical chest radiotherapy and acute irradiation from accidental nuclear leakage. This study explored the role of monophosphoryl lipid A (MPLA) in RILI.
Materials and Methods
The entire thoracic cavity of C57BL/6N mice was irradiated at 20 Gy with or without pre-intragastric administration of MPLA. HE staining, Masson trichrome staining, and TUNEL assay were used to assess lung tissue injury after treatment. The effect of irradiation on the proliferation of MLE-12 cells was analyzed using the Clonogenic assay. The effect of MPLA on the apoptosis of MLE-12 cells was analyzed using flow cytometry. Expression of γ-H2AX and epithelial-mesenchymal transition (EMT) markers in MLE-12 cells was detected by immunofluorescence and Western blot, respectively.
Results
MPLA attenuated early pneumonitis and late pulmonary fibrosis after thoracic irradiation and reversed radiation-induced EMT in C57 mice. MPLA further promoted proliferation and inhibited apoptosis of irradiated MLE-12 cells in vitro. Mechanistically, the radioprotective effect of MPLA was mediated by exosomes secreted by stimulated macrophages. Macrophage-derived exosomes modulated DNA damage in MLE-12 cells after irradiation. MPLA promoted the polarization of RAW 264.7 cells to the M1 phenotype. The exosomes secreted by M1 macrophages suppressed EMT in MLE-12 cells after irradiation.
Conclusion
MPLA is a novel treatment strategy for RILI. Exosomes derived from macrophages are key to the radioprotective role of MPLA in RILI.
Collapse
|
13
|
Hou G, Li J, Liu W, Wei J, Xin Y, Jiang X. Mesenchymal stem cells in radiation-induced lung injury: From mechanisms to therapeutic potential. Front Cell Dev Biol 2022; 10:1100305. [PMID: 36578783 PMCID: PMC9790971 DOI: 10.3389/fcell.2022.1100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is an effective treatment option for multiple thoracic malignant tumors, including lung cancers, thymic cancers, and tracheal cancers. Radiation-induced lung injury (RILI) is a serious complication of radiotherapy. Radiation causes damage to the pulmonary cells and tissues. Multiple factors contribute to the progression of Radiation-induced lung injury, including genetic alterations, oxidative stress, and inflammatory responses. Especially, radiation sources contribute to oxidative stress occurrence by direct excitation and ionization of water molecules, which leads to the decomposition of water molecules and the generation of reactive oxygen species (ROS), reactive nitrogen species (RNS). Subsequently, reactive oxygen species and reactive nitrogen species overproduction can induce oxidative DNA damage. Immune cells and multiple signaling molecules play a major role in the entire process. Mesenchymal stem cells (MSCs) are pluripotent stem cells with multiple differentiation potentials, which are under investigation to treat radiation-induced lung injury. Mesenchymal stem cells can protect normal pulmonary cells from injury by targeting multiple signaling molecules to regulate immune cells and to control balance between antioxidants and prooxidants, thereby inhibiting inflammation and fibrosis. Genetically modified mesenchymal stem cells can improve the natural function of mesenchymal stem cells, including cellular survival, tissue regeneration, and homing. These reprogrammed mesenchymal stem cells can produce the desired products, including cytokines, receptors, and enzymes, which can contribute to further advances in the therapeutic application of mesenchymal stem cells. Here, we review the molecular mechanisms of radiation-induced lung injury and discuss the potential of Mesenchymal stem cells for the prevention and treatment of radiation-induced lung injury. Clarification of these key issues will make mesenchymal stem cells a more fantastic novel therapeutic strategy for radiation-induced lung injury in clinics, and the readers can have a comprehensive understanding in this fields.
Collapse
Affiliation(s)
- Guowen Hou
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Wenyun Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,*Correspondence: Ying Xin, ; Xin Jiang,
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China,*Correspondence: Ying Xin, ; Xin Jiang,
| |
Collapse
|
14
|
Varlotto JM, Sun Z, Ky B, Upshaw J, Fitzgerald TJ, Diehn M, Lovly C, Belani C, Oettel K, Masters G, Harkenrider M, Ross H, Ramalingam S, Pennell NA. A Review of Concurrent Chemo/Radiation, Immunotherapy, Radiation Planning, and Biomarkers for Locally Advanced Non-small Cell Lung Cancer and Their Role in the Development of ECOG-ACRIN EA5181. Clin Lung Cancer 2022; 23:547-560. [PMID: 35882620 DOI: 10.1016/j.cllc.2022.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023]
Abstract
ECOG-ACRIN EA5181 is a current prospective, randomized trial that is investigating whether the addition of concomitant durvalumab to standard chemo/radiation followed by 1 year of consolidative durvalumab results in an overall survival benefit over standard chemo/radiation alone followed by 1 year of consolidative durvalumab in patients with locally advanced, unresectable non-small cell lung cancer (NSCLC). Because multiple phase I/II trials have shown the relative safety of adding immunotherapy to chemo/radiation and due to the known synergism between chemotherapy and immunotherapy, it is hoped that concomitant durvalumab can reduce the relatively high incidence of local failure (38%-46%) as seen in recent prospective, randomized trials of standard chemo/radiation in this patient population. We will review the history of radiation for LA-NSCLC and discuss the role of induction, concurrent and consolidative chemotherapy as well as the concerns for late cardiac and pulmonary toxicities associated with treatment. Furthermore, we will review the potential role of next generation sequencing, PD-L1, ctDNA and tumor mutation burden and their possible impact on this trial.
Collapse
Affiliation(s)
- John Michael Varlotto
- Department of Oncology, Edwards Comprehensive Cancer Center/Marshall University, Huntington, WV.
| | - Zhuoxin Sun
- Dana Farber Cancer Institute - ECOG-ACRIN Biostatistics Center, Boston, MA
| | - Bonnie Ky
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jenica Upshaw
- Department of Medicine, Tufts University, Boston, MA
| | | | - Max Diehn
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Christine Lovly
- Division of Hematology Oncology, Vanderbilt University, Nashville, TN
| | - Chandra Belani
- Department of Medical Oncology, Penn State Cancer Institute, Hershey, PA
| | - Kurt Oettel
- Department of Medical Oncology, Gundersen Lutheran Medical Center, La Crosse, WI
| | | | - Matthew Harkenrider
- Department of Radiation Oncology, Stritch School of Medicine Loyola University Chicago, Maywood, IL
| | - Helen Ross
- Department of Medical Oncology, Banner MD Anderson Cancer Center, Gilbert, AZ
| | | | - Nathan A Pennell
- Department of Hematology Oncology, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
15
|
May JM, Shankavaram U, Bylicky MA, Chopra S, Scott K, Martello S, Thrall K, Axtelle J, Menon N, Coleman CN, Aryankalayil MJ. Serum RNA biomarkers for predicting survival in non-human primates following thoracic radiation. Sci Rep 2022; 12:12333. [PMID: 35853961 PMCID: PMC9296457 DOI: 10.1038/s41598-022-16316-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
In a mass radiation exposure, the healthcare system may rely on differential expression of miRNA to determine exposure and effectively allocate resources. To this end, miRNome analysis was performed on non-human primate serum after whole thorax photon beam irradiation of 9.8 or 10.7 Gy with dose rate 600 cGy/min. Serum was collected up to 270 days after irradiation and sequenced to determine immediate and delayed effects on miRNA expression. Elastic net based GLM methods were used to develop models that predicted the dose vs. controls at 81% accuracy at Day 15. A three-group model at Day 9 achieved 71% accuracy in determining if an animal would die in less than 90 days, between 90 and 269 days, or survive the length of the study. At Day 21, we achieved 100% accuracy in determining whether an animal would later develop pleural effusion. These results demonstrate the potential ability of miRNAs to determine thorax partial-body irradiation dose and forecast survival or complications early following whole thorax irradiation in large animal models. Future experiments incorporating additional doses and independent animal cohorts are warranted to validate these results. Development of a serum miRNA assay will facilitate the administration of medical countermeasures to increase survival and limit normal tissue damage following a mass exposure.
Collapse
Affiliation(s)
- Jared M May
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kevin Scott
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shannon Martello
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Karla Thrall
- Altasciences Preclinical Seattle LLC, Everett, WA, USA
| | | | | | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.,Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
16
|
Sills WS, Tooze JA, Olson JD, Caudell DL, Dugan GO, Johnson BJ, Kock ND, Andrews RN, Schaaf GW, Lang RA, Cline JM. Total-Body Irradiation Is Associated With Increased Incidence of Mesenchymal Neoplasia in a Radiation Late Effects Cohort of Rhesus Macaques (Macaca mulatta). Int J Radiat Oncol Biol Phys 2022; 113:661-674. [PMID: 35361520 PMCID: PMC9250621 DOI: 10.1016/j.ijrobp.2022.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE Cancer is a severe delayed effect of acute radiation exposure. Total-body irradiation has been associated with an increased risk of solid cancer and leukemia in Japanese atomic bomb survivors, and secondary malignancies, such as sarcoma, are a serious consequence of cancer radiation therapy. The radiation late effects cohort (RLEC) of rhesus macaques (Macaca mulatta) is a unique resource of more than 200 animals for studying the long-term consequences of total-body irradiation in an animal model that closely resembles humans at the genetic and physiologic levels. METHODS AND MATERIALS Using clinical records, clinical imaging, histopathology, and immunohistochemistry, this retrospective study characterized the incidence of neoplasia in the RLEC. RESULTS Since 2007, 61 neoplasms in 44 of 239 irradiated animals were documented (18.4% of the irradiated population). Only 1 neoplasm was diagnosed among the 51 nonirradiated controls of the RLEC (2.0%). The most common malignancies in the RLEC were sarcomas (38.3% of diagnoses), which are rare neoplasms in nonirradiated macaques. The most common sarcomas included malignant nerve sheath tumors and malignant glomus tumors. Carcinomas were less common (19.7% of diagnoses), and consisted primarily of renal cell and hepatocellular carcinomas. Neoplasia occurred in most major body systems, with the skin and subcutis being the most common site (40%). RNA analysis showed similarities in transcriptional profiles between RLEC and human malignant nerve sheath tumors. CONCLUSIONS This study indicates that total-body irradiation is associated with an increased incidence of neoplasia years following irradiation, at more than double the incidence described in aging, nonirradiated animals, and promotes tumor histotypes that are rarely observed in nonirradiated, aging rhesus macaques.
Collapse
Affiliation(s)
- W Shane Sills
- Department of Pathology, Section on Comparative Medicine
| | | | - John D Olson
- Department of Pathology, Section on Comparative Medicine
| | | | - Greg O Dugan
- Department of Pathology, Section on Comparative Medicine
| | | | - Nancy D Kock
- Department of Pathology, Section on Comparative Medicine
| | - Rachel N Andrews
- Department of Pathology, Section on Comparative Medicine; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Richard A Lang
- Department of Pathology, Section on Comparative Medicine
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
17
|
Sharma GP, Fish BL, Frei AC, Narayanan J, Gasperetti T, Scholler D, Pierce L, Szalewski N, Blue N, Medhora M, Himburg HA. Pharmacological ACE-inhibition Mitigates Radiation-Induced Pneumonitis by Suppressing ACE-expressing Lung Myeloid Cells. Int J Radiat Oncol Biol Phys 2022; 113:177-191. [PMID: 35093482 PMCID: PMC9018504 DOI: 10.1016/j.ijrobp.2022.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Radiation-induced lung injury is a major dose-limiting toxicity for thoracic radiotherapy patients. In experimental models, treatment with angiotensin converting enzyme (ACE) inhibitors mitigates radiation pneumonitis; however, the mechanism of action is not well understood. Here, we evaluate the direct role of ACE inhibition on lung immune cells. METHODS AND MATERIALS ACE expression and activity were determined in the lung immune cell compartment of irradiated adult rats following either high dose fractionated radiation therapy (RT) to the right lung (5 fractions x 9 Gy) or a single dose of 13.5 Gy partial body irradiation (PBI). Mitigation of radiation-induced pneumonitis with the ACE-inhibitor lisinopril was evaluated in the 13.5 Gy rat PBI model. During pneumonitis, we characterized inflammation and immune cell content in the lungs and bronchoalveolar lavage fluid (BALF). In vitro mechanistic studies were performed using primary human monocytes and the human monocytic THP-1 cell line. RESULTS In both the PBI and fractionated RT models, radiation increased ACE activity in lung immune cells. Treatment with lisinopril improved survival during radiation pneumonitis (p=0.0004). Lisinopril abrogated radiation-induced increases in BALF MCP-1 (CCL2) and MIP-1α cytokine levels (p < 0.0001). Treatment with lisinopril reduced both ACE expression (p=0.006) and frequency of CD45+CD11b+ lung myeloid cells (p=0.004). In vitro, radiation injury acutely increased ACE activity (p=0.045) and reactive oxygen species (ROS) generation (p=0.004) in human monocytes, whereas treatment with lisinopril blocked radiation-induced increases in both ACE and ROS. Interestingly, radiation-induced ROS generation was blocked by pharmacological inhibition of either NADPH oxidase 2 (NOX2) (p=0.012) or the type 1 angiotensin receptor (AGTR1) (p=0.013). CONCLUSIONS These data demonstrate radiation-induced ACE activation within the immune compartment promotes the pathogenesis of radiation pneumonitis, while ACE inhibition suppresses activation of pro-inflammatory immune cell subsets. Mechanistically, our in vitro data demonstrate radiation directly activates the ACE/AGTR1 pathway in immune cells and promotes generation of ROS via Nox2.
Collapse
Affiliation(s)
- Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Anne C Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Dana Scholler
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Lauren Pierce
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Nathan Szalewski
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Noah Blue
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin.
| |
Collapse
|
18
|
MacVittie TJ, Farese AM, Kane MA. Animal Models: A Non-human Primate and Rodent Animal Model Research Platform, Natural History, and Biomarkers to Predict Clinical Outcome. HEALTH PHYSICS 2021; 121:277-281. [PMID: 34546212 PMCID: PMC8462056 DOI: 10.1097/hp.0000000000001479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
| | - Ann M. Farese
- University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
19
|
Huang W, Yu J, Liu T, Defnet AE, Zalesak S, Farese AM, MacVittie TJ, Kane MA. Acute Proteomic Changes in Lung after Radiation: Toward Identifying Initiating Events of Delayed Effects of Acute Radiation Exposure in Non-human Primate after Partial Body Irradiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:384-394. [PMID: 34546219 PMCID: PMC8546870 DOI: 10.1097/hp.0000000000001476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ABSTRACT Radiation-induced lung injury is a delayed effect of acute radiation exposure resulting in pulmonary pneumonitis and fibrosis. Molecular mechanisms that lead to radiation-induced lung injury remain incompletely understood. Using a non-human primate model of partial body irradiation with minimal bone marrow sparing, lung was analyzed from animals irradiated with 12 Gy at timepoints every 4 d up to 21 d after irradiation and compared to non-irradiated (sham) controls. Tryptic digests of lung tissues were analyzed by liquid chromatography-tandem mass spectrometry followed by pathway analysis. Out of the 3,101 unique proteins that were identified, we found that 252 proteins showed significant and consistent responses across at least three time points post-irradiation, of which 215 proteins showed strong up-regulation while 37 proteins showed down-regulation. Canonical pathways affected by irradiation, changes in proteins that serve as upstream regulators, and proteins involved in key processes including inflammation, fibrosis, and retinoic acid signaling were identified. The proteomic profiling of lung conducted here represents an untargeted systems biology approach to identify acute molecular events in the non-human primate lung that could potentially be initiating events for radiation-induced lung injury.
Collapse
Affiliation(s)
- Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Amy E Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Stephanie Zalesak
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| |
Collapse
|