1
|
Hyland M, Mennan C, Davies R, Wilson E, Tonge DP, Clayton A, Kehoe O. Extracellular vesicles derived from umbilical cord mesenchymal stromal cells show enhanced anti-inflammatory properties via upregulation of miRNAs after pro-inflammatory priming. Stem Cell Rev Rep 2023; 19:2391-2406. [PMID: 37474869 PMCID: PMC10579155 DOI: 10.1007/s12015-023-10586-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/22/2023]
Abstract
Autoimmune conditions, such as rheumatoid arthritis, are characterised by a loss of immune tolerance, whereby the immune cells attack self-antigens causing pain and inflammation. These conditions can be brought into remission using pharmaceutical treatments, but often have adverse side effects and some patients do not respond favourably to them. Human umbilical cord mesenchymal stromal cells (UCMSCs) present a promising alternative therapeutic due to their innate anti-inflammatory properties which can be strengthened using pro-inflammatory conditions. Their therapeutic mechanism of action has been attributed to paracrine signalling, by which nanosized acellular particles called 'extracellular vesicles' (EVs) are one of the essential components. Therefore, this research analysed the anti-inflammatory properties of UCMSC-EVs 'primed' with pro-inflammatory cytokines and at baseline with no inflammatory cytokines (control). Both control and primed EVs were co-cultured with un-pooled peripheral blood mononuclear cells (PBMCs; n = 6) from healthy donors. Neither control nor primed EVs exerted a pro-inflammatory effect on PBMCs. Instead, the primed EVs showed the immunosuppressive potential by increasing the expression of the anti-inflammatory protein FoxP3 in PBMCs. This may be attributed to the upregulated miRNAs identified in primed EVs in comparison to control EVs (miR-139-5p, miR-140-5p, miR-214-5p). These findings aid in understanding how UCMSC-EVs mediate immunosuppression and support their potential use in treating autoimmune conditions.
Collapse
Affiliation(s)
- Mairead Hyland
- Centre for Regenerative Medicine Research, School of Medicine at the RJAH Orthopaedic Hospital, Keele University, Oswestry, SY10 7AG UK
| | - Claire Mennan
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering at the RJAH Orthopaedic Hospital, Oswestry, SY10 7AG UK
| | - Rebecca Davies
- Centre for Regenerative Medicine Research, School of Medicine at the RJAH Orthopaedic Hospital, Keele University, Oswestry, SY10 7AG UK
| | - Emma Wilson
- Chester Medical School, University of Chester, Chester, CH2 1BR UK
| | - Daniel P. Tonge
- School of Life Sciences, Keele University, Keele, ST5 5BG UK
| | - Aled Clayton
- Tissue Microenvironment Group, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN UK
| | - Oksana Kehoe
- Centre for Regenerative Medicine Research, School of Medicine at the RJAH Orthopaedic Hospital, Keele University, Oswestry, SY10 7AG UK
| |
Collapse
|
2
|
Advances and Highlights of miRNAs in Asthma: Biomarkers for Diagnosis and Treatment. Int J Mol Sci 2023; 24:ijms24021628. [PMID: 36675145 PMCID: PMC9862966 DOI: 10.3390/ijms24021628] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that causes breathing difficulties, episodes of cough and wheezing, and in more severe cases can greatly diminish quality of life. Epigenetic regulation, including post-transcriptional mediation of microRNAs (miRNAs), is one of the mechanisms behind the development of the range of asthma phenotypes and endotypes. As in every other immune-mediated disease, miRNAs regulate the behavior of cells that shape the airway structure as well as those in charge of the defense mechanisms in the bronchi and lungs, controlling cell survival, growth, proliferation, and the ability of cells to synthesize and secrete chemokines and immune mediators. More importantly, miRNAs are molecules with chemical and biological properties that make them appropriate biomarkers for disease, enabling stratification of patients for optimal drug selection and thereby simplifying clinical management and reducing both the economic burden and need for critical care associated with the disease. In this review, we summarize the roles of miRNAs in asthma and describe how they regulate the mechanisms of the disease. We further describe the current state of miRNAs as biomarkers for asthma phenotyping, endotyping, and treatment selection.
Collapse
|
3
|
Exosomes in cardiovascular diseases: a blessing or a sin for the mankind. Mol Cell Biochem 2022; 477:833-847. [PMID: 35064412 DOI: 10.1007/s11010-021-04328-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases (CVDs) comprises disorders of blood vessels and heart. Multiple cells in the heart suggests that hetero-cellular communication, which is an important aspect in heart functioning and there is a need to elucidate the way in which this inter-cellular communication occurs. Now a days, exosomal research has gained much attention. Exosomes, nano-shuttles, are EVs with diameters ranging from 40 to 160 nm (average 100 nm), secreted by body cells. These vesicles act as cell-to-cell communicators and are carriers of important biomolecules such as RNAs, miRNAs, Proteins and lipids. Exosomes can change the gene expression of the recipient cells, thereby, changes the cellular characteristics. Exosomes have known to play an essential role in protection as well as progression of various cardiovascular diseases. In the present review, role of exosomes in various CVDs have been discussed.
Collapse
|
4
|
Could the Epigenetics of Eosinophils in Asthma and Allergy Solve Parts of the Puzzle? Int J Mol Sci 2021; 22:ijms22168921. [PMID: 34445627 PMCID: PMC8396248 DOI: 10.3390/ijms22168921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics is a field of study investigating changes in gene expression that do not alter the DNA sequence. These changes are often influenced by environmental or social factors and are reversible. Epigenetic mechanisms include DNA methylation, histone modification, and noncoding RNA. Understanding the role of these epigenetic mechanisms in human diseases provides useful information with regard to disease severity and development. Several studies have searched for the epigenetic mechanisms that regulate allergies and asthma; however, only few studies have used samples of eosinophil, a proinflammatory cell type known to be largely recruited during allergic or asthmatic inflammation. Such studies would enable us to better understand the factors that influence the massive recruitment of eosinophils during allergic and asthmatic symptoms. In this review, we sought to summarize different studies that aimed to discover differential patterns of histone modifications, DNA methylation, and noncoding RNAs in eosinophil samples of individuals with certain diseases, with a particular focus on those with asthma or allergic diseases.
Collapse
|
5
|
Russo P, Lococo F, Kisialiou A, Prinzi G, Lamonaca P, Cardaci V, Tomino C, Fini M. Pharmacological Management of Chronic Obstructive Lung Disease (COPD). Focus on Mutations - Part 1. Curr Med Chem 2019; 26:1721-1733. [PMID: 29852859 DOI: 10.2174/0929867325666180601100235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/02/2017] [Accepted: 04/02/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND We report a comprehensive overview of current Chronic Obstructive Lung Disease (COPD) therapies and discuss the development of possible new pharmacological approaches based on "new" knowledge. Specifically, sensitivity/resistance to corticosteroids is evaluated with a special focus on the role of gene mutations in drug response. OBJECTIVE Critically review the opportunities and the challenges occurring in the treatment of COPD. CONCLUSION Findings from "omics" trials should be used to learn more about biological targeted drugs, and to select more specific drugs matching patient's distinctive molecular profile. Specific markers of inflammation such as the percentage of eosinophils are important in determining sensitivity/resistance to corticosteroids. Specific gene variations (Single nucleotide polymorphisms: SNPs) may influence drug sensitivity or resistance. Clinicians working in a real-world need to have a suitable interpretation of molecular results together with a guideline for the treatment and recommendations. Far more translational research is required before new results from omics techniques can be applied in personalized medicine in realworld settings.
Collapse
Affiliation(s)
- Patrizia Russo
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana Via di Valcannuta, 247, I-00166 Rome, Italy
| | - Filippo Lococo
- Unit of Thoracic Surgery, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Aliaksei Kisialiou
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana Via di Valcannuta, 247, I-00166 Rome, Italy
| | - Giulia Prinzi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana Via di Valcannuta, 247, I-00166 Rome, Italy
| | - Palma Lamonaca
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana Via di Valcannuta, 247, I-00166 Rome, Italy
| | - Vittorio Cardaci
- Unit of Pulmonary Rehabilitation, IRCCS San Raffaele Pisana Via di Valcannuta, 247, I-00166 Rome, Italy
| | - Carlo Tomino
- Scientific Direction, IRCCS San Raffaele Pisana Via di Valcannuta, 247, I-00166 Rome, Italy
| | - Massimo Fini
- Scientific Direction, IRCCS San Raffaele Pisana Via di Valcannuta, 247, I-00166 Rome, Italy
| |
Collapse
|
6
|
Svitich OA, Sobolev VV, Gankovskaya LV, Zhigalkina PV, Zverev VV. The role of regulatory RNAs (miRNAs) in asthma. Allergol Immunopathol (Madr) 2018; 46:201-205. [PMID: 29342408 DOI: 10.1016/j.aller.2017.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/14/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Recently, a great deal of attention has been paid to the investigation of regulatory functions of microRNA. Currently, many different mechanisms involved in the pathogenesis of asthma are known, but the whole picture of pathogenesis has not yet been studied. CONCLUSIONS MicroRNAs play an important role in the regulation of many cellular processes. Undoubtedly, these regulatory molecules are involved in the pathogenesis of asthma, and therefore can be potential targets for treatment.
Collapse
Affiliation(s)
- O A Svitich
- Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - V V Sobolev
- Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - L V Gankovskaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - P V Zhigalkina
- Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia.
| | - V V Zverev
- Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| |
Collapse
|
7
|
Specific MicroRNA Pattern in Colon Tissue of Young Children with Eosinophilic Colitis. Int J Mol Sci 2017; 18:ijms18051050. [PMID: 28498330 PMCID: PMC5454962 DOI: 10.3390/ijms18051050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/15/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022] Open
Abstract
Eosinophilic colitis (EC) is a common cause of haematochezia in infants and young children. The exact pathomechanism is not understood, and the diagnosis is challenging. The role of microRNAs as key class of regulators of mRNA expression and translation in patients with EC has not been explored. Therefore, the aim of the present study was to explore the miRNA profile in EC with respect to eosinophilic inflammation. Patients enrolled in the study (n = 10) had persistent rectal bleeding, and did not respond to elimination dietary treatment. High-throughput microRNA sequencing was carried out on colonic biopsy specimens of children with EC (EC: n = 4) and controls (C: n = 4) as a preliminary screening of the miRNA profile. Based on the next-generation sequencing (NGS) results and literature data, a potentially relevant panel of miRNAs were selected for further measurements by real-time reverse transcription (RT)-PCR (EC: n = 14, C: n = 10). Validation by RT-PCR resulted in significantly altered expression of miR-21, -31, -99b, -125a, -146a, -184, -221, -223, and -559 compared to controls (p ≤ 0.05). Elevation in miR-21, -99b, -146a, -221, and -223 showed statistically significant correlation to the extent of tissue eosinophilia. Based on our results, we conclude that the dysregulated miRNAs have a potential role in the regulation of apoptosis by targeting Protein kinase B/Mechanistic target of rapamycin (AKT/mTOR)-related pathways in inflammation by modulating Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-related signalling and eosinophil cell recruitment and activation, mainly by regulating the expression of the chemoattractant eotaxin and the adhesion molecule CD44. Our results could serve as a basis for further extended research exploring the pathomechanism of EC.
Collapse
|
8
|
Abstract
Historically, eosinophils have been considered as end-stage cells involved in host protection against parasitic infection and in the mechanisms of hypersensitivity. However, later studies have shown that this multifunctional cell is also capable of producing immunoregulatory cytokines and soluble mediators and is involved in tissue homeostasis and modulation of innate and adaptive immune responses. In this review, we summarize the biology of eosinophils, including the function and molecular mechanisms of their granule proteins, cell surface markers, mediators, and pathways, and present comprehensive reviews of research updates on the genetics and epigenetics of eosinophils. We describe recent advances in the development of epigenetics of eosinophil-related diseases, especially in asthma. Likewise, recent studies have provided us with a more complete appreciation of how eosinophils contribute to the pathogenesis of various diseases, including hypereosinophilic syndrome (HES). Over the past decades, the definition and criteria of HES have been evolving with the progress of our understanding of the disease and some aspects of this disease still remain controversial. We also review recent updates on the genetic and molecular mechanisms of HES, which have spurred dramatic developments in the clinical strategies of diagnosis and treatment for this heterogeneous group of diseases. The conclusion from this review is that the biology of eosinophils provides significant insights as to their roles in health and disease and, furthermore, demonstrates that a better understanding of eosinophil will accelerate the development of new therapeutic strategies for patients.
Collapse
|
9
|
Hill DA, Spergel JM. The Immunologic Mechanisms of Eosinophilic Esophagitis. Curr Allergy Asthma Rep 2016; 16:9. [PMID: 26758862 DOI: 10.1007/s11882-015-0592-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Eosinophilic esophagitis (EoE) is a chronic allergic inflammatory disease that is triggered by food and/or environmental allergens and is characterized by a clinical and pathologic phenotype of progressive esophageal dysfunction due to tissue inflammation and fibrosis. EoE is suspected in patients with painful swallowing, among other symptoms, and is diagnosed by the presence of 15 or more eosinophils per high-power field in one or more of at least four esophageal biopsy specimens. The prevalence of EoE is increasing and has now reached rates similar to those of other chronic gastrointestinal disorders such as Crohn's disease. In recent years, our understanding of the immunologic mechanisms underlying this condition has grown considerably. Thanks to new genetic, molecular, cellular, animal, and translational studies, we can now postulate a detailed pathway by which exposure to allergens results in a complex and coordinated type 2 inflammatory cascade that, if not intervened upon, can result in pain on swallowing, esophageal strictures, and food impaction. Here, we review the most recent research in this field to synthesize and summarize our current understanding of this complex and important disease.
Collapse
Affiliation(s)
- David A Hill
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3550 Market St., Philadelphia, PA, 19104, USA
| | - Jonathan M Spergel
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. .,Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3550 Market St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) is a growth factor first identified as an inducer of differentiation and proliferation of granulocytes and macrophages derived from haematopoietic progenitor cells. Later studies have shown that GM-CSF is involved in a wide range of biological processes in both innate and adaptive immunity, with its production being tightly linked to the response to danger signals. Given that the functions of GM-CSF span multiple tissues and biological processes, this cytokine has shown potential as a new and important therapeutic target in several autoimmune and inflammatory disorders - particularly in rheumatoid arthritis. Indeed, GM-CSF was one of the first cytokines detected in human synovial fluid from inflamed joints. Therapies that target GM-CSF or its receptor have been tested in preclinical studies with promising results, further supporting the potential of targeting the GM-CSF pathway. In this Review, we discuss our expanding view of the biology of GM-CSF, outline what has been learnt about GM-CSF from studies of animal models and human diseases, and summarize the results of early phase clinical trials evaluating GM-CSF antagonism in inflammatory disorders.
Collapse
|
11
|
Odemuyiwa SO, Ilarraza R, Davoine F, Logan MR, Shayeganpour A, Wu Y, Majaesic C, Adamko DJ, Moqbel R, Lacy P. Cyclin-dependent kinase 5 regulates degranulation in human eosinophils. Immunology 2015; 144:641-8. [PMID: 25346443 DOI: 10.1111/imm.12416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 10/03/2014] [Accepted: 10/17/2014] [Indexed: 12/19/2022] Open
Abstract
Degranulation from eosinophils in response to secretagogue stimulation is a regulated process that involves exocytosis of granule proteins through specific signalling pathways. One potential pathway is dependent on cyclin-dependent kinase 5 (Cdk5) and its effector molecules, p35 and p39, which play a central role in neuronal cell exocytosis by phosphorylating Munc18, a regulator of SNARE binding. Emerging evidence suggests a role for Cdk5 in exocytosis in immune cells, although its role in eosinophils is not known. We sought to examine the expression of Cdk5 and its activators in human eosinophils, and to assess the role of Cdk5 in eosinophil degranulation. We used freshly isolated human eosinophils and analysed the expression of Cdk5, p35, p39 and Munc18c by Western blot, RT-PCR, flow cytometry and immunoprecipitation. Cdk5 kinase activity was determined following eosinophil activation. Cdk5 inhibitors were used (roscovitine, AT7519 and small interfering RNA) to determine its role in eosinophil peroxidase (EPX) secretion. Cdk5 was expressed in association with Munc18c, p35 and p39, and phosphorylated following human eosinophil activation with eotaxin/CCL11, platelet-activating factor, and secretory IgA-Sepharose. Cdk5 inhibitors (roscovitine, AT7519) reduced EPX release when cells were stimulated by PMA or secretory IgA. In assays using small interfering RNA knock-down of Cdk5 expression in human eosinophils, we observed inhibition of EPX release. Our findings suggest that in activated eosinophils, Cdk5 is phosphorylated and binds to Munc18c, resulting in Munc18c release from syntaxin-4, allowing SNARE binding and vesicle fusion, with subsequent eosinophil degranulation. Our work identifies a novel role for Cdk5 in eosinophil mediator release by agonist-induced degranulation.
Collapse
Affiliation(s)
- Solomon O Odemuyiwa
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Department of Paediatrics, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Burcu Duygu
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paula A Da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
13
|
Romay MC, Che N, Becker SN, Pouldar D, Hagopian R, Xiao X, Lusis AJ, Berliner JA, Civelek M. Regulation of NF-κB signaling by oxidized glycerophospholipid and IL-1β induced miRs-21-3p and -27a-5p in human aortic endothelial cells. J Lipid Res 2014; 56:38-50. [PMID: 25327529 DOI: 10.1194/jlr.m052670] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exposure of endothelial cells (ECs) to agents such as oxidized glycerophospholipids (oxGPs) and cytokines, known to accumulate in atherosclerotic lesions, perturbs the expression of hundreds of genes in ECs involved in inflammatory and other biological processes. We hypothesized that microRNAs (miRNAs) are involved in regulating the inflammatory response in human aortic endothelial cells (HAECs) in response to oxGPs and interleukin 1β (IL-1β). Using next-generation sequencing and RT-quantitative PCR, we characterized the profile of expressed miRNAs in HAECs pre- and postexposure to oxGPs. Using this data, we identified miR-21-3p and miR-27a-5p to be induced 3- to 4-fold in response to oxGP and IL-1β treatment compared with control treatment. Transient overexpression of miR-21-3p and miR-27a-5p resulted in the downregulation of 1,253 genes with 922 genes overlapping between the two miRNAs. Gene Ontology functional enrichment analysis predicted that the two miRNAs were involved in the regulation of nuclear factor κB (NF-κB) signaling. Overexpression of these two miRNAs leads to changes in p65 nuclear translocation. Using 3' untranslated region luciferase assay, we identified 20 genes within the NF-κB signaling cascade as putative targets of miRs-21-3p and -27a-5p, implicating these two miRNAs as modulators of NF-κB signaling in ECs.
Collapse
Affiliation(s)
- Milagros C Romay
- Departments of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Nam Che
- Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Scott N Becker
- Departments of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Delila Pouldar
- Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Raffi Hagopian
- Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Xinshu Xiao
- Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Aldons J Lusis
- Departments of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095 Medicine, University of California, Los Angeles, Los Angeles, CA 90095 Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Judith A Berliner
- Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Mete Civelek
- Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
14
|
Jung Y, Rothenberg ME. Roles and regulation of gastrointestinal eosinophils in immunity and disease. THE JOURNAL OF IMMUNOLOGY 2014; 193:999-1005. [PMID: 25049430 DOI: 10.4049/jimmunol.1400413] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Eosinophils have historically been considered to be destructive end-stage effector cells that have a role in parasitic infections and allergic reactions by the release of their granule-derived cytotoxic proteins. However, an increasing number of experimental observations indicate that eosinophils also are multifunctional leukocytes involved in diverse inflammatory and physiologic immune responses. Under homeostatic conditions, eosinophils are particularly abundant in the lamina propria of the gastrointestinal tract, where their involvement in various biological processes within the gastrointestinal tract has been posited. In this review, we summarize the molecular steps involved in eosinophil development and describe eosinophil trafficking to the gastrointestinal tract. We synthesize the current findings on the phenotypic and functional properties of gastrointestinal eosinophils and the accumulating evidence that they have a contributory role in gastrointestinal disorders, with a focus on primary eosinophilic gastrointestinal disorders. Finally, we discuss the potential role of eosinophils as modulators of the intestinal immune system.
Collapse
Affiliation(s)
- YunJae Jung
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon 406-799, Republic of Korea
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and
| |
Collapse
|
15
|
Yang M, Eyers F, Xiang Y, Guo M, Young IG, Rosenberg HF, Foster PS. Expression profiling of differentiating eosinophils in bone marrow cultures predicts functional links between microRNAs and their target mRNAs. PLoS One 2014; 9:e97537. [PMID: 24824797 PMCID: PMC4019607 DOI: 10.1371/journal.pone.0097537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/18/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs that regulate complex transcriptional networks underpin immune responses. However, little is known about the specific miRNA networks that control differentiation of specific leukocyte subsets. In this study, we profiled miRNA expression during differentiation of eosinophils from bone marrow (BM) progenitors (bmEos), and correlated expression with potential mRNA targets involved in crucial regulatory functions. Profiling was performed on whole BM cultures to document the dynamic changes in miRNA expression in the BM microenvironment over the differentiation period. miRNA for network analysis were identified in BM cultures enriched in differentiating eosinophils, and chosen for their potential ability to target mRNA of factors that are known to play critical roles in eosinophil differentiation pathways or cell identify. METHODOLOGY/PRINCIPAL FINDINGS We identified 68 miRNAs with expression patterns that were up- or down- regulated 5-fold or more during bmEos differentiation. By employing TargetScan and MeSH databases, we identified 348 transcripts involved in 30 canonical pathways as potentially regulated by these miRNAs. Furthermore, by applying miRanda and Ingenuity Pathways Analysis (IPA), we identified 13 specific miRNAs that are temporally associated with the expression of IL-5Rα and CCR3 and 14 miRNAs associated with the transcription factors GATA-1/2, PU.1 and C/EBPε. We have also identified 17 miRNAs that may regulate the expression of TLRs 4 and 13 during eosinophil differentiation, although we could identify no miRNAs targeting the prominent secretory effector, eosinophil major basic protein. CONCLUSIONS/SIGNIFICANCE This is the first study to map changes in miRNA expression in whole BM cultures during the differentiation of eosinophils, and to predict functional links between miRNAs and their target mRNAs for the regulation of eosinophilopoiesis. Our findings provide an important resource that will promote the platform for further understanding of the role of these non-coding RNAs in the regulation of eosinophil differentiation and function.
Collapse
Affiliation(s)
- Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- * E-mail: (MY); (PSF)
| | - Fiona Eyers
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Yang Xiang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Man Guo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Ian G. Young
- Department of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Helene F. Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul S. Foster
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- * E-mail: (MY); (PSF)
| |
Collapse
|
16
|
Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, Just A, Remke J, Zimmer K, Zeug A, Ponimaskin E, Schmiedl A, Yin X, Mayr M, Halder R, Fischer A, Engelhardt S, Wei Y, Schober A, Fiedler J, Thum T. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 2014; 124:2136-46. [PMID: 24743145 DOI: 10.1172/jci70577] [Citation(s) in RCA: 761] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 02/20/2014] [Indexed: 12/20/2022] Open
Abstract
In response to stress, the heart undergoes extensive cardiac remodeling that results in cardiac fibrosis and pathological growth of cardiomyocytes (hypertrophy), which contribute to heart failure. Alterations in microRNA (miRNA) levels are associated with dysfunctional gene expression profiles associated with many cardiovascular disease conditions; however, miRNAs have emerged recently as paracrine signaling mediators. Thus, we investigated a potential paracrine miRNA crosstalk between cardiac fibroblasts and cardiomyocytes and found that cardiac fibroblasts secrete miRNA-enriched exosomes. Surprisingly, evaluation of the miRNA content of cardiac fibroblast-derived exosomes revealed a relatively high abundance of many miRNA passenger strands ("star" miRNAs), which normally undergo intracellular degradation. Using confocal imaging and coculture assays, we identified fibroblast exosomal-derived miR-21_3p (miR-21*) as a potent paracrine-acting RNA molecule that induces cardiomyocyte hypertrophy. Proteome profiling identified sorbin and SH3 domain-containing protein 2 (SORBS2) and PDZ and LIM domain 5 (PDLIM5) as miR-21* targets, and silencing SORBS2 or PDLIM5 in cardiomyocytes induced hypertrophy. Pharmacological inhibition of miR-21* in a mouse model of Ang II-induced cardiac hypertrophy attenuated pathology. These findings demonstrate that cardiac fibroblasts secrete star miRNA-enriched exosomes and identify fibroblast-derived miR-21* as a paracrine signaling mediator of cardiomyocyte hypertrophy that has potential as a therapeutic target.
Collapse
|
17
|
MicroRNA expressions associated with eosinophilic meningitis caused by Angiostrongylus cantonensis infection in a mouse model. Eur J Clin Microbiol Infect Dis 2014; 33:1457-65. [PMID: 24682888 DOI: 10.1007/s10096-014-2087-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
Abstract
Angiostrongylus cantonensis (A. cantonensis) infection is the major cause of eosinophilic meningitis (EM). Severe cases or infant and child cases have poor prognosis. MicroRNAs (miRNAs) play important roles in inflammation; however, little is known about the roles in brain inflammation caused by A. cantonensis. In this study, Illumina deep sequencing and bioinformatics were used to determine the abundance and differential expression of miRNAs in the brain tissues of a mouse model. A total of 648 conserved miRNAs were identified, 157 of which were significantly differentially expressed between infected mice and normal mice. The five most fold-changed miRNAs were miR-511-5p, miR-511-3p, miR-223-3p, miR-155-5p and miR-206-3p. These expressions of miR-511, miR-223, miR-155, miR-206, miR-142 and miR-21a were validated by quantitative reverse transcription polymerase chain reaction (RT-PCR). The analysis of these miRNAs showed that miR-511-3p was more abundant than the miR-511-5p strand, and increased to a peak in 21 days after A. cantonensis infection, miR-223 might be a potential indicator of disease severity and the upregulation of miR-155-5p after stimulation with the somatic antigen of phase IV A. cantonensis implied its involvement in the central nervous system (CNS) inflammation induced by A. cantonensis infection. These observations suggest that miRNAs may play important roles in the regulation of EM caused by A. cantonensis infection.
Collapse
|
18
|
Effect of tumor necrosis factor family member LIGHT (TNFSF14) on the activation of basophils and eosinophils interacting with bronchial epithelial cells. Mediators Inflamm 2014; 2014:136463. [PMID: 24782592 PMCID: PMC3982468 DOI: 10.1155/2014/136463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/09/2014] [Accepted: 02/04/2014] [Indexed: 12/13/2022] Open
Abstract
Allergic asthma can cause airway structural remodeling, involving the accumulation of extracellular matrix and thickening of smooth muscle. Tumor necrosis factor (TNF) family ligand LIGHT (TNFSF14) is a cytokine that binds herpesvirus entry mediator (HVEM)/TNFRSF14 and lymphotoxin β receptor (LTβR). LIGHT induces asthmatic cytokine IL-13 and fibrogenic cytokine transforming growth factor-β release from allergic asthma-related eosinophils expressing HVEM and alveolar macrophages expressing LTβR, respectively, thereby playing crucial roles in asthmatic airway remodeling. In this study, we investigated the effects of LIGHT on the coculture of human basophils/eosinophils and bronchial epithelial BEAS-2B cells. The expression of adhesion molecules, cytokines/chemokines, and matrix metalloproteinases (MMP) was measured by flow cytometry, multiplex, assay or ELISA. Results showed that LIGHT could significantly promote intercellular adhesion, cell surface expression of intercellular adhesion molecule-1, release of airway remodeling-related IL-6, CXCL8, and MMP-9 from BEAS-2B cells upon interaction with basophils/eosinophils, probably via the intercellular interaction, cell surface receptors HVEM and LTβR on BEAS-2B cells, and extracellular signal-regulated kinase, p38 mitogen activated protein kinase, and NF-κB signaling pathways. The above results, therefore, enhance our understanding of the immunopathological roles of LIGHT in allergic asthma and shed light on the potential therapeutic targets for airway remodeling.
Collapse
|
19
|
MicroRNAs as Haematopoiesis Regulators. Adv Hematol 2013; 2013:695754. [PMID: 24454381 PMCID: PMC3884629 DOI: 10.1155/2013/695754] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/20/2013] [Accepted: 10/27/2013] [Indexed: 12/20/2022] Open
Abstract
The production of different types of blood cells including their formation, development, and differentiation is collectively known as haematopoiesis. Blood cells are divided into three lineages erythriod (erythrocytes), lymphoid (B and T cells), and myeloid (granulocytes, megakaryocytes, and macrophages). Haematopoiesis is a complex process regulated by several mechanisms including microRNAs (miRNAs). miRNAs are small RNAs which regulate the expression of a number of genes involved in commitment and differentiation of hematopoietic stem cells. Evidence shows that miRNAs play an important role in haematopoiesis; for example, myeloid and erythroid differentiation is blocked by the overexpression of miR-15a. miR-221, miR-222, and miR-24 inhibit the erythropoiesis, whereas miR-150 plays a role in B and T cell differentiation. miR-146 and miR-10a are downregulated in megakaryopoiesis. Aberrant expression of miRNAs was observed in hematological malignancies including chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myelomas, and B cell lymphomas. In this review we have focused on discussing the role of miRNA in haematopoiesis.
Collapse
|
20
|
Lu TX, Lim EJ, Besse JA, Itskovich S, Plassard AJ, Fulkerson PC, Aronow BJ, Rothenberg ME. MiR-223 deficiency increases eosinophil progenitor proliferation. THE JOURNAL OF IMMUNOLOGY 2013; 190:1576-82. [PMID: 23325891 DOI: 10.4049/jimmunol.1202897] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recently, microRNAs have been shown to be involved in hematopoietic cell development, but their role in eosinophilopoiesis has not yet been described. In this article, we show that miR-223 is upregulated during eosinophil differentiation in an ex vivo bone marrow-derived eosinophil culture system. Targeted ablation of miR-223 leads to an increased proliferation of eosinophil progenitors. We found upregulation of a miR-223 target gene, IGF1R, in the eosinophil progenitor cultures derived from miR-223(-/-) mice compared with miR-223(+/+) littermate controls. The increased proliferation of miR-223(-/-) eosinophil progenitors was reversed by treatment with an IGF1R inhibitor (picropodophyllin). Whole-genome microarray analysis of differentially regulated genes between miR-223(+/+) and miR-223(-/-) eosinophil progenitor cultures identified a specific enrichment in genes that regulate hematologic cell development. Indeed, miR-223(-/-) eosinophil progenitors had a delay in differentiation. Our results demonstrate that microRNAs regulate the development of eosinophils by influencing eosinophil progenitor growth and differentiation and identify a contributory role for miR-223 in this process.
Collapse
Affiliation(s)
- Thomas X Lu
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|