1
|
Zumsteg ZS, Sheth S, Jabbour SK, Patel KR, Kimple RJ, Williams TM, Xu-Welliver M, Torres-Saavedra PA, Monjazeb AM, Mayadev J, Finkelstein SE, Buatti JM, Patel SP, Lin SH. Challenges and opportunities for early phase clinical trials of novel drug-radiotherapy combinations: recommendations from NRG Oncology, the American Society for Radiation Oncology (ASTRO), the American College of Radiology (ACR), the Sarah Cannon Research Institute, and the American College of Radiation Oncology (ACRO). Lancet Oncol 2024; 25:e489-e500. [PMID: 39362260 DOI: 10.1016/s1470-2045(24)00264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 10/05/2024]
Abstract
NRG Oncology's Developmental Therapeutics and Radiation Therapy Subcommittee assembled an interdisciplinary group of investigators to address barriers to successful early phase clinical trials of novel combination therapies involving radiation. This Policy Review elucidates some of the many challenges associated with study design for early phase trials combining radiotherapy with novel systemic agents, which are distinct from drug-drug combination development and are often overlooked. We also advocate for potential solutions that could mitigate or eliminate some of these barriers, providing examples of specific clinical trial designs that could help facilitate efficient and effective evaluation of novel drug-radiotherapy combinations.
Collapse
Affiliation(s)
- Zachary S Zumsteg
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Siddharth Sheth
- Division of Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Krishnan R Patel
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Randall J Kimple
- Department of Human Oncology, Univeristy of Wisconsin, Madison, WI, USA
| | | | - Meng Xu-Welliver
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Pedro A Torres-Saavedra
- Division of Cancer Treatment and Diagnosis, Biometric Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, University of California, San Diego, CA, USA
| | - Jyoti Mayadev
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, CA, USA
| | - Steven E Finkelstein
- The US Oncology Network, Florida Cancer Affiliates, Panama City, FL, USA; Sarah Cannon Research Institute, Nashville, TN, USA; Associated Medical Professional of NY, US Urology Partners, Syracuse, NY, USA
| | - John M Buatti
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Sandip P Patel
- Division of Medical Oncology, University of California, San Diego, CA, USA
| | - Steven H Lin
- Department of Thoracic Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Ji J, Dragojevic S, Callaghan CM, Smith EJ, Talele S, Zhang W, Connors MA, Mladek AC, Hu Z, Bakken KK, Sarkaria PP, Carlson BL, Burgenske DM, Decker PA, Rashid MA, Jang MH, Gupta SK, Eckel-Passow JE, Elmquist WF, Sarkaria JN. Differential Distribution of the DNA-PKcs Inhibitor Peposertib Selectively Radiosensitizes Patient-derived Melanoma Brain Metastasis Xenografts. Mol Cancer Ther 2024; 23:662-671. [PMID: 38224566 PMCID: PMC11063760 DOI: 10.1158/1535-7163.mct-23-0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/26/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Radioresistance of melanoma brain metastases limits the clinical utility of conventionally fractionated brain radiation in this disease, and strategies to improve radiation response could have significant clinical impact. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is critical for repair of radiation-induced DNA damage, and inhibitors of this kinase can have potent effects on radiation sensitivity. In this study, the radiosensitizing effects of the DNA-PKcs inhibitor peposertib were evaluated in patient-derived xenografts of melanoma brain metastases (M12, M15, M27). In clonogenic survival assays, peposertib augmented radiation-induced killing of M12 cells at concentrations ≥100 nmol/L, and a minimum of 16 hours exposure allowed maximal sensitization. This information was integrated with pharmacokinetic modeling to define an optimal dosing regimen for peposertib of 125 mpk dosed just prior to and 7 hours after irradiation. Using this drug dosing regimen in combination with 2.5 Gy × 5 fractions of radiation, significant prolongation in median survival was observed in M12-eGFP (104%; P = 0.0015) and M15 (50%; P = 0.03), while more limited effects were seen in M27 (16%, P = 0.04). These data support the concept of developing peposertib as a radiosensitizer for brain metastases and provide a paradigm for integrating in vitro and pharmacokinetic data to define an optimal radiosensitizing regimen for potent DNA repair inhibitors.
Collapse
Affiliation(s)
- Jianxiong Ji
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Sonja Dragojevic
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Emily J. Smith
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | | | - Ann C. Mladek
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Zeng Hu
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Brett L. Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Paul A. Decker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Mohammad Abdur Rashid
- RWJ-Neurosurgery, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Mi-hyeon Jang
- RWJ-Neurosurgery, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Shiv K. Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - William F. Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
3
|
Liu N, Niu M, Luo S, Lv L, Quan X, Wang C, Meng Z, Yuan J, Xu Q, Liu Y. Rosamultin ameliorates radiation injury via promoting DNA injury repair and suppressing oxidative stress in vitro and in vivo. Chem Biol Interact 2024; 393:110938. [PMID: 38484825 DOI: 10.1016/j.cbi.2024.110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Radiotherapy remains the preferred treatment option for cancer patients with the advantages of broad indications and significant therapeutic effects. However, ionizing radiation can also damage normal tissues. Unfortunately, there are few anti-radiation damage drugs available on the market for radiotherapy patients. Our previous study showed that rosamultin had antioxidant and hepatoprotective activities. However, its anti-radiation activity has not been evaluated. Irradiating small intestinal epithelial cells and mice with whole-body X-rays radiation were used to evaluate the in vitro and in vivo effects of rosamultin, respectively. Intragastric administration of rosamultin improved survival, limited leukocyte depletion, and reduced damage to the spleen and small intestine in irradiated mice. Rosamultin reversed the downregulation of the apoptotic protein BCL-2 and the upregulation of BAX in irradiated mouse small intestine tissue and in irradiation-induced small intestinal epithelial cells. DNA-PKcs antagonists reversed the promoting DNA repair effects of rosamulin. Detailed mechanistic studies revealed that rosamultin promoted Translin-associated protein X (TRAX) into the nucleus. Knockdown of TRAX reduced the protective effect of rosamultin against DNA damage. In addition, rosamultin reduced irradiation-induced oxidative stress through promoting Nrf2/HO-1 signaling pathway. To sum up, in vitro and in vivo experiments using genetic knockdown and pharmacological activation demonstrated that rosamultin exerts radioprotection via the TRAX/NHEJ and Nrf2/HO pathways.
Collapse
Affiliation(s)
- Ning Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mengxin Niu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Saiyan Luo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lijuan Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaoxiao Quan
- Scientific Experimental Center of Guangxi University of Chinese Medicine, Nanning, China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, 100850, China
| | - Jingquan Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qiongming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
4
|
Chen J, Laverty DJ, Talele S, Bale A, Carlson BL, Porath KA, Bakken KK, Burgenske DM, Decker PA, Vaubel RA, Eckel-Passow JE, Bhargava R, Lou Z, Hamerlik P, Harley B, Elmquist WF, Nagel ZD, Gupta SK, Sarkaria JN. Aberrant ATM signaling and homology-directed DNA repair as a vulnerability of p53-mutant GBM to AZD1390-mediated radiosensitization. Sci Transl Med 2024; 16:eadj5962. [PMID: 38354228 PMCID: PMC11064970 DOI: 10.1126/scitranslmed.adj5962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
ATM is a key mediator of radiation response, and pharmacological inhibition of ATM is a rational strategy to radiosensitize tumors. AZD1390 is a brain-penetrant ATM inhibitor and a potent radiosensitizer. This study evaluated the spectrum of radiosensitizing effects and the impact of TP53 mutation status in a panel of IDH1 wild-type (WT) glioblastoma (GBM) patient-derived xenografts (PDXs). AZD1390 suppressed radiation-induced ATM signaling, abrogated G0-G1 arrest, and promoted a proapoptotic response specifically in p53-mutant GBM in vitro. In a preclinical trial using 10 orthotopic GBM models, AZD1390/RT afforded benefit in a cohort of TP53-mutant tumors but not in TP53-WT PDXs. In mechanistic studies, increased endogenous DNA damage and constitutive ATM signaling were observed in TP53-mutant, but not in TP53-WT, PDXs. In plasmid-based reporter assays, GBM43 (TP53-mutant) showed elevated DNA repair capacity compared with that in GBM14 (p53-WT), whereas treatment with AZD1390 specifically suppressed homologous recombination (HR) efficiency, in part, by stalling RAD51 unloading. Furthermore, overexpression of a dominant-negative TP53 (p53DD) construct resulted in enhanced basal ATM signaling, HR activity, and AZD1390-mediated radiosensitization in GBM14. Analyzing RNA-seq data from TCGA showed up-regulation of HR pathway genes in TP53-mutant human GBM. Together, our results imply that increased basal ATM signaling and enhanced dependence on HR represent a unique susceptibility of TP53-mutant cells to ATM inhibitor-mediated radiosensitization.
Collapse
Affiliation(s)
- Jiajia Chen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Daniel J. Laverty
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Surabhi Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55905, USA
| | - Ashwin Bale
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brett L. Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kendra A. Porath
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Katrina K. Bakken
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Paul A. Decker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachael A. Vaubel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Rohit Bhargava
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhenkun Lou
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Brendan Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - William F. Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55905, USA
| | - Zachary D. Nagel
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shiv K. Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Lin Y, Xia P, Cao F, Zhang C, Yang Y, Jiang H, Lin H, Liu H, Liu R, Liu X, Cai J. Protective effects of activated vitamin D receptor on radiation-induced intestinal injury. J Cell Mol Med 2022; 27:246-258. [PMID: 36579449 PMCID: PMC9843524 DOI: 10.1111/jcmm.17645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 12/30/2022] Open
Abstract
Radiation-induced intestinal injury (RIII) is a common complication after radiation therapy in patients with pelvic, abdominal, or retroperitoneal tumours. Recently, in the model of DSS (Dextran Sulfate Sodium Salt) -induced intestinal inflammatory injury, it has been found in the study that transgenic mice expressing hVDR in IEC (Intestinal Epithelial Cell) manifest highly anti-injury properties in colitis, suggesting that activated VDR in the epithelial cells of intestine may inhibit colitis by protecting the mucosal epithelial barrier. In this study, we investigated the effect of the expression and regulation of VDR on the protection of RIII, and the radiosensitivity in vitro experiments, and explored the initial mechanism of VDR in regulating radiosensitivity of IEC. As a result, we found that the expression of VDR in intestinal tissues and cells in mice can be induced by ionizing radiation. VDR agonists are able to prolong the average survival time of mice after radiation and reduce the radiation-induced intestinal injury. For lack of vitamin D, the radiosensitivity of intestinal epithelial cells in mice increased, which can be reduced by VDR activation. Ensuing VDR activation, the radiation-induced intestinal stem cells damage is decreased, and the regeneration and differentiation of intestinal stem cells is promoted as well. Finally, on the basis of sequencing analysis, we validated and found that VDR may target the HIF/PDK1 pathway to mitigate RIII. We concluded that agonism or upregulation of VDR expression attenuates radiation-induced intestinal damage in mice and promotes the repair of epithelial damage in intestinal stem cells.
Collapse
Affiliation(s)
- Yuhan Lin
- School of Public Health and ManagementWenzhou Medical UniversityZhejiangChina
| | - Penglin Xia
- Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| | - Fangyu Cao
- Incubation Base for Undergraduates' Innovative Practice in Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| | - Cheng Zhang
- School of Public Health and ManagementWenzhou Medical UniversityZhejiangChina
| | - Yajie Yang
- Incubation Base for Undergraduates' Innovative Practice in Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| | - Haitao Jiang
- Department of Oral and maxillofacial Trauma and Orthognathic SurgeryStomatological Hospital of Zunyi Medical UniversityZunyiChina
| | - Haishan Lin
- Cancer Centre, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Hu Liu
- Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| | - Ruling Liu
- Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| | - Xiaodong Liu
- School of Public Health and ManagementWenzhou Medical UniversityZhejiangChina
| | - Jianming Cai
- School of Public Health and ManagementWenzhou Medical UniversityZhejiangChina,Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| |
Collapse
|
6
|
Talele S, Zhang W, Chen J, Gupta SK, Burgenske DM, Sarkaria JN, Elmquist WF. Central Nervous System Distribution of the Ataxia-Telangiectasia Mutated Kinase Inhibitor AZD1390: Implications for the Treatment of Brain Tumors. J Pharmacol Exp Ther 2022; 383:91-102. [PMID: 36137710 PMCID: PMC9513858 DOI: 10.1124/jpet.122.001230] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/01/2022] [Indexed: 08/18/2023] Open
Abstract
Effective drug delivery to the brain is critical for the treatment of glioblastoma (GBM), an aggressive and invasive primary brain tumor that has a dismal prognosis. Radiation therapy, the mainstay of brain tumor treatment, works by inducing DNA damage. Therefore, inhibiting DNA damage response (DDR) pathways can sensitize tumor cells to radiation and enhance cytotoxicity. AZD1390 is an inhibitor of ataxia-telangiectasia mutated kinase, a critical regulator of DDR. Our in vivo studies in the mouse indicate that delivery of AZD1390 to the central nervous system (CNS) is restricted due to active efflux by P-glycoprotein (P-gp). The free fraction of AZD1390 in brain and spinal cord were found to be low, thereby reducing the partitioning of free drug to these organs. Coadministration of an efflux inhibitor significantly increased CNS exposure of AZD1390. No differences were observed in distribution of AZD1390 within different anatomic regions of CNS, and the functional activity of P-gp and breast cancer resistance protein also remained the same across brain regions. In an intracranial GBM patient-derived xenograft model, AZD1390 accumulation was higher in the tumor core and rim compared with surrounding brain. Despite this heterogenous delivery within tumor-bearing brain, AZD1390 concentrations in normal brain, tumor rim, and tumor core were above in vitro effective radiosensitizing concentrations. These results indicate that despite being a substrate of efflux in the mouse brain, sufficient AZD1390 exposure is anticipated even in regions of normal brain. SIGNIFICANCE STATEMENT: Given the invasive nature of glioblastoma (GBM), tumor cells are often protected by an intact blood-brain barrier, requiring the development of brain-penetrant molecules for effective treatment. We show that efflux mediated by P-glycoprotein (P-gp) limits central nervous system (CNS) distribution of AZD1390 and that there are no distributional differences within anatomical regions of CNS. Despite efflux by P-gp, concentrations effective for potent radiosensitization are achieved in GBM tumor-bearing mouse brains, indicating that AZD1390 is an attractive molecule for clinical development of brain tumors.
Collapse
Affiliation(s)
- Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.C., S.K.G., D.M.B., J.N.S.)
| | - Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.C., S.K.G., D.M.B., J.N.S.)
| | - Jiajia Chen
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.C., S.K.G., D.M.B., J.N.S.)
| | - Shiv K Gupta
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.C., S.K.G., D.M.B., J.N.S.)
| | - Danielle M Burgenske
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.C., S.K.G., D.M.B., J.N.S.)
| | - Jann N Sarkaria
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.C., S.K.G., D.M.B., J.N.S.)
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., W.F.E.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.C., S.K.G., D.M.B., J.N.S.)
| |
Collapse
|
7
|
Talele S, Zhang W, Oh JH, Burgenske DM, Mladek AC, Dragojevic S, Sarkaria JN, Elmquist WF. Central Nervous System Delivery of the Catalytic Subunit of DNA-Dependent Protein Kinase Inhibitor Peposertib as Radiosensitizer for Brain Metastases. J Pharmacol Exp Ther 2022; 381:217-228. [PMID: 35370138 PMCID: PMC9190234 DOI: 10.1124/jpet.121.001069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/21/2022] [Indexed: 07/22/2023] Open
Abstract
Cytotoxic effects of chemotherapy and radiation therapy (RT) used for the treatment of brain metastases results from DNA damage within cancer cells. Cells rely on highly evolved DNA damage response (DDR) pathways to repair the damage caused by these treatments. Inhibiting these repair pathways can further sensitize cancer cells to chemotherapy and RT. The catalytic subunit of DNA-dependent protein kinase, in a complex with Ku80 and Ku70, is a pivotal regulator of the DDR, and peposertib is a potent inhibitor of this catalytic subunit. The characterization of central nervous system (CNS) distributional kinetics of peposertib is critical in establishing a therapeutic index in the setting of brain metastases. Our studies demonstrate that the delivery of peposertib is severely restricted into the CNS as opposed to peripheral organs, by active efflux at the blood-brain barrier (BBB). Peposertib has a low free fraction in the brain and spinal cord, further reducing the active concentration, and distributes to the same degree within different anatomic regions of the brain. However, peposertib is heterogeneously distributed within the metastatic tumor, where its concentration is highest within the tumor core (with disrupted BBB) and substantially lower within the invasive tumor rim (with a relatively intact BBB) and surrounding normal brain. These findings are critical in guiding the potential clinical deployment of peposertib as a radiosensitizing agent for the safe and effective treatment of brain metastases. SIGNIFICANCE STATEMENT: Effective radiosensitization of brain metastases while avoiding toxicity to the surrounding brain is critical in the development of novel radiosensitizers. The central nervous system distribution of peposertib, a potent catalytic subunit of DNA-dependent protein kinase inhibitor, is restricted by active efflux in the normal blood-brain barrier (BBB) but can reach significant concentrations in the tumor core. This finding suggests that peposertib may be an effective radiosensitizer for intracranial tumors with an open BBB, while limited distribution into normal brain will decrease the risk of enhanced radiation injury.
Collapse
Affiliation(s)
- Surabhi Talele
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., J.-H.O., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., A.C.M., S.D., J.N.S.)
| | - Wenjuan Zhang
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., J.-H.O., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., A.C.M., S.D., J.N.S.)
| | - Ju-Hee Oh
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., J.-H.O., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., A.C.M., S.D., J.N.S.)
| | - Danielle M Burgenske
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., J.-H.O., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., A.C.M., S.D., J.N.S.)
| | - Ann C Mladek
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., J.-H.O., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., A.C.M., S.D., J.N.S.)
| | - Sonja Dragojevic
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., J.-H.O., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., A.C.M., S.D., J.N.S.)
| | - Jann N Sarkaria
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., J.-H.O., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., A.C.M., S.D., J.N.S.)
| | - William F Elmquist
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.T., W.Z., J.-H.O., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (D.M.B., A.C.M., S.D., J.N.S.)
| |
Collapse
|
8
|
Buchsbaum JC, Espey MG, Obcemea C, Capala J, Ahmed M, Prasanna PG, Vikram B, Hong JA, Teicher B, Aryankalayil MJ, Bylicky MA, Coleman CN. Tumor Heterogeneity Research and Innovation in Biologically Based Radiation Therapy From the National Cancer Institute Radiation Research Program Portfolio. J Clin Oncol 2022; 40:1861-1869. [PMID: 35245101 DOI: 10.1200/jco.21.02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Feng W, Smith CM, Simpson DA, Gupta GP. Targeting Non-homologous and Alternative End Joining Repair to Enhance Cancer Radiosensitivity. Semin Radiat Oncol 2021; 32:29-41. [PMID: 34861993 DOI: 10.1016/j.semradonc.2021.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many cancer therapies, including radiotherapy, induce DSBs as the major driving mechanism for inducing cancer cell death. Thus, modulating DSB repair has immense potential for radiosensitization, although such interventions must be carefully designed to be tumor selective to ensure that normal tissue toxicities are not also increased. Here, we review mechanisms of error-prone DSB repair through a highly efficient process called end joining. There are two major pathways of end-joining repair: non-homologous end joining (NHEJ) and alternative end joining (a-EJ), both of which can be selectively upregulated in cancer and thus represent attractive therapeutic targets for radiosensitization. These EJ pathways each have therapeutically targetable pioneer factors - DNA-dependent protein kinase catalytic subunit (DNA-PKcs) for NHEJ and DNA Polymerase Theta (Pol θ) for a-EJ. We summarize the current status of therapeutic targeting of NHEJ and a-EJ to enhance the effects of radiotherapy - focusing on challenges that must be overcome and opportunities that require further exploration. By leveraging preclinical insights into mechanisms of altered DSB repair programs in cancer, selective radiosensitization through NHEJ and/or a-EJ targeting remains a highly attractive avenue for ongoing and future clinical investigation.
Collapse
Affiliation(s)
| | - Chelsea M Smith
- Lineberger Comprehensive Cancer Center; Pathobiology and Translational Science Graduate Program
| | | | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center; Pathobiology and Translational Science Graduate Program; Department of Radiation Oncology; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC.
| |
Collapse
|