1
|
Prezado Y, Grams M, Jouglar E, Martínez-Rovira I, Ortiz R, Seco J, Chang S. Spatially fractionated radiation therapy: a critical review on current status of clinical and preclinical studies and knowledge gaps. Phys Med Biol 2024; 69:10TR02. [PMID: 38648789 DOI: 10.1088/1361-6560/ad4192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Spatially fractionated radiation therapy (SFRT) is a therapeutic approach with the potential to disrupt the classical paradigms of conventional radiation therapy. The high spatial dose modulation in SFRT activates distinct radiobiological mechanisms which lead to a remarkable increase in normal tissue tolerances. Several decades of clinical use and numerous preclinical experiments suggest that SFRT has the potential to increase the therapeutic index, especially in bulky and radioresistant tumors. To unleash the full potential of SFRT a deeper understanding of the underlying biology and its relationship with the complex dosimetry of SFRT is needed. This review provides a critical analysis of the field, discussing not only the main clinical and preclinical findings but also analyzing the main knowledge gaps in a holistic way.
Collapse
Affiliation(s)
- Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, F-91400, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, F-91400, Orsay, France
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, E-15706, Spain
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - Michael Grams
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America
| | - Emmanuel Jouglar
- Institut Curie, PSL Research University, Department of Radiation Oncology, F-75005, Paris and Orsay Protontherapy Center, F-91400, Orsay, France
| | - Immaculada Martínez-Rovira
- Physics Department, Universitat Auto`noma de Barcelona, E-08193, Cerdanyola del Valle`s (Barcelona), Spain
| | - Ramon Ortiz
- University of California San Francisco, Department of Radiation Oncology, 1600 Divisadero Street, San Francisco, CA 94143, United States of America
| | - Joao Seco
- Division of Biomedical physics in Radiation Oncology, DKFZ-German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Sha Chang
- Dept of Radiation Oncology and Department of Biomedical Engineering, University of North Carolina School of Medicine, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolin State University, United States of America
| |
Collapse
|
2
|
Barnes MJ, Afshar N, Cameron M, Hausermann D, Hardcastle N, Lerch M. The design and characterization of a novel dynamic collimator system for synchrotron radiotherapy applications. Med Phys 2023; 50:5806-5816. [PMID: 37531199 DOI: 10.1002/mp.16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Novel synchrotron radiotherapy techniques are currently limited to using prefabricated beam-limiting blocks for field definition. For large experiments, a single square tungsten block is often used for every treatment since conformal blocks are both patient and field specific, and require long lead times for fabrication. Future synchrotron radiotherapy treatments would benefit from a dynamic collimator system. PURPOSE We developed and tested a novel collimator design for use on the Imaging and Medical Beamline (IMBL) at the ANSTO Australian Synchrotron. METHODS The maximum usable beam size on IMBL is 50-mm wide by 3-mm tall. Given the beam shape, targets must be vertically scanned through the synchrotron beam to cover the target volume. To shape the beam, a novel collimator design was developed, consisting of two semi-circular leaves made from 4-mm thick tungsten sheets, with each leaf capable of both vertical and horizontal movement. A software model was created to optimize motor trajectories and generate deliverable treatment fields. A series of geometric field shapes and clinical target volumes were delivered using the collimator and imaged with a digital imaging detector. Four similarity metrics (volumetric similarity, DICE, and the average and maximum Hausdorff distances) were used to measure differences between the input and planned fields, and the planned and delivered fields. RESULTS Differences between input and planned fields increased with delivery speed, and were worse for rectangular and square fields compared to circular fields. However, the differences between planned and delivered fields were small, where the maximum average deviation between the fields was 0.25 mm (one pixel). Field repeatability was consistent with no difference (σ = 0 for all metrics) observed in consecutively delivered fields. CONCLUSIONS We have successfully built and demonstrated a novel collimator for synchrotron radiotherapy applications on IMBL. Several design improvements have been highlighted and will be addressed in future revisions the collimator. However, in its current state, the collimator enables dynamically delivered conformal treatment fields to be utilized on IMBL, and is ready to support the forthcoming canine treatments on IMBL.
Collapse
Affiliation(s)
- Micah J Barnes
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
- ANSTO Australian Synchrotron, Clayton, Victoria, Australia
- Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Nader Afshar
- ANSTO Australian Synchrotron, Clayton, Victoria, Australia
| | | | | | - Nicholas Hardcastle
- Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
3
|
Jaekel F, Paino J, Engels E, Klein M, Barnes M, Häusermann D, Hall C, Zheng G, Wang H, Hildebrandt G, Lerch M, Schültke E. The Spinal Cord as Organ of Risk: Assessment for Acute and Subacute Neurological Adverse Effects after Microbeam Radiotherapy in a Rodent Model. Cancers (Basel) 2023; 15:cancers15092470. [PMID: 37173938 PMCID: PMC10177263 DOI: 10.3390/cancers15092470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Microbeam radiotherapy (MRT), a high dose rate radiotherapy technique using spatial dose fractionation at the micrometre range, has shown a high therapeutic efficacy in vivo in different tumour entities, including lung cancer. We have conducted a toxicity study for the spinal cord as organ of risk during irradiation of a target in the thoracic cavity. In young adult rats, the lower thoracic spinal cord was irradiated over a length of 2 cm with an array of quasi-parallel microbeams of 50 µm width, spaced at a centre-to-centre distance of 400 µm, with MRT peak doses up to 800 Gy. No acute or subacute adverse effects were observed within the first week after irradiation up to MRT peak doses of 400 Gy. No significant differences were seen between irradiated animals and non-irradiated controls in motor function and sensitivity, open field test and somatosensory evoked potentials (SSEP). After irradiation with MRT peak doses of 450-800 Gy, dose-dependent neurologic signs occurred. Provided that long-term studies do not reveal significant morbidity due to late toxicity, an MRT dose of 400 Gy can be considered safe for the spinal cord in the tested beam geometry and field size.
Collapse
Affiliation(s)
- Felix Jaekel
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
| | - Jason Paino
- Centre of Medical Radiation Physics, University of Wollongong, Wollongong 2522, Australia
| | - Elette Engels
- Centre of Medical Radiation Physics, University of Wollongong, Wollongong 2522, Australia
| | - Mitzi Klein
- Australian Synchrotron, ANSTO, Clayton 3168, Australia
| | - Micah Barnes
- Australian Synchrotron, ANSTO, Clayton 3168, Australia
| | | | | | - Gang Zheng
- Monash Biomedical Imaging, Clayton 3168, Australia
| | - Hongxin Wang
- Monash Biomedical Imaging, Clayton 3168, Australia
| | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
| | - Michael Lerch
- Centre of Medical Radiation Physics, University of Wollongong, Wollongong 2522, Australia
| | - Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
| |
Collapse
|
4
|
Mentzel F, Paino J, Barnes M, Cameron M, Corde S, Engels E, Kröninger K, Lerch M, Nackenhorst O, Rosenfeld A, Tehei M, Tsoi AC, Vogel S, Weingarten J, Hagenbuchner M, Guatelli S. Accurate and Fast Deep Learning Dose Prediction for a Preclinical Microbeam Radiation Therapy Study Using Low-Statistics Monte Carlo Simulations. Cancers (Basel) 2023; 15:cancers15072137. [PMID: 37046798 PMCID: PMC10093595 DOI: 10.3390/cancers15072137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Microbeam radiation therapy (MRT) utilizes coplanar synchrotron radiation beamlets and is a proposed treatment approach for several tumor diagnoses that currently have poor clinical treatment outcomes, such as gliosarcomas. Monte Carlo (MC) simulations are one of the most used methods at the Imaging and Medical Beamline, Australian Synchrotron to calculate the dose in MRT preclinical studies. The steep dose gradients associated with the 50μm-wide coplanar beamlets present a significant challenge for precise MC simulation of the dose deposition of an MRT irradiation treatment field in a short time frame. The long computation times inhibit the ability to perform dose optimization in treatment planning or apply online image-adaptive radiotherapy techniques to MRT. Much research has been conducted on fast dose estimation methods for clinically available treatments. However, such methods, including GPU Monte Carlo implementations and machine learning (ML) models, are unavailable for novel and emerging cancer radiotherapy options such as MRT. In this work, the successful application of a fast and accurate ML dose prediction model for a preclinical MRT rodent study is presented for the first time. The ML model predicts the peak doses in the path of the microbeams and the valley doses between them, delivered to the tumor target in rat patients. A CT imaging dataset is used to generate digital phantoms for each patient. Augmented variations of the digital phantoms are used to simulate with Geant4 the energy depositions of an MRT beam inside the phantoms with 15% (high-noise) and 2% (low-noise) statistical uncertainty. The high-noise MC simulation data are used to train the ML model to predict the energy depositions in the digital phantoms. The low-noise MC simulations data are used to test the predictive power of the ML model. The predictions of the ML model show an agreement within 3% with low-noise MC simulations for at least 77.6% of all predicted voxels (at least 95.9% of voxels containing tumor) in the case of the valley dose prediction and for at least 93.9% of all predicted voxels (100.0% of voxels containing tumor) in the case of the peak dose prediction. The successful use of high-noise MC simulations for the training, which are much faster to produce, accelerates the production of the training data of the ML model and encourages transfer of the ML model to different treatment modalities for other future applications in novel radiation cancer therapies.
Collapse
Affiliation(s)
- Florian Mentzel
- Department of Physics, TU Dortmund University, D-44227 Dortmund, Germany
| | - Jason Paino
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Micah Barnes
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
- Imaging and Medical Beamline, Australian Synchrotron, ANSTO, Clayton, VIC 3168, Australia
- Peter MacCallum Cancer Center, Physical Sciences, Melbourne, VIC 3000, Australia
| | - Matthew Cameron
- Imaging and Medical Beamline, Australian Synchrotron, ANSTO, Clayton, VIC 3168, Australia
| | - Stéphanie Corde
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
- Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Elette Engels
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
- Imaging and Medical Beamline, Australian Synchrotron, ANSTO, Clayton, VIC 3168, Australia
- Peter MacCallum Cancer Center, Physical Sciences, Melbourne, VIC 3000, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Kevin Kröninger
- Department of Physics, TU Dortmund University, D-44227 Dortmund, Germany
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Olaf Nackenhorst
- Department of Physics, TU Dortmund University, D-44227 Dortmund, Germany
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Moeava Tehei
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Ah Chung Tsoi
- School of Computing and Information Technology, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Sarah Vogel
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Jens Weingarten
- Department of Physics, TU Dortmund University, D-44227 Dortmund, Germany
| | - Markus Hagenbuchner
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
- School of Computing and Information Technology, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Susanna Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
| |
Collapse
|
5
|
Effects of Microbeam Irradiation on Rodent Esophageal Smooth Muscle Contraction. Cells 2022; 12:cells12010176. [PMID: 36611969 PMCID: PMC9818134 DOI: 10.3390/cells12010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND High-dose-rate radiotherapy has shown promising results with respect to normal tissue preservation. We developed an ex vivo model to study the physiological effects of experimental radiotherapy in the rodent esophageal smooth muscle. METHODS We assessed the physiological parameters of the esophageal function in ex vivo preparations of the proximal, middle, and distal segments in the organ bath. High-dose-rate synchrotron irradiation was conducted using both the microbeam irradiation (MBI) technique with peak doses greater than 200 Gy and broadbeam irradiation (BBI) with doses ranging between 3.5-4 Gy. RESULTS Neither MBI nor BBI affected the function of the contractile apparatus. While peak latency and maximal force change were not affected in the BBI group, and no changes were seen in the proximal esophagus segments after MBI, a significant increase in peak latency and a decrease in maximal force change was observed in the middle and distal esophageal segments. CONCLUSION No severe changes in physiological parameters of esophageal contraction were determined after high-dose-rate radiotherapy in our model, but our results indicate a delayed esophageal function. From the clinical perspective, the observed increase in peak latency and decreased maximal force change may indicate delayed esophageal transit.
Collapse
|
6
|
The Microbeam Insert at the White Beam Beamline P61A at the Synchrotron PETRA III/DESY: A New Tool for High Dose Rate Irradiation Research. Cancers (Basel) 2022; 14:cancers14205137. [PMID: 36291920 PMCID: PMC9600877 DOI: 10.3390/cancers14205137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The excellent preservation of normal tissue function after high dose rate radiotherapy has been shown in pre-clinical studies. Normal tissue in the tumor environment is well preserved even after target doses of several hundred Gy while reliably destroying the tumor cells. These results have triggered the establishment of appropriate research structures at the synchrotron PETRA III on the DESY campus in Hamburg, Germany. Dose rates of hundreds of Gy/s can be achieved, compared to 6–20 Gy/min in clinical radiotherapy. We describe the design, development, key parameters, and first use of a mobile insert for high dose rate radiotherapy research, a new research instrument at P61A, the first polychromatic beamline of PETRA III. The data obtained at the end station P61A will support the international interdisciplinary effort to improve radiotherapy concepts for patients with malignant tumors that are considered radioresistant with the currently established clinical radiotherapy techniques. Abstract High dose rate radiotherapies such as FLASH and microbeam radiotherapy (MRT) both have developed to the stage of first veterinary studies within the last decade. With the development of a new research tool for high dose rate radiotherapy at the end station P61A of the synchrotron beamline P61 on the DESY campus in Hamburg, we increased the research capacity in this field to speed up the translation of the radiotherapy techniques which are still experimental, from bench to bedside. At P61, dose rates of several hundred Gy/s can be delivered. Compared to dedicated biomedical beamlines, the beam width available for MRT experiments is a very restrictive factor. We developed two model systems specifically to suit these specific technical parameters and tested them in a first set of experiments.
Collapse
|
7
|
Al-Zeer MA, Prehn F, Fiedler S, Lienert U, Krisch M, Berg J, Kurreck J, Hildebrandt G, Schültke E. Evaluating the Suitability of 3D Bioprinted Samples for Experimental Radiotherapy: A Pilot Study. Int J Mol Sci 2022; 23:ijms23179951. [PMID: 36077349 PMCID: PMC9456381 DOI: 10.3390/ijms23179951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022] Open
Abstract
Radiotherapy is an important component in the treatment of lung cancer, one of the most common cancers worldwide, frequently resulting in death within only a few years of diagnosis. In order to evaluate new therapeutic approaches and compare their efficiency with regard to tumour control at a pre-clinical stage, it is important to develop standardized samples which can serve as inter-institutional outcome controls, independent of differences in local technical parameters or specific techniques. Recent developments in 3D bioprinting techniques could provide a sophisticated solution to this challenge. We have conducted a pilot project to evaluate the suitability of standardized samples generated from 3D printed human lung cancer cells in radiotherapy studies. The samples were irradiated at high dose rates using both broad beam and microbeam techniques. We found the 3D printed constructs to be sufficiently mechanically stable for use in microbeam studies with peak doses up to 400 Gy to test for cytotoxicity, DNA damage, and cancer cell death in vitro. The results of this study show how 3D structures generated from human lung cancer cells in an additive printing process can be used to study the effects of radiotherapy in a standardized manner.
Collapse
Affiliation(s)
- Munir A. Al-Zeer
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
- Correspondence: or (M.A.A.-Z.); (E.S.)
| | - Franziska Prehn
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
| | - Stefan Fiedler
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation/DESY, 22607 Hamburg, Germany
| | | | - Michael Krisch
- European Synchrotron Radiation Facility (ESRF), 38043 Grenoble, France
| | - Johanna Berg
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
| | - Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
- Correspondence: or (M.A.A.-Z.); (E.S.)
| |
Collapse
|
8
|
Microbeam Radiation Therapy controls local growth of radioresistant melanoma and treats out-of-field locoregional metastasis. Int J Radiat Oncol Biol Phys 2022; 114:478-493. [DOI: 10.1016/j.ijrobp.2022.06.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022]
|
9
|
Jaekel F, Bräuer-Krisch E, Bartzsch S, Laissue J, Blattmann H, Scholz M, Soloviova J, Hildebrandt G, Schültke E. Microbeam Irradiation as a Simultaneously Integrated Boost in a Conventional Whole-Brain Radiotherapy Protocol. Int J Mol Sci 2022; 23:ijms23158319. [PMID: 35955454 PMCID: PMC9368396 DOI: 10.3390/ijms23158319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Microbeam radiotherapy (MRT), an experimental high-dose rate concept with spatial fractionation at the micrometre range, has shown a high therapeutic potential as well as good preservation of normal tissue function in pre-clinical studies. We investigated the suitability of MRT as a simultaneously integrated boost (SIB) in conventional whole-brain irradiation (WBRT). A 174 Gy MRT SIB was administered with an array of quasi-parallel, 50 µm wide microbeams spaced at a centre-to-centre distance of 400 µm either on the first or last day of a 5 × 4 Gy radiotherapy schedule in healthy adult C57 BL/6J mice and in F98 glioma cell cultures. The animals were observed for signs of intracranial pressure and focal neurologic signs. Colony counts were conducted in F98 glioma cell cultures. No signs of acute adverse effects were observed in any of the irradiated animals within 3 days after the last irradiation fraction. The tumoricidal effect on F98 cell in vitro was higher when the MRT boost was delivered on the first day of the irradiation course, as opposed to the last day. Therefore, the MRT SIB should be integrated into a clinical radiotherapy schedule as early as possible.
Collapse
Affiliation(s)
- Felix Jaekel
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany; (F.J.); (M.S.); (J.S.); (G.H.)
| | - Elke Bräuer-Krisch
- Biomedical Beamline ID 17, European Synchrotron Radiation Facility (ESRF), 38043 Grenoble, France;
| | - Stefan Bartzsch
- Department of Radiooncology, Technical University of Munich, 81675 Munich, Germany;
- Institute for Radiation Medicine, Helmholtz Center Munich, 85764 Munich, Germany
| | - Jean Laissue
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland;
| | | | - Marten Scholz
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany; (F.J.); (M.S.); (J.S.); (G.H.)
| | - Julia Soloviova
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany; (F.J.); (M.S.); (J.S.); (G.H.)
- Department of Paediatric Surgery, Leipzig University Medical Centre, 04103 Leipzig, Germany
| | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany; (F.J.); (M.S.); (J.S.); (G.H.)
| | - Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany; (F.J.); (M.S.); (J.S.); (G.H.)
- Correspondence:
| |
Collapse
|
10
|
Schültke E, Lerch M, Kirschstein T, Lange F, Porath K, Fiedler S, Davis J, Paino J, Engels E, Barnes M, Klein M, Hall C, Häusermann D, Hildebrandt G. Modification of the Langendorff system of the isolated beating heart for experimental radiotherapy at a synchrotron: 4000 Gy in a heart beat. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1027-1032. [PMID: 35787570 PMCID: PMC9255585 DOI: 10.1107/s1600577522004489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/28/2022] [Indexed: 05/27/2023]
Abstract
Microbeam radiotherapy could help to cure malignant tumours which are currently still considered therapy-resistant. With an irradiation target in the thoracic cavity, the heart would be one of the most important organs at risk. To assess the acute adverse effects of microbeam irradiation in the heart, a powerful ex vivo tool was created by combining the Langendorff model of the isolated beating mammalian heart with X-Tream dosimetry. In a first pilot experiment conducted at the Biomedical and Imaging Beamline of the Australian Synchrotron, the system was tested at a microbeam peak dose approximately ten times higher than the anticipated future microbeam irradiation treatment doses. The entire heart was irradiated with a dose of 4000 Gy at a dose rate of >6000 Gy s-1, using an array of 50 µm-wide microbeams spaced at a centre-to-centre distance of 400 µm. Although temporary arrhythmias were seen, they reverted spontaneously to a stable rhythm and no cardiac arrest occurred. This amazing preservation of cardiac function is promising for future therapeutic approaches.
Collapse
Affiliation(s)
- Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University of Rostock Medical Center, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, Rostock, Germany
| | - Falko Lange
- Oscar Langendorff Institute of Physiology, University of Rostock Medical Center, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, Rostock, Germany
| | - Katrin Porath
- Oscar Langendorff Institute of Physiology, University of Rostock Medical Center, Rostock, Germany
| | - Stefan Fiedler
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jeremy Davis
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Jason Paino
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Elette Engels
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Micah Barnes
- Australian Synchrotron/ANSTO, Clayton, Australia
| | - Mitzi Klein
- Australian Synchrotron/ANSTO, Clayton, Australia
| | | | | | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| |
Collapse
|
11
|
Barnes MJ, Paino J, Day LR, Butler D, Häusermann D, Pelliccia D, Crosbie JC. SyncMRT: a solution to image-guided synchrotron radiotherapy for quality assurance and pre-clinical trials. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1074-1084. [PMID: 35787575 PMCID: PMC9255576 DOI: 10.1107/s1600577522004829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
In this work, a new image guidance system and protocols for delivering image-guided radiotherapy (IGRT) on the Imaging and Medical Beamline (IMBL) at the ANSTO Australian Synchrotron are introduced. The image guidance methods used and the resulting accuracy of tumour alignment in in vivo experiments are often under-reported. Image guidance tasks are often complex, time-consuming and prone to errors. If unchecked, they may result in potential mis-treatments. We introduce SyncMRT, a software package that provides a simple, image guidance tool-kit for aligning samples to the synchrotron beam. We have demonstrated sub-millimetre alignment using SyncMRT and the small-animal irradiation platform (the DynamicMRT system) on the IMBL. SyncMRT has become the standard for carrying out IGRT treatments on the IMBL and has been used in all pre-clinical radiotherapy experiments since 2017. Further, we introduce two quality assurance (QA) protocols to synchrotron radiotherapy on the IMBL: the Winston-Lutz test and hidden target test. It is shown that the presented QA tests are appropriate for picking up geometrical setup errors and assessing the end-to-end accuracy of the image guidance process. Together, these tools make image guidance easier and provide a mechanism for reporting the geometric accuracy of synchrotron-based IGRT treatments. Importantly, this work is scalable to other delivery systems, and is in continual development to support the upcoming veterinary radiotherapy trials on the IMBL.
Collapse
Affiliation(s)
- M. J. Barnes
- ANSTO Australian Synchrotron, Kulin Nation, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Kulin Nation, Melbourne, Victoria, Australia
- School of Science, RMIT Univeristy, Kulin Nation, Melbourne, Victoria, Australia
- Illawarra Health and Medical Research Institute, Dharawal Nation, Wollongong, New South Wales, Australia
| | - J. Paino
- Illawarra Health and Medical Research Institute, Dharawal Nation, Wollongong, New South Wales, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Dharawal Nation, Wollongong, New South Wales, Australia
| | - L. R. Day
- School of Science, RMIT Univeristy, Kulin Nation, Melbourne, Victoria, Australia
| | - D. Butler
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Kulin Nation, Yallambie, Victoria, Australia
| | - D. Häusermann
- ANSTO Australian Synchrotron, Kulin Nation, Clayton, Victoria, Australia
| | - D. Pelliccia
- Instruments and Data Tools, Kulin Nation, Melbourne, Victoria, Australia
| | - J. C. Crosbie
- School of Science, RMIT Univeristy, Kulin Nation, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Lange F, Kirschstein T, Davis J, Paino J, Barnes M, Klein M, Porath K, Stöhlmacher P, Fiedler S, Frank M, Köhling R, Hildebrandt G, Hausermann D, Lerch M, Schültke E. Microbeam irradiation of the beating rodent heart: an ex vivo study of acute and subacute effects on cardiac function. Int J Radiat Oncol Biol Phys 2022; 114:143-152. [PMID: 35533907 DOI: 10.1016/j.ijrobp.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Microbeam radiation therapy (MRT) has shown several advantages compared to conventional broad-beam radiotherapy in small animal models, including a better preservation of normal tissue function and improved drug delivery based on a rapidly increased vascular permeability in the target region. Normal tissue tolerance is the limiting factor in clinical radiotherapy. Knowledge of the normal tissue tolerance of organs at risk is therefore a prerequisite in evaluating any new radiotherapy approach. With an irradiation target in the thoracic cavity, the heart would be the most important organ at risk. METHODS AND MATERIALS We used the ex vivo beating rodent heart in the Langendorff perfusion system at the synchrotron in order to administer microbeam irradiation (MBI) with a peak dose of 40 or 400 Gy. By continuously recording the electrocardiogram, the left ventricular pressure, and the aortic pressure before, during and after MBI, we were able to assess acute and subacute effects of MBI on electrophysiological and mechanical cardiac function. In addition, we analyzed histological and ultrastructural sequelae caused by MBI. RESULTS There were no significant changes in heart rate, heart rate variability, systolic increase of left ventricular pressure or aortic pressure. Moreover, the changes of heart rate, left ventricular pressure and aortic pressure by adding 10-5 mol/l norepinephrine to the perfusate, were also not significant between MBI and sham experiments. However, the rate-pressure product as a surrogate marker for maximum workload after MBI was significantly lower compared to sham-irradiated controls. On the structural level, no severe membranous, sarcomeric, mitochondrial or nuclear changes caused by MBI were detected by desmin immunohistochemistry and electron microscopy. CONCLUSION With respect to acute and subacute toxicity, an MBI peak dose up to 400 Gy did not result in severe changes in cardiac electrophysiology or mechanics.
Collapse
Affiliation(s)
- Falko Lange
- Oscar Langendorff Institute of Physiology, Rostock University Medical Centre, Rostock, Germany; Centre for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, Rostock University Medical Centre, Rostock, Germany; Centre for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany.
| | - Jeremy Davis
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Jason Paino
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Micah Barnes
- Australian Synchrotron-Australian Nuclear Science and Technology Organisation (ANSTO), Kulin Nation, Melbourne, Australia
| | - Mitzi Klein
- Australian Synchrotron-Australian Nuclear Science and Technology Organisation (ANSTO), Kulin Nation, Melbourne, Australia
| | - Katrin Porath
- Oscar Langendorff Institute of Physiology, Rostock University Medical Centre, Rostock, Germany
| | - Paula Stöhlmacher
- Oscar Langendorff Institute of Physiology, Rostock University Medical Centre, Rostock, Germany
| | - Stefan Fiedler
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation/ Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, Rostock University Medical Centre, Rostock, Germany; Centre for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Centre, Rostock, Germany
| | - Daniel Hausermann
- Australian Synchrotron-Australian Nuclear Science and Technology Organisation (ANSTO), Kulin Nation, Melbourne, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Centre, Rostock, Germany
| |
Collapse
|
13
|
Trappetti V, Fazzari J, Fernandez-Palomo C, Smyth L, Potez M, Shintani N, de Breuyn Dietler B, Martin OA, Djonov V. Targeted Accumulation of Macrophages Induced by Microbeam Irradiation in a Tissue-Dependent Manner. Biomedicines 2022; 10:735. [PMID: 35453485 PMCID: PMC9025837 DOI: 10.3390/biomedicines10040735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Radiation therapy (RT) is a vital component of multimodal cancer treatment, and its immunomodulatory effects are a major focus of current therapeutic strategies. Macrophages are some of the first cells recruited to sites of radiation-induced injury where they can aid in tissue repair, propagate radiation-induced fibrogenesis and influence tumour dynamics. Microbeam radiation therapy (MRT) is a unique, spatially fractionated radiation modality that has demonstrated exceptional tumour control and reduction in normal tissue toxicity, including fibrosis. We conducted a morphological analysis of MRT-irradiated normal liver, lung and skin tissues as well as lung and melanoma tumours. MRT induced distinct patterns of DNA damage, reflecting the geometry of the microbeam array. Macrophages infiltrated these regions of peak dose deposition at variable timepoints post-irradiation depending on the tissue type. In normal liver and lung tissue, macrophages clearly demarcated the beam path by 48 h and 7 days post-irradiation, respectively. This was not reflected, however, in normal skin tissue, despite clear DNA damage marking the beam path. Persistent DNA damage was observed in MRT-irradiated lung carcinoma, with an accompanying geometry-specific influx of mixed M1/M2-like macrophage populations. These data indicate the unique potential of MRT as a tool to induce a remarkable accumulation of macrophages in an organ/tissue-specific manner. Further characterization of these macrophage populations is warranted to identify their organ-specific roles in normal tissue sparing and anti-tumour responses.
Collapse
Affiliation(s)
- Verdiana Trappetti
- Institute of Anatomy, University of Bern, Baltzerstarsse 2, 3012 Bern, Switzerland; (V.T.); (J.F.); (C.F.-P.); (M.P.); (N.S.); (B.d.B.D.); (O.A.M.)
| | - Jennifer Fazzari
- Institute of Anatomy, University of Bern, Baltzerstarsse 2, 3012 Bern, Switzerland; (V.T.); (J.F.); (C.F.-P.); (M.P.); (N.S.); (B.d.B.D.); (O.A.M.)
| | - Cristian Fernandez-Palomo
- Institute of Anatomy, University of Bern, Baltzerstarsse 2, 3012 Bern, Switzerland; (V.T.); (J.F.); (C.F.-P.); (M.P.); (N.S.); (B.d.B.D.); (O.A.M.)
| | - Lloyd Smyth
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Marine Potez
- Institute of Anatomy, University of Bern, Baltzerstarsse 2, 3012 Bern, Switzerland; (V.T.); (J.F.); (C.F.-P.); (M.P.); (N.S.); (B.d.B.D.); (O.A.M.)
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Nahoko Shintani
- Institute of Anatomy, University of Bern, Baltzerstarsse 2, 3012 Bern, Switzerland; (V.T.); (J.F.); (C.F.-P.); (M.P.); (N.S.); (B.d.B.D.); (O.A.M.)
| | - Bettina de Breuyn Dietler
- Institute of Anatomy, University of Bern, Baltzerstarsse 2, 3012 Bern, Switzerland; (V.T.); (J.F.); (C.F.-P.); (M.P.); (N.S.); (B.d.B.D.); (O.A.M.)
| | - Olga A. Martin
- Institute of Anatomy, University of Bern, Baltzerstarsse 2, 3012 Bern, Switzerland; (V.T.); (J.F.); (C.F.-P.); (M.P.); (N.S.); (B.d.B.D.); (O.A.M.)
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne, VIC 3000, Australia
- Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstarsse 2, 3012 Bern, Switzerland; (V.T.); (J.F.); (C.F.-P.); (M.P.); (N.S.); (B.d.B.D.); (O.A.M.)
| |
Collapse
|
14
|
Non-Targeted Effects of Synchrotron Radiation: Lessons from Experiments at the Australian and European Synchrotrons. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Studies have been conducted at synchrotron facilities in Europe and Australia to explore a variety of applications of synchrotron X-rays in medicine and biology. We discuss the major technical aspects of the synchrotron irradiation setups, paying specific attention to the Australian Synchrotron (AS) and the European Synchrotron Radiation Facility (ESRF) as those best configured for a wide range of biomedical research involving animals and future cancer patients. Due to ultra-high dose rates, treatment doses can be delivered within milliseconds, abiding by FLASH radiotherapy principles. In addition, a homogeneous radiation field can be spatially fractionated into a geometric pattern called microbeam radiotherapy (MRT); a coplanar array of thin beams of microscopic dimensions. Both are clinically promising radiotherapy modalities because they trigger a cascade of biological effects that improve tumor control, while increasing normal tissue tolerance compared to conventional radiation. Synchrotrons can deliver high doses to a very small volume with low beam divergence, thus facilitating the study of non-targeted effects of these novel radiation modalities in both in-vitro and in-vivo models. Non-targeted radiation effects studied at the AS and ESRF include monitoring cell–cell communication after partial irradiation of a cell population (radiation-induced bystander effect, RIBE), the response of tissues outside the irradiated field (radiation-induced abscopal effect, RIAE), and the influence of irradiated animals on non-irradiated ones in close proximity (inter-animal RIBE). Here we provide a summary of these experiments and perspectives on their implications for non-targeted effects in biomedical fields.
Collapse
|
15
|
Schültke E. Flying rats and microbeam paths crossing: the beauty of international interdisciplinary science. Int J Radiat Biol 2022; 98:466-473. [PMID: 34995153 DOI: 10.1080/09553002.2021.2024293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Microbeam radiotherapy (MRT) is a still experimental radiotherapy approach. Two combined parameters contribute to an excellent normal tissue protection and an improved control of malignant tumors in small animal models, compared to conventional radiotherapy: dose deposition at a high dose rate and spatial fractionation at the micrometre level. The international microbeam research community expects to see clinical MRT trials within the next ten years.Physics-associated research is still widely regarded as a male domain. Thus, the question was asked whether this is reflected in the scientific contributions to the field of microbeam radiotherapy. METHOD A literature search was conducted using Pubmed, Semantic Scholar and other sources to look specifically for female contributors to the field of microbeam radiotherapy development. CONCLUSION The original idea for MRT was patented in 1994 by an all-male research team. In approximately 50% of all publications related to microbeam radiotherapy, however, either the first or the senior author is a woman. The contribution of those women who have been driving the development of both technical and biomedical aspects of MRT in the last two decades is highlighted.
Collapse
Affiliation(s)
- Elisabeth Schültke
- Department of Radooncology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|