1
|
Tiberio L, Laffranchi M, Zucchi G, Salvi V, Schioppa T, Sozzani S, Del Prete A, Bosisio D. Inhibitory receptors of plasmacytoid dendritic cells as possible targets for checkpoint blockade in cancer. Front Immunol 2024; 15:1360291. [PMID: 38504978 PMCID: PMC10948453 DOI: 10.3389/fimmu.2024.1360291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are the major producers of type I interferons (IFNs), which are essential to mount antiviral and antitumoral immune responses. To avoid exaggerated levels of type I IFNs, which pave the way to immune dysregulation and autoimmunity, pDC activation is strictly regulated by a variety of inhibitory receptors (IRs). In tumors, pDCs display an exhausted phenotype and correlate with an unfavorable prognosis, which largely depends on the accumulation of immunosuppressive cytokines and oncometabolites. This review explores the hypothesis that tumor microenvironment may reduce the release of type I IFNs also by a more pDC-specific mechanism, namely the engagement of IRs. Literature shows that many cancer types express de novo, or overexpress, IR ligands (such as BST2, PCNA, CAECAM-1 and modified surface carbohydrates) which often represent a strong predictor of poor outcome and metastasis. In line with this, tumor cells expressing ligands engaging IRs such as BDCA-2, ILT7, TIM3 and CD44 block pDC activation, while this blocking is prevented when IR engagement or signaling is inhibited. Based on this evidence, we propose that the regulation of IFN secretion by IRs may be regarded as an "innate checkpoint", reminiscent of the function of "classical" adaptive immune checkpoints, like PD1 expressed in CD8+ T cells, which restrain autoimmunity and immunopathology but favor chronic infections and tumors. However, we also point out that further work is needed to fully unravel the biology of tumor-associated pDCs, the neat contribution of pDC exhaustion in tumor growth following the engagement of IRs, especially those expressed also by other leukocytes, and their therapeutic potential as targets of combined immune checkpoint blockade in cancer immunotherapy.
Collapse
Affiliation(s)
- Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
| | - Giovanni Zucchi
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
2
|
Nikfarjam S, Rezaie J, Kashanchi F, Jafari R. Dexosomes as a cell-free vaccine for cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:258. [PMID: 33228747 PMCID: PMC7686678 DOI: 10.1186/s13046-020-01781-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) secrete vast quantities of exosomes termed as dexosomes. Dexosomes are symmetric nanoscale heat-stable vesicles that consist of a lipid bilayer displaying a characteristic series of lipid and protein molecules. They include tetraspanins and all established proteins for presenting antigenic material such as the major histocompatibility complex class I/II (MHC I/II) and CD1a, b, c, d proteins and CD86 costimulatory molecule. Dexosomes contribute to antigen-specific cellular immune responses by incorporating the MHC proteins with antigen molecules and transferring the antigen-MHC complexes and other associated molecules to naïve DCs. A variety of ex vivo and in vivo studies demonstrated that antigen-loaded dexosomes were able to initiate potent antitumor immunity. Human dexosomes can be easily prepared using monocyte-derived DCs isolated by leukapheresis of peripheral blood and treated ex vivo by cytokines and other factors. The feasibility of implementing dexosomes as therapeutic antitumor vaccines has been verified in two phase I and one phase II clinical trials in malignant melanoma and non small cell lung carcinoma patients. These studies proved the safety of dexosome administration and showed that dexosome vaccines have the capacity to trigger both the adaptive (T lymphocytes) and the innate (natural killer cells) immune cell recalls. In the current review, we will focus on the perspective of utilizing dexosome vaccines in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Sepideh Nikfarjam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, P.O. Box: 1138, Shafa St, Ershad Blvd., 57147, Urmia, Iran
| | - Fatah Kashanchi
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., VA, 20110, Manassas, USA.
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, P.O. Box: 1138, Shafa St, Ershad Blvd., 57147, Urmia, Iran. .,Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Del Prete A, Sozio F, Barbazza I, Salvi V, Tiberio L, Laffranchi M, Gismondi A, Bosisio D, Schioppa T, Sozzani S. Functional Role of Dendritic Cell Subsets in Cancer Progression and Clinical Implications. Int J Mol Sci 2020; 21:ijms21113930. [PMID: 32486257 PMCID: PMC7312661 DOI: 10.3390/ijms21113930] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) constitute a complex network of cell subsets with common functions but also with many divergent aspects. All dendritic cell subsets share the ability to prime T cell response and to undergo a complex trafficking program related to their stage of maturation and function. For these reasons, dendritic cells are implicated in a large variety of both protective and detrimental immune responses, including a crucial role in promoting anti-tumor responses. Although cDC1s are the most potent subset in tumor antigen cross-presentation, they are not sufficient to induce full-strength anti-tumor cytotoxic T cell response and need close interaction and cooperativity with the other dendritic cell subsets, namely cDC2s and pDCs. This review will take into consideration different aspects of DC biology, including the functional role of dendritic cell subsets in both fostering and suppressing tumor growth, the mechanisms underlying their recruitment into the tumor microenvironment, as well as the prognostic value and the potentiality of dendritic cell therapeutic targeting. Understanding the specificity of dendritic cell subsets will allow to gain insights on role of these cells in pathological conditions and to design new selective promising therapeutic approaches.
Collapse
Affiliation(s)
- Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Ilaria Barbazza
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
| | - Mattia Laffranchi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
| | - Angela Gismondi
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Silvano Sozzani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
- Correspondence: ; Tel.: +39-06-4434-0632
| |
Collapse
|
4
|
Dewald HK, Hurley HJ, Fitzgerald-Bocarsly P. Regulation of Transcription Factor E2-2 in Human Plasmacytoid Dendritic Cells by Monocyte-Derived TNFα. Viruses 2020; 12:v12020162. [PMID: 32023836 PMCID: PMC7077321 DOI: 10.3390/v12020162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 12/15/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are innate immune cells and potent producers of interferon alpha (IFNα). Regulation of pDCs is crucial for prevention of aberrant IFN production. Transcription factor E2-2 (TCF4) regulates pDC development and function, but mechanisms of E2-2 control have not been investigated. We used freshly-isolated human peripheral blood mononuclear cells stimulated with toll-like receptor 7, 9, and 4 agonists to determine which factors regulate E2-2. After activation, pDCs decreased E2-2 expression. E2-2 downregulation occurred during the upregulation of costimulatory markers, after maximal IFN production. In congruence with previous reports in mice, we found that primary human pDCs that maintained high E2-2 levels produced more IFN, and had less expression of costimulatory markers. Stimulation of purified pDCs did not lead to E2-2 downregulation; therefore, we investigated if cytokine signaling regulates E2-2 expression. We found that tumor necrosis factor alpha (TNFα) produced by monocytes caused decreased E2-2 expression. All together, we established that primary human pDCs decrease E2-2 in response to TNFα and E2-2 low pDCs produce less IFN but exhibit more costimulatory molecules. Altered expression of E2-2 may represent a mechanism to attenuate IFN production and increase activation of the adaptive immune compartment.
Collapse
Affiliation(s)
- Hannah K. Dewald
- Rutgers School of Graduate Studies, Newark, NJ 07103, USA; (H.K.D.); (H.J.H.)
| | - Harry J. Hurley
- Rutgers School of Graduate Studies, Newark, NJ 07103, USA; (H.K.D.); (H.J.H.)
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Patricia Fitzgerald-Bocarsly
- Rutgers School of Graduate Studies, Newark, NJ 07103, USA; (H.K.D.); (H.J.H.)
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Correspondence: ; Tel.: +1-973-972-5233
| |
Collapse
|
5
|
Chiffoleau E. C-Type Lectin-Like Receptors As Emerging Orchestrators of Sterile Inflammation Represent Potential Therapeutic Targets. Front Immunol 2018; 9:227. [PMID: 29497419 PMCID: PMC5818397 DOI: 10.3389/fimmu.2018.00227] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/26/2018] [Indexed: 01/19/2023] Open
Abstract
Over the last decade, C-type lectin-like receptors (CTLRs), expressed mostly by myeloid cells, have gained increasing attention for their role in the fine tuning of both innate and adaptive immunity. Not only CTLRs recognize pathogen-derived ligands to protect against infection but also endogenous ligands such as self-carbohydrates, proteins, or lipids to control homeostasis and tissue injury. Interestingly, CTLRs act as antigen-uptake receptors via their carbohydrate-recognition domain for internalization and subsequent presentation to T-cells. Furthermore, CTLRs signal through a complex intracellular network leading to the secretion of a particular set of cytokines that differently polarizes downstream effector T-cell responses according to the ligand and pattern recognition receptor co-engagement. Thus, by orchestrating the balance between inflammatory and resolution pathways, CTLRs are now considered as driving players of sterile inflammation whose dysregulation leads to the development of various pathologies such as autoimmune diseases, allergy, or cancer. For examples, the macrophage-inducible C-type lectin (MINCLE), by sensing glycolipids released during cell-damage, promotes skin allergy and the pathogenesis of experimental autoimmune uveoretinitis. Besides, recent studies described that tumors use physiological process of the CTLRs’ dendritic cell-associated C-type lectin-1 (DECTIN-1) and MINCLE to locally suppress myeloid cell activation and promote immune evasion. Therefore, we aim here to overview the current knowledge of the pivotal role of CTLRs in sterile inflammation with special attention given to the “Dectin-1” and “Dectin-2” families. Moreover, we will discuss the potential of these receptors as promising therapeutic targets to treat a wide range of acute and chronic diseases.
Collapse
Affiliation(s)
- Elise Chiffoleau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,IHU Cesti, Nantes, France.,Labex Immunotherapy Graft Oncology (IGO), Nantes, France
| |
Collapse
|
6
|
Dendritic cell recruitment and activation in autoimmunity. J Autoimmun 2017; 85:126-140. [DOI: 10.1016/j.jaut.2017.07.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
|
7
|
Pevonedistat, a Nedd8-activating enzyme inhibitor, sensitizes neoplastic B-cells to death receptor-mediated apoptosis. Oncotarget 2017; 8:21128-21139. [PMID: 28177892 PMCID: PMC5400571 DOI: 10.18632/oncotarget.15050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/07/2017] [Indexed: 12/14/2022] Open
Abstract
While death receptor ligands (Fas and TRAIL) kill chemoresistant tumor cell lines, related therapies have limited clinical efficacy as single agents. Death receptor signaling is modulated by nuclear factor-κB (NFκB), a family of transcription factors which are constitutively active in B-cell malignancies. We and others have shown that pevonedistat, an investigational inhibitor of the NEDD8-activating enzyme, abrogates NFκB activity in B-cell neoplasia. Here we demonstrate that diffuse large B-cell lymphoma, particularly activated B-cell type, and primary chronic lymphocytic leukemia cells are re-sensitized to extrinsic apoptosis by pevonedistat. Pevonedistat enhanced caspase-8 processing following death receptor ligation, and downmodulated cFLIP, a NFκB-regulated protease-deficient caspase homolog. However, treatment with pevonedistat did not modulate death-inducing signaling complex in neoplastic B-cells, suggesting that they were sensitized to death ligands through the mitochondrial pathway. Our data provide rationale for further development of pharmacologic agents including pevonedistat in strategies which enhance death receptor signaling in lymphoid malignancies.
Collapse
|
8
|
Wu J, Li S, Yang Y, Zhu S, Zhang M, Qiao Y, Liu YJ, Chen J. TLR-activated plasmacytoid dendritic cells inhibit breast cancer cell growth in vitro and in vivo. Oncotarget 2017; 8:11708-11718. [PMID: 28052019 PMCID: PMC5355297 DOI: 10.18632/oncotarget.14315] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/05/2016] [Indexed: 01/09/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subset of naturally occurring dendritic cells, which triggers the production of large amounts of type I interferons (IFNs) after viral infections through Toll-like receptor (TLR) 7 and TLR9. Recent studies have demonstrated that the activation of pDCs kills melanoma cells. However, the role of activated pDCs in breast cancer remains to be determined. In the present study, we generated mouse models of breast cancer and demonstrated that activated pDCs can directly kill breast tumor cells through TRAIL and Granzyme B. Furthermore, we established that pDCs initiate the sequential activation of NK cells and CD8+ T cells, and ultimately inhibit breast tumor growth. Understanding the role of activated pDCs in breast cancer may help to develop new strategies for manipulating the function of pDCs and induce anti-tumor immunity in breast cancer.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130061, China
| | - Shuang Li
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130061, China
| | - Yang Yang
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130061, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130061, China
| | - Mingyou Zhang
- Department of Cardiovascular Center, The First Hospital, Jilin University, Changchun, 130031, China
| | - Yuan Qiao
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130061, China
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130061, China.,Sanofi Research and Development, Cambridge, MA, 02139, USA
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130061, China
| |
Collapse
|
9
|
Finotti G, Tamassia N, Cassatella MA. Interferon-λs and Plasmacytoid Dendritic Cells: A Close Relationship. Front Immunol 2017; 8:1015. [PMID: 28878776 PMCID: PMC5572322 DOI: 10.3389/fimmu.2017.01015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Interferon lambdas (IFNλs) are recently discovered cytokines acting not only at the first line of defense against viral infections but also at the mucosal barriers. In fact, a peculiar feature of the IFNλ system is the restricted expression of the functional IFNλR, which is known to be limited to epithelial cells and discrete leukocyte subsets, including the plasmacytoid dendritic cells (pDCs). In the latter case, current data, discussed in this minireview, indicate that IFNλs positively regulate various pDC functions, including pDC expression of interferon-dependent gene (ISG) mRNAs, production of cytokines, survival, and phenotype. Although the knowledge of the effects on pDCs by IFNλs is still incomplete, we speculate that the peculiar pDC responsiveness to IFNλs provide unique advantages for these innate immune cells, not only for viral infections but also during autoimmune disorders and/or tumors, in which pDC involvement and activation variably contribute to their pathogenesis.
Collapse
Affiliation(s)
- Giulia Finotti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Lapko N, Zawadka M, Polosak J, Worthen GS, Danet-Desnoyers G, Puzianowska-Kuźnicka M, Laudanski K. Long-term Monocyte Dysfunction after Sepsis in Humanized Mice Is Related to Persisted Activation of Macrophage-Colony Stimulation Factor (M-CSF) and Demethylation of PU.1, and It Can Be Reversed by Blocking M-CSF In Vitro or by Transplanting Naïve Autologous Stem Cells In Vivo. Front Immunol 2017; 8:401. [PMID: 28507543 PMCID: PMC5410640 DOI: 10.3389/fimmu.2017.00401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/21/2017] [Indexed: 01/02/2023] Open
Abstract
The duration of post-sepsis long-term immune suppression is poorly understood. Here, we focused on the role of monocytes (MO) as the pivotal cells for long-term regulation of post-sepsis milieu. Lost ability of MO to adapt is seen in several acute conditions, but it is unclear for how long MO aberrancy post-sepsis can persist. Interestingly, the positive feedback loop sustaining secretion of macrophage-colony stimulation factor (M-CSF) can persist even after resolution of sepsis and significantly alters performance of MO. Here, we investigated the activation of M-CSF, and it as critical regulator of PU.1 in mice surviving 28 days after sepsis. Our primary readout was the ability of MO to differentiate into dendritic cells (DCs; MO→iDC) in vitro since this is one of the critical processes regulating a successful transition from innate to acquired immunity. We utilized a survival modification of the cecal ligation and puncture (CLP) model of sepsis in humanized mice. Animals were sacrificed 28 days after CLP (tCLP+28d). Untouched (CONTR) or sham-operated (SHAM) animals served as controls. Some animals received rescue from stem cells originally used for grafting 2 weeks after CLP. We found profound decrease of MO→iDC in the humanized mice 28 days after sepsis, demonstrated by depressed expression of CD1a, CD83, and CD209, diminished production of IL-12p70, and depressed ability to stimulate T cells in mice after CLP as compared to SHAM or CONTR. In vitro defect in MO→iDC was accompanied by in vivo decrease of BDCA-3+ endogenous circulating DC. Interestingly, post-CLP MO had persistent activation of M-CSF pathway, shown by exaggerated secretion of M-CSF, activation of PU.1, and demethylation of SPII. Neutralization of the M-CSF in vitro reversed the post-CLP MO→iDC aberration. Furthermore, transplantation of naïve, autologous stem cell-derived MO restored CLP-deteriorated ability of MO to become DC, measured as recovery of CD1a expression, enhanced production of IL-12p70, and ability of IL-4 and GM-CSF MO to stimulate allogeneic T cells. Our results suggest the role of epigenetic mediated M-CSF aberration in mediating post-sepsis immune system recovery.
Collapse
Affiliation(s)
- Natalia Lapko
- 2nd Department of Anesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Zawadka
- Faculty of Medicine, Ivano-Frankivsk Medical Institute, Ivano-Frankivsk, Ukraine
| | - Jacek Polosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| | - George S Worthen
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, Warsaw, Poland.,Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Abstract
Globally, as a leading agent of acute respiratory tract infections in children <5 years of age and the elderly, the human metapneumovirus (HMPV) has gained considerable attention. As inferred from studies comparing vaccinated and experimentally infected mice, the acquired immune response elicited by this pathogen fails to efficiently clear the virus from the airways, which leads to an exaggerated inflammatory response and lung damage. Furthermore, after disease resolution, there is a poor development of T and B cell immunological memory, which is believed to promote reinfections and viral spread in the community. In this article, we discuss the molecular mechanisms that shape the interactions of HMPV with host tissues that lead to pulmonary pathology and to the development of adaptive immunity that fails to protect against natural infections by this virus.
Collapse
|
12
|
Abstract
C-type lectins, originally defined as proteins binding carbohydrates in a Ca2+-dependent manner, form a large family containing soluble and membrane-bound proteins. Among them, those expressed on phagocytes and working as pathogen pattern-recognition receptors were designated as C-type lectin receptors (CLRs), in accordance with Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I–like receptors (RLRs). Most of the genes for CLRs are clustered in human chromosome 12 close to the natural killer gene complex. Similar to the killer lectin-like receptors whose genes are clustered in this complex, most of the CLRs induce activating or regulatory signal cascades in response to distinct pathogen- or self-derived components, through the immunoreceptor tyrosine-based activating or inhibitory motif, respectively. In this chapter, some representative CLRs are picked up and their structural features leading to the functional consequences are discussed, especially on the signaling cascades and pathogen interactions, including some impacts on cutaneous pathophysiology. These CLRs should provide targets to develop effective vaccination and therapeutics for distinct infectious and autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
- Kenji Kabashima
- Department of Dermatology, Kyoto University Grad Sch of Med., Sakyo-ku, Kyoto, Japan
| |
Collapse
|
13
|
Kerscher B, Willment JA, Brown GD. The Dectin-2 family of C-type lectin-like receptors: an update. Int Immunol 2014; 25:271-7. [PMID: 23606632 PMCID: PMC3631001 DOI: 10.1093/intimm/dxt006] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
New discoveries reveal crucial roles for the Dectin-2 family in many aspects of the immune response. Myeloid and non-myeloid cells express members of the C-type lectin-like receptor (CTLR) family, which mediate crucial cellular functions during immunity and homeostasis. Of relevance here is the dendritic cell-associated C-type lectin-2 (Dectin-2) family of CTLRs, which includes blood dendritic cell antigen 2 (BDCA-2), dendritic cell immunoactivating receptor (DCAR), dendritic cell immunoreceptor (DCIR), Dectin-2, C-type lectin superfamily 8 (CLECSF8) and macrophage-inducible C-type lectin (Mincle). These CTLRs possess a single extracellular conserved C-type lectin-like domain and are capable of mediating intracellular signalling either directly, through integral signalling domains, or indirectly, by associating with signalling adaptor molecules. These receptors recognize a diverse range of endogenous and exogenous ligands, and can function as pattern recognition receptors for several classes of pathogens including fungi, bacteria and parasites, driving both innate and adaptive immunity. In this review, we summarize our knowledge of each of these receptors, highlighting the exciting discoveries that have been made in recent years.
Collapse
Affiliation(s)
- Bernhard Kerscher
- Aberdeen Fungal Group, Section of Immunity and Infection, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK
| | | | | |
Collapse
|
14
|
Prandelli C, Parola C, Buizza L, Delbarba A, Marziano M, Salvi V, Zacchi V, Memo M, Sozzani S, Calza S, Uberti D, Bosisio D. Sulphurous thermal water increases the release of the anti-inflammatory cytokine IL-10 and modulates antioxidant enzyme activity. Int J Immunopathol Pharmacol 2014; 26:633-46. [PMID: 24067460 DOI: 10.1177/039463201302600307] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The beneficial effects of hot springs have been known for centuries and treatments with sulphurous thermal waters are recommended in a number of chronic pathologies as well as acute recurrent infections. However, the positive effects of the therapy are often evaluated in terms of subjective sense of wellbeing and symptomatic clinical improvements. Here, the effects of an S-based compound (NaSH) and of a specific sulphurous thermal water characterized by additional ions such as sodium chloride, bromine and iodine (STW) were investigated in terms of cytokine release and anti-oxidant enzyme activity in primary human monocytes and in saliva from 50 airway disease patients subjected to thermal treatments. In vitro, NaSH efficiently blocked the induction of pro-inflammatory cytokines and counterbalanced the formation of ROS. Despite STW not recapitulating these results, possibly due to the low concentration of S-based compounds reached at the minimum non-toxic dilution, we found that it enhanced the release of IL-10, a potent anti-inflammatory cytokine. Notably, higher levels of IL-10 were also observed in patients' saliva following STW treatment and this increase correlated positively with salivary catalase activity (r2 = 0.19, *p less than 0.01). To our knowledge, these results represent the first evidence suggesting that S-based compounds and STW may prove useful in facing chronic inflammatory and age-related illness due to combined anti-inflammatory and anti-oxidant properties.
Collapse
Affiliation(s)
- C Prandelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tel J, Anguille S, Waterborg CEJ, Smits EL, Figdor CG, de Vries IJM. Tumoricidal activity of human dendritic cells. Trends Immunol 2013; 35:38-46. [PMID: 24262387 PMCID: PMC7106406 DOI: 10.1016/j.it.2013.10.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022]
Abstract
Human DC subsets can exert tumoricidal activity. Killer DCs exploit several mechanisms for direct killing of target cells, including TRAIL and granzyme B. Antigen presentation and/or IFN production are important additional effector functions. Killer DCs are promising targets for immunotherapeutic strategies.
Dendritic cells (DCs) are a family of professional antigen-presenting cells (APCs) that are able to initiate innate and adaptive immune responses against pathogens and tumor cells. The DC family is heterogeneous and is classically divided into two main subsets, each with its unique phenotypic and functional characteristics: myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). Recent results have provided intriguing evidence that both DC subsets can also function as direct cytotoxic effector cells; in particular, against cancer cells. In this review, we delve into this understudied function of human DCs and discuss why these so-called killer DCs might become important tools in future cancer immunotherapies.
Collapse
Affiliation(s)
- Jurjen Tel
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Claire E J Waterborg
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium; Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Carl G Figdor
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Zhang Y, Shi W, Tang S, Li J, Yin S, Gao X, Wang L, Zou L, Zhao J, Huang Y, Shan L, Gounni AS, Wu Y, Yuan F, Zhang J. The influence of cathelicidin LL37 in human anti-neutrophils cytoplasmic antibody (ANCA)-associated vasculitis. Arthritis Res Ther 2013; 15:R161. [PMID: 24286516 PMCID: PMC3979017 DOI: 10.1186/ar4344] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 10/03/2013] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is characterised by the autoinflammation and necrosis of blood vessel walls. The renal involvement is commonly characterised by a pauci-immune crescentic glomerulonephritis (PiCGN) with a very rapid decline in renal function. Cathelicidin LL37, an endogenous antimicrobial peptide, has recently been implicated in the pathogenesis of autoimmune diseases. To assess whether serum LL37 reflects renal crescentic formation, we measured the serum levels of LL37 in AAV patients with and without crescentic glomerulonephritis (crescentic GN) as compared to healthy controls (HCs). We also analysed the correlation of the serum levels of LL37 and interferon-α (IFN-α) with the clinical characteristics of the patients. METHODS The study population consisted of 85 AAV patients and 51 HCs. In 40 ANCA-positive patients, a parallel analysis was performed, including the assessment of LL37 and IFN-α levels in the serum and renal biopsies. Of those studied, 15 AAV patients had biopsy-proven crescentic GN, and 25 AAV patients lacked crescent formation. The serum levels of cathelicidin LL37 and IFN-α were both measured by ELISA, and the clinical and serological parameters were assessed according to routine procedures. Immunofluorescence staining was performed on frozen sections of kidney needle biopsies from AAV patients with crescentic GN. RESULTS The serum levels of LL37 and IFN-α were significantly increased in AAV patients with crescentic GN compared to AAV patients without crescentic formation and HCs, and patients with high LL37 and IFN-α levels were more likely to be in the crescentic GN group. The LL37 levels were positively correlated with the IFN-α levels, and both LL37 and IFN-α levels showed a positive correlation with serum creatinine and no correlation with complement C3. The renal tissue of crescentic GN patients showed expression of LL37 and IFN-α at the Bowman's capsule and extracellular sites, suggesting the active release of LL37 and IFN-α. CONCLUSIONS Significantly higher levels of LL-37 and IFN-α were observed in AAV patients, particularly those with crescentic formation, and LL37 and IFN-α were expressed in the renal tissue of patients with crescentic GN. These data suggest that serum levels of LL37 and IFN-α may reflect both local renal inflammation and systemic inflammation.
Collapse
|
17
|
Dokouhaki P, Schuh NW, Joe B, Allen CAD, Der SD, Tsao MS, Zhang L. NKG2D regulates production of soluble TRAIL by ex vivo expanded human γδ T cells. Eur J Immunol 2013; 43:3175-82. [PMID: 24019170 DOI: 10.1002/eji.201243150] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 07/03/2013] [Accepted: 08/16/2013] [Indexed: 01/01/2023]
Abstract
Soluble TRAIL (sTRAIL) can be produced by myeloid-derived cells to kill cancer cells. Whether this mechanism is used by T cells, and if so, how sTRAIL production is regulated, remains unclear. Our previous studies showed that ex vivo expanded human γδ T cells express TRAIL and NK receptor group 2 (R2), member D (NKG2D), and possess potent anticancer activities both in vitro and in vivo. Here, we investigated in greater detail the mechanisms by which γδ T cells utilize TRAIL and NKG2D to kill lung cancer cells. We demonstrate that human lung cancer cells express TRAIL R2 and NKG2D ligands. Blocking TRAIL or NKG2D during γδ T-cell-lung cancer cell co-cultures significantly reduced γδ T-cell-mediated cytotoxicity. Cross-linking NKG2D with anti-NKG2D antibody to mimic ligand binding promoted γδ T cells to produce sTRAIL, which induced apoptosis in lung cancer cells through TRAIL R2. Either neutralizing sTRAIL or blocking lung cancer cell TRAIL R2 significantly reduced γδ T-cell-mediated cytotoxicity to lung cancer cells. This study demonstrates that γδ T cells can mediate anticancer immunity via NKG2D-regulated production of sTRAIL.
Collapse
Affiliation(s)
- Pouneh Dokouhaki
- Toronto General Research Institute, University Health Network, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Gandini M, Gras C, Azeredo EL, Pinto LMDO, Smith N, Despres P, da Cunha RV, de Souza LJ, Kubelka CF, Herbeuval JP. Dengue virus activates membrane TRAIL relocalization and IFN-α production by human plasmacytoid dendritic cells in vitro and in vivo. PLoS Negl Trop Dis 2013; 7:e2257. [PMID: 23755314 PMCID: PMC3675005 DOI: 10.1371/journal.pntd.0002257] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 04/28/2013] [Indexed: 12/15/2022] Open
Abstract
Background Dengue displays a broad spectrum of clinical manifestations that may vary from asymptomatic to severe and even fatal features. Plasma leakage/hemorrhages can be caused by a cytokine storm induced by monocytes and dendritic cells during dengue virus (DENV) replication. Plasmacytoid dendritic cells (pDCs) are innate immune cells and in response to virus exposure secrete IFN-α and express membrane TRAIL (mTRAIL). We aimed to characterize pDC activation in dengue patients and their function under DENV-2 stimulation in vitro. Methods & Findings Flow cytometry analysis (FCA) revealed that pDCs of mild dengue patients exhibit significantly higher frequencies of mTRAIL compared to severe cases or healthy controls. Plasma levels of IFN-α and soluble TRAIL are increased in mild compared to severe dengue patients, positively correlating with pDC activation. FCA experiments showed that in vitro exposure to DENV-2 induced mTRAIL expression on pDC. Furthermore, three dimension microscopy highlighted that TRAIL was relocalized from intracellular compartment to plasma membrane. Chloroquine treatment inhibited DENV-2-induced mTRAIL relocalization and IFN-α production by pDC. Endosomal viral degradation blockade by chloroquine allowed viral antigens detection inside pDCs. All those data are in favor of endocytosis pathway activation by DENV-2 in pDC. Coculture of pDC/DENV-2-infected monocytes revealed a dramatic decrease of antigen detection by FCA. This viral antigens reduction in monocytes was also observed after exogenous IFN-α treatment. Thus, pDC effect on viral load reduction was mainly dependent on IFN-α production Conclusions This investigation characterizes, during DENV-2 infection, activation of pDCs in vivo and their antiviral role in vitro. Thus, we propose TRAIL-expressing pDCs may have an important role in the outcome of disease. Dengue is an important endemic tropical disease to which there are no specific therapeutics or approved vaccines. Currently several aspects of pathophysiology remain incompletely understood. A crucial cellular population for viral infections, the plasmacytoid dendritic cells (pDCs) was analyzed in this study. The authors found an in vivo association between the activation state of pDCs and the disease outcome. Membrane TNF-related apoptosis inducing ligand (TRAIL) expressing pDCs, representing activated pDCs, were found in higher frequency in milder cases of dengue than severe cases or healthy individuals. Detection of antiviral cytokine interferon-alpha (IFN-α) and soluble TRAIL positively correlated with pDC activation. Dengue virus (DENV) serotype-2 was able to directly activate pDCs in vitro. Under DENV stimulation TRAIL was relocalized from intracellular to pDC plasma membrane and IFN-α was highly produced. The authors suggest an endocytosis-dependent pathway for DENV-induced pDC activation. It is also highlighted here a role for exogenous IFN-α and pDCs in reducing viral replication in monocytes, one of DENV main target cells. These findings may contribute in the future to the establishment of good prognostic immune responses together with clinical manifestations/warning signs.
Collapse
Affiliation(s)
- Mariana Gandini
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | - Nikaïa Smith
- Chimie et Biologie, Nucléo(s)tides et Immunologie Thérapeutique (CBNIT), CNRS UMR 8601 Université Paris Descartes, Paris, France
| | - Philippe Despres
- Unité des Interactions moléculaires Flavivirus-Hôtes, Institut Pasteur, Paris, France
| | - Rivaldo Venâncio da Cunha
- Departamento de Clínica Medica, FM, Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | | | | | - Jean-Philippe Herbeuval
- Chimie et Biologie, Nucléo(s)tides et Immunologie Thérapeutique (CBNIT), CNRS UMR 8601 Université Paris Descartes, Paris, France
- * E-mail:
| |
Collapse
|
19
|
Grassia G, MacRitchie N, Platt AM, Brewer JM, Garside P, Maffia P. Plasmacytoid dendritic cells: biomarkers or potential therapeutic targets in atherosclerosis? Pharmacol Ther 2012; 137:172-82. [PMID: 23059425 DOI: 10.1016/j.pharmthera.2012.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 09/21/2012] [Indexed: 12/28/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) represent a unique subset of dendritic cells that play distinct and critical roles in the immune response. Importantly, pDCs play a pivotal role in several chronic autoimmune diseases strongly characterized by an increased risk of vascular pathology. Clinical studies have shown that pDCs are detectable in atherosclerotic plaques and others have suggested an association between reduced numbers of circulating pDCs and cardiovascular events. Although the causal relationship between pDCs and atherosclerosis is still uncertain, recent results from mouse models are starting to define the specific role(s) of pDCs in the disease process. In this review, we will discuss the role of pDCs in innate and adaptive immunity, the emerging evidence demonstrating the contribution of pDCs to vascular pathology and we will consider the possible impact of pDCs on the acceleration of atherosclerosis in chronic inflammatory autoimmune diseases. Finally, we will discuss how pDCs could be targeted for therapeutic utility.
Collapse
Affiliation(s)
- Gianluca Grassia
- Department of Experimental Pharmacology, University of Naples Federico II, 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Balzarolo M, Karrich JJ, Engels S, Blom B, Medema JP, Wolkers MC. The transcriptional regulator NAB2 reveals a two-step induction of TRAIL in activated plasmacytoid DCs. Eur J Immunol 2012; 42:3019-27. [PMID: 22806638 DOI: 10.1002/eji.201242385] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/11/2012] [Accepted: 07/11/2012] [Indexed: 01/27/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are key players in antiviral immunity. In addition to massive type I interferon production, activated pDCs express the apoptosis-inducing molecule TRAIL, which enables them to clear infected cells that express the TRAIL receptors TRAIL-R1 and TRAIL-R2. In this study, we examined the molecular mechanisms that govern TRAIL expression in human pDCs. We identify NGFI-A-binding protein 2 (NAB2) as a novel transcriptional regulator that governs TRAIL induction in stimulated pDCs. We show with the pDC-like cell line CAL-1 that NAB2 is exclusively induced downstream of TLR7 and TLR9 signaling, and not upon type I IFN-R signaling. Furthermore, PI3K signaling is required for NAB2-mediated TRAIL expression. Finally, we show that TRAIL induction in CpG-activated human pDCs occurs through two independent signaling pathways: the first is initiated through TLR9 signaling upon recognition of nucleic acids, followed by type I IFN-R-mediated signaling. In conclusion, our data suggest that these two pathways are downstream of different activation signals, but act in concert to allow for full TRAIL expression in pDCs.
Collapse
Affiliation(s)
- Melania Balzarolo
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Myeloid cells are key drivers of physiological responses to pathogen invasion or tissue damage. Members of the C-type lectin receptor (CLR) family stand out among the specialized receptors utilized by myeloid cells to orchestrate these responses. CLR ligands include carbohydrate, protein, and lipid components of both pathogens and self, which variably trigger endocytic, phagocytic, proinflammatory, or anti-inflammatory reactions. These varied outcomes rely on a versatile system for CLR signaling that includes tyrosine-based motifs that recruit kinases, phosphatases, or endocytic adaptors as well as nontyrosine-based signals that modulate the activation of other pathways or couple to the uptake machinery. Here, we review the signaling properties of myeloid CLRs and how they impact the role of myeloid cells in innate and adaptive immunity.
Collapse
Affiliation(s)
- David Sancho
- Department of Vascular Biology and Inflammation, CNIC, Centro Nacional de Investigaciones Cardiovasculares, E-28029, Madrid, Spain.
| | | |
Collapse
|
22
|
Hepatitis C virus fails to activate NF-κB signaling in plasmacytoid dendritic cells. J Virol 2011; 86:1090-6. [PMID: 22090103 DOI: 10.1128/jvi.05444-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) respond to viral infection by production of alpha interferon (IFN-α), proinflammatory cytokines, and cell differentiation. The elimination of hepatitis C virus (HCV) in more than 50% of chronically infected patients by treatment with IFN-α suggests that pDCs can play an important role in the control of HCV infection. pDCs exposed to HCV-infected hepatoma cells, in contrast to cell-free HCV virions, produce large amounts of IFN-α. To further investigate the molecular mechanism of HCV sensing, we studied whether exposure of pDCs to HCV-infected hepatoma cells activates, in parallel to interferon regulatory factor 7 (IRF7)-mediated production of IFN-α, nuclear factor kappa B (NF-κB)-dependent pDC responses, such as expression of the differentiation markers CD40, CCR7, CD86, and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and secretion of the proinflammatory cytokines TNF-α and interleukin 6 (IL-6). We demonstrate that exposure of pDCs to HCV-infected hepatoma cells surprisingly did not induce phosphorylation of NF-κB or cell surface expression of CD40, CCR7, CD86, or TRAIL or secretion of TNF-α and IL-6. In contrast, CpG-A and CpG-B induced production of TNF-α and IL-6 in pDCs exposed to the HCV-infected hepatoma cells, showing that cell-associated virus did not actively inhibit Toll-like receptor (TLR)-mediated NF-κB phosphorylation. Our results suggest that cell-associated HCV signals in pDCs via an endocytosis-dependent mechanism and IRF7 but not via the NF-κB pathway. In spite of IFN-α induction, cell-associated HCV does not induce a full functional response of pDCs. These findings contribute to the understanding of evasion of immune responses by HCV.
Collapse
|
23
|
Riboldi E, Daniele R, Parola C, Inforzato A, Arnold PL, Bosisio D, Fremont DH, Bastone A, Colonna M, Sozzani S. Human C-type lectin domain family 4, member C (CLEC4C/BDCA-2/CD303) is a receptor for asialo-galactosyl-oligosaccharides. J Biol Chem 2011; 286:35329-35333. [PMID: 21880719 DOI: 10.1074/jbc.c111.290494] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasmacytoid dendritic cells are specialized in the production of type I interferon (type I IFN), which promotes antiviral and antitumor responses, as well as autoimmune disorders. Activation of type I IFN secretion depends on the pattern recognition receptors TLR7 and TLR9, which sense microbial RNA and DNA, respectively. Type I IFN production is modulated by several receptors, including the type II C-type lectin domain family 4, member C (CLEC4C). The natural ligand of CLEC4C is unknown. To identify it, here we probed a glycan array with a soluble form of the CLEC4C ectodomain. We found that CLEC4C recognizes complex type sugars with terminal galactose. Importantly, soluble CLEC4C bound peripheral blood leukocytes and tumor cells that express glycans with galactose residues at the non-reducing ends. The positive and negative modulation of galactose residues on cell membranes was paralleled by the regulation of type I IFN secretion by plasmacytoid dendritic cells in co-culture experiments in vitro. These results suggest that the modulation in the expression of non-sialylated oligosaccharides by invading pathogens or transformed cells may affect type I IFN response and immune surveillance.
Collapse
Affiliation(s)
- Elena Riboldi
- Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Roberta Daniele
- Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Carmen Parola
- Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Antonio Inforzato
- Istituto Clinico Humanitas IRCCS, Via Manzoni 113, 20089 Rozzano (MI), Italy
| | - Phoebe L Arnold
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Daniela Bosisio
- Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Antonio Bastone
- Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156 Milano, Italy
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Silvano Sozzani
- Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy; Istituto Clinico Humanitas IRCCS, Via Manzoni 113, 20089 Rozzano (MI), Italy.
| |
Collapse
|
24
|
Osorio F, Reis e Sousa C. Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity 2011; 34:651-64. [PMID: 21616435 DOI: 10.1016/j.immuni.2011.05.001] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Indexed: 01/01/2023]
Abstract
C-type lectin receptors (CLRs) comprise a heterogeneous group of transmembrane proteins. Many of them are expressed in myeloid cells and signal in response to pathogen-derived or self ligands to initiate or regulate cell activation. Here, we review the properties of myeloid CLRs, highlighting how their signaling function is coordinated with that of other innate receptor families to control immunity to infection.
Collapse
Affiliation(s)
- Fabiola Osorio
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London, UK
| | | |
Collapse
|
25
|
Oosterhoff D, Sluijter BJR, Hangalapura BN, de Gruijl TD. The dermis as a portal for dendritic cell-targeted immunotherapy of cutaneous melanoma. Curr Top Microbiol Immunol 2011; 351:181-220. [PMID: 21681685 DOI: 10.1007/82_2011_136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Complete surgical excision at an early stage remains the only curative treatment for cutaneous melanoma with few available adjuvant therapy options. Nevertheless, melanoma is a relatively immunogenic tumor type and particularly amenable to immunotherapeutic approaches. A dense network of cutaneous dendritic cells (DC) may account for the reported efficacy of vaccination through the skin and provide an attractive target for the immunotherapy of melanoma. Several phenotypically distinct DC subsets are discernable in the skin, among others, epidermal Langerhans cells and dermal DC. Upon appropriate activation both subsets can efficiently migrate to melanoma-draining lymph nodes (LN) to prime T cell-mediated responses. Unfortunately, from an early stage, melanoma development is characterized by strong immune suppression, facilitating unchecked tumor growth and spread. Particularly the primary tumor site and the first-line tumor-draining LN, the so-called sentinel LN, bear the brunt of this melanoma-induced immune suppression-and these are exactly the sites where anti-melanoma effector T cell responses should be primed by DC in order to prevent early metastasis. Through local immunopotentiation or through DC-targeted vaccination, the dermis may be utilized as a portal to activate DC and kick-start or boost effective T cell-mediated anti-melanoma immunity, even in the face of this immune suppression.
Collapse
Affiliation(s)
- D Oosterhoff
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
26
|
Jähn PS, Zänker KS, Schmitz J, Dzionek A. BDCA-2 signaling inhibits TLR-9-agonist-induced plasmacytoid dendritic cell activation and antigen presentation. Cell Immunol 2010; 265:15-22. [PMID: 20673884 DOI: 10.1016/j.cellimm.2010.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/15/2010] [Indexed: 01/09/2023]
Abstract
Plasmacytoid dendritic cells (PDCs) express Toll-like receptor (TLR) 9, which mediates recognition of microbial DNA during infection or self-DNA in autoimmune diseases. Triggering TLR-9 in PDC induces either maturation (lysosomal TLR-9 triggering) or type I interferon (IFN-I) production (endosomal TLR-9 triggering). PDCs also express BDCA-2 (CD303), a C-type lectin receptor (CLR) unique to these cells. CLRs appear to function in innate immunity and microbial recognition, and may cooperate with TLRs to fine-tune inflammatory responses. It has been shown that anti-BDCA-2 monoclonal antibody is internalized by PDC for antigen presentation and inhibits TLR-9 induced IFN-I expression. Here we investigated the cross-talk between BDCA-2 and TLR-9-signaling during PDC maturation and antigen presentation. We found that BDCA-2-induced signaling in PDCs inhibits up-regulation of CD86 and CD40 molecules in CpG-activated PDCs, but not in CD40L-activated PDCs. Furthermore, triggering of BDCA-2 diminished the ability of CpG- and CD40L-stimulated PDCs to process and present antigen to antigen-specific autologous memory T cells. This study demonstrates that BDCA-2 represents an attractive target for clinical immunotherapy of IFN-I dependent autoimmune diseases influencing both, IFN-I production and antigen-specific T-cell stimulation by PDC.
Collapse
Affiliation(s)
- Peter S Jähn
- Department of Research and Development, Miltenyi Biotec GmbH, Friedrich-Ebert-Strasse 68, D-51429 Bergisch Gladbach, Germany.
| | | | | | | |
Collapse
|
27
|
Salvi V, Bosisio D, Mitola S, Andreoli L, Tincani A, Sozzani S. Trichostatin A blocks type I interferon production by activated plasmacytoid dendritic cells. Immunobiology 2010; 215:756-61. [PMID: 20573419 DOI: 10.1016/j.imbio.2010.05.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
Abstract
Plasmacytoid dendritic cells (PDC) represent the main type I interferon (IFN-I) producing cells. Emerging evidence supports a role for IFN-I in autoimmune diseases. Given the central role of PDC in the pathogenesis of systemic lupus erythematosus (SLE), we investigated the effect of Trichostatin A (TSA), a prototypic histone deacetylase inhibitor, on PDC activation. TSA inhibited the production of IFN-I, TRAIL and of the pro-inflammatory cytokines TNFalpha and IL-6 by CpG-activated PDC. These effects were associated with the inhibition of IFN Regulatory Factor (IRF)-7 nuclear translocation. Furthermore, TSA was also effective in inhibiting the production of IFNalpha by PDC cultured in vitro in the presence of serum obtained from SLE patients. This study describes a new level of regulation of immune responses by histone deacetylase inhibitors and defines the molecular basis for new strategies to be exploited in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Valentina Salvi
- Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Sozzani S, Bosisio D, Scarsi M, Tincani A. Type I interferons in systemic autoimmunity. Autoimmunity 2010; 43:196-203. [DOI: 10.3109/08916930903510872] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|