1
|
Timofeeva AV, Akhmetzyanova ER, Rizvanov AA, Mukhamedshina YO. Interaction of microglia with the microenvironment in spinal cord injury. Neuroscience 2025; 565:594-603. [PMID: 39622381 DOI: 10.1016/j.neuroscience.2024.11.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
This article discusses the peculiarities of microglia behaviour and their interaction with other cells of the central nervous system (CNS) during neural tissue injury with a focus on spinal cord injury (SCI). Taking into account the plasticity of microglia, the influence of the microenvironment should be taken into account to establish the mechanisms determining the polarization pathways of these cells. Determination of the system of microglia interactions with other CNS cells during injury will reveal the patterns of post-traumatic microglia responses, in particular, determining both pro-inflammatory and anti-inflammatory responses. This review compiles information on changes in microglia activation, migration and phagocytosis, as well as their reciprocal effects on other CNS cells, such as neurons, astrocytes and oligodendrocytes, in the background of SCI. The information contained in this article may be of interest not only to scientists studying traumatic injuries of the central nervous system, but also to specialists in the field of studying and treating neurodegenerative diseases, since the mechanisms occurring in the injured spinal cord may also be characteristic of pathological events in degenerative processes.
Collapse
Affiliation(s)
- A V Timofeeva
- Kazan (Volga Region) Federal University, Kazan, Russia
| | | | - A A Rizvanov
- Kazan (Volga Region) Federal University, Kazan, Russia; Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Russia
| | - Y O Mukhamedshina
- Kazan (Volga Region) Federal University, Kazan, Russia; Kazan State Medical University, Kazan, Russia
| |
Collapse
|
2
|
Lin FX, Gu HY, He W. MAPK signaling pathway in spinal cord injury: Mechanisms and therapeutic potential. Exp Neurol 2025; 383:115043. [PMID: 39522804 DOI: 10.1016/j.expneurol.2024.115043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Spinal cord injury (SCI) is a severe disabling injury of the central nervous system that can lead to motor, sensory, and autonomic dysfunction below the level of the injury. According to its pathophysiological process, SCI can be divided into primary injury and secondary injury. Currently, multiple therapeutic strategies have been proposed to alleviate secondary injury and overcome the occurrence of neurodegenerative events. Although current treatment modalities have achieved varying degrees of success, they cannot effectively intervene or treat its pathological processes, which may be due to the complex treatment and protection mechanisms involved. Research has confirmed that signaling pathways play a crucial role in the pathological processes of SCI and the mechanisms of neuronal recovery. Mitogen-activated protein kinase (MAPK) signaling pathway plays a crucial role in neuronal differentiation, growth, survival and axon regeneration after central nervous system injury. Meanwhile, the MAPK signaling pathway is an important pathway closely related to the pathological processes of SCI. The MAPK signaling pathway is abnormally activated after SCI, and inhibiting the activity of MAPK pathway can effectively inhibit inflammation, oxidative stress, pain and apoptosis to promote the recovery of nerve function after SCI. Based on the role of the MAPK pathway in SCI, it may be a potential therapeutic target. This article summarizes the role and mechanism of MAPK pathway in SCI, and discusses the shortcomings and shortcomings of MAPK pathway in SCI field, as well as the potential challenges of targeting MAPK pathway in SCI treatment strategies. This article aims to elucidate the mechanism of the MAPK pathway in SCI to emphasize the role of targeting the MAPK pathway in the treatment of SCI, providing a theoretical basis for the MAPK pathway as a potential therapeutic target for SCI treatment.
Collapse
Affiliation(s)
- Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China
| | - Wei He
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China.
| |
Collapse
|
3
|
Razavi SM, Khayatan D, Najafi Arab Z, Hosseini Y, Khanahmadi M, Momtaz S, Jamialahmadi T, Johnston TP, Abdolghaffari AH, Sahebkar A. Protective effects of curcumin against spinal cord injury. JOR Spine 2024; 7:e1364. [PMID: 39144499 PMCID: PMC11322827 DOI: 10.1002/jsp2.1364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/07/2024] [Accepted: 07/20/2024] [Indexed: 08/16/2024] Open
Abstract
Background In parallel with population aging, the prevalence of neurological and neurodegenerative diseases has been dramatically increasing over the past few decades. Neurodegenerative diseases reduce the quality of life of patients and impose a high cost on the health system. These slowly progressive diseases can cause functional, perceptual, and behavioral deficits in patients. Therefore, neurodegenerative impairments have always been an interesting subject for scientists and clinicians. One of these diseases is spinal cord injury (SCI). SCI can lead to irreversible damage and is classified into two main subtypes: traumatic and non-traumatic, each with very different pathophysiological features. Aims This review aims to gather relevant information about the beneficial effects of curcumin (Cur), with specific emphasis on its anti-inflammatory properties towards spinal cord injury (SCI) patients. Materials & Methods The review collates data from extensive in-vitro, in-vivo, and clinical trials documenting the effects of CUR on SCI. It examines the modulation of pathophysiological pathways and regulation of the inflammatory cascades after CUR administration. Results Various pathophysiological processes involving the nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa B (NF-kB), and transforming growth factor beta (TGF-β) signaling pathways have been suggested to exacerbate damages resulting from SCI. CUR administration showed to modulate these signaling pathways which lead to attenuation of SCI complications. Discussion Anti-inflammatory compounds, particularly CUR, can modulate these pathophysiological pathways and regulate the inflammatory cascades. CUR, a well-known natural product with significant anti-inflammatory effects, has been extensively documented in experimental and clinical trials. Conclusion Curcumin's potential to alter key steps in the Nrf2, NF-kB, and TGF-β signaling pathways suggests that it may play a role in attenuating SCI complications.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Maryam Khanahmadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Saeideh Momtaz
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhadIran
- Medical Toxicology Research Center, Mashhad University of Medical SciencesMashhadIran
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical SciencesSchool of Pharmacy, University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research Center, Mashhad University of Medical SciencesMashhadIran
| |
Collapse
|
4
|
Zhang P, Xue Y, Cao Z, Guo Y, Pang X, Chen C, Zhang W. Raffinose Ameliorates DSS-Induced Colitis in Mice by Modulating Gut Microbiota and Targeting the Inflammatory TLR4-MyD88-NF-κB Signaling Pathway. Foods 2024; 13:1849. [PMID: 38928791 PMCID: PMC11203344 DOI: 10.3390/foods13121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to explore the protective effects of raffinose (Raf) against inflammatory bowel disease in mice with colitis. Mice were administered 100, 200, or 400 mg/kg Raf for 21 d, followed by drinking-water containing 3% dextran sulfate sodium salt (DSS) for 3 d. Thereafter, the phenotype, pathological lesions in the colon, cytokines levels, and gut microbiota were evaluated. Treatment with Raf reduced the severity of the pathological changes in the colon, mitigating the reduction in colon length. Following Raf intervention, serum levels of inflammatory cytokines (IL-2, IL-6, IL-1β, and TNF-α) tended to return to normal. These results suggest that the anti-inflammatory effects of Raf are associated with a reduction in TLR4-MyD88-NF-κB pathway expression in mouse colonic tissues. Analysis of gut microbiota abundance and its correlation with colitis parameters revealed that DSS-induced dysbiosis was partially mitigated by Raf. In conclusion, Raf exerts a protective effect in colitis by modulating the gut microbiota and TLR4-MyD88-NF-κB pathway.
Collapse
|
5
|
Zhu H, Guan Y, Wang W, Liu X, Wang S, Zheng R, Li Y, Liu L, Huang H. Reniformin A suppresses non-small cell lung cancer progression by inducing TLR4/NLRP3/caspase-1/GSDMD-dependent pyroptosis. Int Immunopharmacol 2024; 133:112068. [PMID: 38626545 DOI: 10.1016/j.intimp.2024.112068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/13/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Pyroptosis is an inflammatory form of programmed cell death that plays an important role in regulating tumor progression. Reniformin A (RA) is a natural compound isolated from the medicinal herb Isodon excisoides that has been applied as folk medicine in the treatment of esophageal cancer. However, whether RA has an individual function in cancer and the molecular mechanisms remain unclear. Here, we show that in non-small-cell lung cancer (NSCLC), RA inhibits tumor growth by functioning as a pyroptosis inducer to promote TLR4/NLRP3/caspase-1/GSDMD axis. Specially, RA treatment increased Toll-like receptor 4 (TLR4) protein expression level by enhancing the TLR4 stability. Based on the molecular docking, we identified that RA directly bound to TLR4 to activate the NLRP3 inflammasome and promote pyroptosis in A549 cells. Moreover, TLR4 is essential for RA-induced pyroptosis, and loss of TLR4 abolished RA-induced pyroptosis and further reduced the inhibitory effect of RA on NSCLC. In vivo experiments confirmed that RA inhibited the growth of lung tumors in mice by affecting pyroptosis in a dose-dependent manner. Furthermore, TLR4 knockdown abolished RA-induced pyroptosis and inhibited the effect of RA chemotherapy in vivo. In conclusion, we propose that RA has a significant anticancer effect in NSCLC by inducing TLR4/NLRP3/caspase-1/GSDMD-mediated pyroptosis, which may provide a potential strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Huiyu Zhu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yifei Guan
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Wei Wang
- Department of Radiology, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Xinhui Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Sijia Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ran Zheng
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yihan Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Lei Liu
- Department of Comprehensive Treatment, 2nd Medical Center of Chinese PLA General Hospital, Beijing 100036, China.
| | - Hua Huang
- Beijing Key Laboratory of Environmental and Viral Oncology, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
6
|
Ghosh M, Lee J, Burke AN, Strong TA, Sagen J, Pearse DD. Sex Dependent Disparities in the Central Innate Immune Response after Moderate Spinal Cord Contusion in Rat. Cells 2024; 13:645. [PMID: 38607084 PMCID: PMC11011714 DOI: 10.3390/cells13070645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Subacute spinal cord injury (SCI) displays a complex pathophysiology associated with pro-inflammation and ensuing tissue damage. Microglia, the resident innate immune cells of the CNS, in concert with infiltrating macrophages, are the primary contributors to SCI-induced inflammation. However, subpopulations of activated microglia can also possess immunomodulatory activities that are essential for tissue remodeling and repair, including the production of anti-inflammatory cytokines and growth factors that are vital for SCI recovery. Recently, reports have provided convincing evidence that sex-dependent differences exist in how microglia function during CNS pathologies and the extent to which these cells contribute to neurorepair and endogenous recovery. Herein we employed flow cytometry and immunohistochemical methods to characterize the phenotype and population dynamics of activated innate immune cells within the injured spinal cord of age-matched male and female rats within the first week (7 days) following thoracic SCI contusion. This assessment included the analysis of pro- and anti-inflammatory markers, as well as the expression of critical immunomodulatory kinases, including P38 MAPK, and transcription factors, such as NFκB, which play pivotal roles in injury-induced inflammation. We demonstrate that activated microglia from the injured spinal cord of female rats exhibited a significantly diminutive pro-inflammatory response, but enhanced anti-inflammatory activity compared to males. These changes included lower levels of iNOS and TLR4 expression but increased levels of ARG-1 and CD68 in females after SCI. The altered expression of these markers is indicative of a disparate secretome between the microglia of males and females after SCI and that the female microglia possesses higher phagocytic capabilities (increased CD68). The examination of immunoregulatory kinases and transcription factors revealed that female microglia had higher levels of phosphorylated P38Thr180/Tyr182 MAPK and nuclear NFκB pp50Ser337 but lower amounts of nuclear NFκB pp65Ser536, suggestive of an attenuated pro-inflammatory phenotype in females compared to males after SCI. Collectively, this work provides novel insight into some of the sex disparities that exist in the innate immune response after SCI and indicates that sex is an important variable when designing and testing new therapeutic interventions or interpretating positive or negative responses to an intervention.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Jinyoung Lee
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
| | - Ashley N. Burke
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
| | - Thomas A. Strong
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
| | - Jacqueline Sagen
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
Ryan F, Francos-Quijorna I, Hernández-Mir G, Aquino C, Schlapbach R, Bradbury EJ, David S. Tlr4 Deletion Modulates Cytokine and Extracellular Matrix Expression in Chronic Spinal Cord Injury, Leading to Improved Secondary Damage and Functional Recovery. J Neurosci 2024; 44:e0778232023. [PMID: 38326029 PMCID: PMC10860514 DOI: 10.1523/jneurosci.0778-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 02/09/2024] Open
Abstract
Toll-like receptors (TLRs) play an important role in the innate immune response after CNS injury. Although TLR4 is one of the best characterized, its role in chronic stages after spinal cord injury (SCI) is not well understood. We examined the role of TLR4 signaling in injury-induced responses at 1 d, 7 d, and 8 weeks after spinal cord contusion injury in adult female TLR4 null and wild-type mice. Analyses include secondary damage, a range of transcriptome and protein analyses of inflammatory, cell death, and extracellular matrix (ECM) molecules, as well as immune cell infiltration and changes in axonal sprouting and locomotor recovery. Lack of TLR4 signaling results in reduced neuronal and myelin loss, reduced activation of NFκB, and decreased expression of inflammatory cytokines and necroptotic cell death pathway at a late time point (8 weeks) after injury. TLR4 null mice also showed reduction of scar-related ECM molecules at 8 weeks after SCI, accompanied by increase in ECM molecules associated with perineuronal nets, increased sprouting of serotonergic fibers, and improved locomotor recovery. These findings reveal novel effects of TLR4 signaling in chronic SCI. We show that TLR4 influences inflammation, cell death, and ECM deposition at late-stage post-injury when secondary injury processes are normally considered to be over. This highlights the potential for late-stage targeting of TLR4 as a potential therapy for chronic SCI.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada
| | - Isaac Francos-Quijorna
- The Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Gerard Hernández-Mir
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Catharine Aquino
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Elizabeth J Bradbury
- The Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Samuel David
- Centre for Research in Neuroscience and BRaIN Program, Research Institute of the McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada
| |
Collapse
|
8
|
Si W, Li X, Jing B, Chang S, Zheng Y, Chen Z, Zhao G, Zhang D. Stigmasterol regulates microglial M1/M2 polarization via the TLR4/NF-κB pathway to alleviate neuropathic pain. Phytother Res 2024; 38:265-279. [PMID: 37871970 DOI: 10.1002/ptr.8039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
(Switching from the microglial M1 phenotype to the M2 phenotype is a promising therapeutic strategy for neuropathic pain (NP). This study aimed to investigate the potential use of stigmasterol for treating NP. In animal experiments, 32 male Sprague-Dawley rats were randomly divided into the sham operation group, chronic constriction injury (CCI) group, CCI + ibuprofen group, and CCI + stigmasterol group. We performed behavioral tests, enzyme-linked immunosorbent assay, hematoxylin-esoin staining (H&E) staining and immunohistochemistry, immunofluorescence, and Western blotting. In cell experiments, we performed flow cytometry, immunofluorescence, Western blotting, and qRT-PCR. Stigmasterol reduced thermal and mechanical hyperalgesia and serum IL-1β and IL-8 levels and increased serum IL-4 and TGF-β levels in CCI rats. Stigmasterol reduced IL-1β, COX-2, and TLR4 expression in the right sciatic nerve and IL-1β expression in the spinal cord. Stigmasterol reduced the expression of Iba-1, TLR4, MyD88, pNF-κB, pP38 MAPK, pJNK, pERK, COX-2, IL-1β, and CD32 in the spinal cord of CCI rats while increasing the expression of IL-10 and CD206. Stigmasterol decreased M1 polarization markers and increased M2 polarization markers in lipopolysaccharide (LPS)-induced microglia and decreased the expression of Iba-1, TLR4, MyD88, pNF-κB, pP38 MAPK, pJNK, pERK, iNOS, COX-2, and IL-1β in LPS-treated microglia while increasing the expression of Arg-1 and IL-10. Stigmasterol regulates microglial M1/M2 polarization via the TLR4/NF-κB pathway to alleviate NP.
Collapse
Affiliation(s)
- Waimei Si
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xin Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Bei Jing
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shiquan Chang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yachun Zheng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhenni Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Guoping Zhao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Di Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Huang C, Hao W, Wang X, Zhou R, Lin Q. Probiotics for the treatment of ulcerative colitis: a review of experimental research from 2018 to 2022. Front Microbiol 2023; 14:1211271. [PMID: 37485519 PMCID: PMC10358780 DOI: 10.3389/fmicb.2023.1211271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Ulcerative colitis (UC) has become a worldwide public health problem, and the prevalence of the disease among children has been increasing. The pathogenesis of UC has not been elucidated, but dysbiosis of the gut microbiota is considered the main cause of chronic intestinal inflammation. This review focuses on the therapeutic effects of probiotics on UC and the potential mechanisms involved. In animal studies, probiotics have been shown to alleviate symptoms of UC, including weight loss, diarrhea, blood in the stool, and a shortened colon length, while also restoring intestinal microecological homeostasis, improving gut barrier function, modulating the intestinal immune response, and attenuating intestinal inflammation, thereby providing theoretical support for the development of probiotic-based microbial products as an adjunctive therapy for UC. However, the efficacy of probiotics is influenced by factors such as the bacterial strain, dose, and form. Hence, the mechanisms of action need to be investigated further. Relevant clinical trials are currently lacking, so the extension of animal experimental findings to clinical application requires a longer period of consideration for validation.
Collapse
Affiliation(s)
- Cuilan Huang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Wujuan Hao
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Xuyang Wang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Renmin Zhou
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Qiong Lin
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| |
Collapse
|
10
|
Mussen F, Broeckhoven JV, Hellings N, Schepers M, Vanmierlo T. Unleashing Spinal Cord Repair: The Role of cAMP-Specific PDE Inhibition in Attenuating Neuroinflammation and Boosting Regeneration after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24098135. [PMID: 37175842 PMCID: PMC10179671 DOI: 10.3390/ijms24098135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is characterized by severe neuroinflammation and hampered neuroregeneration, which often leads to permanent neurological deficits. Current therapies include decompression surgery, rehabilitation, and in some instances, the use of corticosteroids. However, the golden standard of corticosteroids still achieves minimal improvements in functional outcomes. Therefore, new strategies tackling the initial inflammatory reactions and stimulating endogenous repair in later stages are crucial to achieving functional repair in SCI patients. Cyclic adenosine monophosphate (cAMP) is an important second messenger in the central nervous system (CNS) that modulates these processes. A sustained drop in cAMP levels is observed during SCI, and elevating cAMP is associated with improved functional outcomes in experimental models. cAMP is regulated in a spatiotemporal manner by its hydrolyzing enzyme phosphodiesterase (PDE). Growing evidence suggests that inhibition of cAMP-specific PDEs (PDE4, PDE7, and PDE8) is an important strategy to orchestrate neuroinflammation and regeneration in the CNS. Therefore, this review focuses on the current evidence related to the immunomodulatory and neuroregenerative role of cAMP-specific PDE inhibition in the SCI pathophysiology.
Collapse
Affiliation(s)
- Femke Mussen
- Department of Neuroscience, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
| | - Jana Van Broeckhoven
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Immunology and Infection, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
| | - Niels Hellings
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Immunology and Infection, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
| | - Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute BIOMED, Hasselt University, 3590 Diepenbeek, Belgium
- University MS Center (UMSC) Hasselt-Pelt, Hasselt University, 3500 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229ER Maastricht, The Netherlands
| |
Collapse
|
11
|
Gu G, Ren J, Zhu B, Shi Z, Feng S, Wei Z. Multiple mechanisms of curcumin targeting spinal cord injury. Biomed Pharmacother 2023; 159:114224. [PMID: 36641925 DOI: 10.1016/j.biopha.2023.114224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/16/2023] Open
Abstract
Spinal cord injury (SCI) is an irreversible disease process with a high disability and mortality rate. After primary spinal cord injury, the secondary injury may occur in sequence, which is composed of ischemia and hypoxia, excitotoxicity, calcium overload, oxidative stress and inflammation, resulting in massive death of parenchymal cells in the injured area, followed by the formation of syringomyelia. Effectively curbing the process of secondary injury can promote nerve repair and improve functional prognosis. As the main active ingredient in turmeric, curcumin can play an important role in reducing inflammation and oxidation, protecting the neurons, and ultimately reducing spinal cord injury. This article reviews the effects of curcumin on the repair of nerve injury, with emphasis on the various mechanisms by which curcumin promotes the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Guangjin Gu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Ren
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Zhu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhongju Shi
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| | - Zhijian Wei
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
12
|
The neuroprotective effects of estrogen and estrogenic compounds in spinal cord injury. Neurosci Biobehav Rev 2023; 146:105074. [PMID: 36736846 DOI: 10.1016/j.neubiorev.2023.105074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Spinal cord injury (SCI) occurs when the spinal cord is damaged from either a traumatic event or disease. SCI is characterised by multiple injury phases that affect the transmission of sensory and motor signals and lead to temporary or long-term functional deficits. There are few treatments for SCI. Estrogens and estrogenic compounds, however, may effectively mitigate the effects of SCI and therefore represent viable treatment options. This review systematically examines the pre-clinical literature on estrogen and estrogenic compound neuroprotection after SCI. Several estrogens were examined by the included studies: estrogen, estradiol benzoate, Premarin, isopsoralen, genistein, and selective estrogen receptor modulators. Across these pharmacotherapies, we find significant evidence that estrogens indeed offer protection against myriad pathophysiological effects of SCI and lead to improvements in functional outcomes, including locomotion. A STRING functional network analysis of proteins modulated by estrogen after SCI demonstrated that estrogen simultaneously upregulates known neuroprotective pathways, such as HIF-1, and downregulates pro-inflammatory pathways, including IL-17. These findings highlight the strong therapeutic potential of estrogen and estrogenic compounds after SCI.
Collapse
|
13
|
CircRNA3616 knockdown attenuates inflammation and apoptosis in spinal cord injury by inhibiting TLR4/NF-κB activity via sponging miR-137. Mol Cell Biochem 2023; 478:329-341. [PMID: 35913538 DOI: 10.1007/s11010-022-04509-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/22/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE The present work focused on exploring the role of circRNA3616 in neuronal inflammation and apoptosis in spinal cord injury (SCI). METHODS The SCI mouse model and circRNA3616 knockdown SCI mouse model were established. This work focused on assessing the mouse locomotor function using Basso Mouse Scale (BMS) and BMS subscore. Hematoxylin-eosin (HE) staining and Tunel staining were conducted, while myeloperoxidase (MPO) activity was also detected on spinal cord tissues. We also knocked down circRNA3616 expression in NSC-34 cells. Meanwhile, the SCI cell model was established by oxygen glucose deprivation (OGD) in NSC-34 cells. Moreover, we conducted dual-luciferase reporter gene assay. Flow cytometry (FCM) was conducted to detect SCI cell apoptosis, whereas cell counting kit-8 (CCK-8) assay was performed to analyze cell viability. This study also implemented enzyme-linked immunosorbent assay to detect inflammatory factors in spinal cord tissues, serum, and cells. RESULTS CircRNA3616 knockdown reduced the damage, inflammatory response, apoptosis, and MPO activity in SCI mouse serum and spinal cord tissues. CircRNA3616 knockdown increased BMS and BMS subscore of SCI mice. CircRNA3616 up-regulated TLR4 expression by sponging miR-137. CircRNA3616 knockdown inhibited the TLR4, p-IkBα, p-p65/p65 protein expression, while promoting IkBα protein expression within SCI mouse spinal cord. TLR4 reversed circRNA3616 knockdown-induced inhibition on NF-κB pathway activity in SCI cells. CircRNA3616 knockdown attenuated neuronal cell inflammation and apoptosis via TLR4/NF-κB pathway after SCI. CONCLUSION CircRNA3616 silencing attenuates inflammation and apoptosis in SCI by inhibiting TLR4/NF-κB activity via sponging miR-137. CircRNA3616 is the possible anti-SCI therapeutic target.
Collapse
|
14
|
Ding W, Xu W, Lu D, Sheng H, Xu X, Xu B, Zheng A. Inhibition of TERC inhibits neural apoptosis and inflammation in spinal cord injury through Akt activation and p-38 inhibition via the miR-34a-5p/XBP-1 axis. Open Med (Wars) 2023; 18:20220619. [PMID: 36742154 PMCID: PMC9883688 DOI: 10.1515/med-2022-0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 01/25/2023] Open
Abstract
This study investigated the function of telomerase RNA component (TERC) in spinal cord injury (SCI). SCI models were established in rats via laminectomy and PC-12 cells were treated with lipopolysaccharide (LPS). TERC and miR-34a-5p expressions in cells and rat spinal cords were detected by quantitative reverse transcription polymerase chain reaction, followed by overexpression/knockdown of TERC/miR-34a-5p. Spinal cord histopathological changes were examined via hematoxylin-eosin staining. miR-34a-5p' relation with TERC and XBP-1 was predicted by TargetScan and checked by dual-luciferase reporter/RNA immunoprecipitation assays. Cell biological behaviors were assessed by Cell counting kit-8, wound healing, Transwell, and flow cytometry assays. XBP-1 and inflammation/apoptosis-related protein expressions were analyzed by western blot. TERC was upregulated and miR-34a-5p was low-expressed in SCI tissues and LPS-induced PC-12 cells. TERC-knockdown alleviated histopathological abnormalities yet upregulated miR-34a-5p in SCI tissues. In LPS-induced PC-12 cells, TERC knockdown promoted cell viability, migration, invasion, and inhibited apoptosis, while TERC overexpression ran oppositely. TERC knockdown downregulated the XBP-1, IL-6, TNF-α, Bax, p-p38/t-p38, and cleaved caspase-9/-3, but upregulated Bcl-2 and p-Akt/t-Akt. TERC targeted miR-34a-5p, which further targeted XBP-1. miR-34a-5p downregulation exerted effects opposite to and offset TERC knockdown-induced effects. TERC knockdown facilitated the regeneration of neuron tissues yet inhibited inflammation in SCI through Akt activation and p-38 inhibition via the miR-34a-5p/XBP-1 axis.
Collapse
Affiliation(s)
- Weiguo Ding
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, China
| | - Weixing Xu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, China
| | - Di Lu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, China
| | - Hongfeng Sheng
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, China
| | - Xinwei Xu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, China
| | - Bin Xu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, China
| | - Aote Zheng
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, China
| |
Collapse
|
15
|
Rau J, Weise L, Moore R, Terminel M, Brakel K, Cunningham R, Bryan J, Stefanov A, Hook MA. Intrathecal minocycline does not block the adverse effects of repeated, intravenous morphine administration on recovery of function after SCI. Exp Neurol 2023; 359:114255. [PMID: 36279935 DOI: 10.1016/j.expneurol.2022.114255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/18/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Opioids are among the most effective analgesics for the management of pain in the acute phase of a spinal cord injury (SCI), and approximately 80% of patients are treated with morphine in the first 24 h following SCI. We have found that morphine treatment in the first 7 days after SCI increases symptoms of pain at 42 days post-injury and undermines the recovery of locomotor function in a rodent model. Prior research has implicated microglia/macrophages in opioid-induced hyperalgesia and the development of neuropathic pain. We hypothesized that glial activation may also underlie the development of morphine-induced pain and cell death after SCI. Supporting this hypothesis, our previous studies found that intrathecal and intravenous morphine increase the number of activated microglia and macrophages present at the spinal lesion site, and that the adverse effects of intrathecal morphine can be blocked with intrathecal minocycline. Recognizing that the cellular expression of opioid receptors, and the intracellular signaling pathways engaged, can change with repeated administration of opioids, the current study tested whether minocycline was also protective with repeated intravenous morphine administration, more closely simulating clinical treatment. Using a rat model of SCI, we co-administered intravenous morphine and intrathecal minocycline for the first 7 days post injury and monitored sensory and locomotor recovery. Contrary to our hypothesis and previous findings with intrathecal morphine, we found that minocycline did not prevent the negative effects of morphine. Surprisingly, we also found that intrathecal minocycline alone is detrimental for locomotor recovery after SCI. Using ex vivo cell cultures, we investigated how minocycline and morphine altered microglia/macrophage function. Commensurate with published studies, we found that minocycline blocked the effects of morphine on the release of pro-inflammatory cytokines but, like morphine, it increased glial phagocytosis. While phagocytosis is critical for the removal of cellular and extracellular debris at the spinal injury site, increased phagocytosis after injury has been linked to the clearance of stressed but viable neurons and protracted inflammation. In sum, our data suggest that both morphine and minocycline alter the acute immune response, and reduce locomotor recovery after SCI.
Collapse
Affiliation(s)
- Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA.
| | - Lara Weise
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA.
| | - Robbie Moore
- Department of Microbial Pathogenesis and Immunology, Texas A&M Institute for Neuroscience, Address: 8447 Riverside Parkway, Medical and Research Education Building 2, Bryan, TX 77807, USA.
| | - Mabel Terminel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA
| | - Kiralyn Brakel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA
| | - Rachel Cunningham
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA
| | - Jessica Bryan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA.
| | - Alexander Stefanov
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA.
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Address: 8447 Riverside Parkway, Medical and Research Education Building 1, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, Address: 301 Old Main Drive, Interdisciplinary Life Sciences Building, College Station, TX 77843, USA.
| |
Collapse
|
16
|
Rosas Almanza J, Stehlik KE, Page JJ, Xiong SH, Tabor EG, Aperi B, Patel K, Kodali R, Kurpad S, Budde MD, Tarima S, Swartz K, Kroner A. IL-12p40 promotes secondary damage and functional impairment after spinal cord contusional injury. J Neurosci Res 2022; 100:2213-2231. [PMID: 36089917 DOI: 10.1002/jnr.25122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 01/07/2023]
Abstract
Secondary damage obstructs functional recovery for individuals who have sustained a spinal cord injury (SCI). Two processes significantly contributing to tissue damage after trauma are spinal cord hemorrhage and inflammation: more specifically, the recruitment and activation of immune cells, frequently driven by pro-inflammatory factors. Cytokines are inflammatory mediators capable of modulating the immune response. While cytokines are necessary to elicit inflammation for proper healing, excessive inflammation can result in destructive processes. The pro-inflammatory cytokines IL-12 and IL-23 are pathogenic in multiple autoimmune diseases. The cytokine subunit IL-12p40 is necessary to form bioactive IL-12 and IL-23. In this study, we examined the relationship between spinal cord hemorrhage and IL-12-related factors, as well as the impact of IL-12p40 (IL-12/IL-23) on secondary damage and functional recovery after SCI. Using in vivo magnetic resonance imaging and protein tissue analyses, we demonstrated a positive correlation between IL-12 and tissue hemorrhage. Receptor and ligand subunits of IL-12 were significantly upregulated after injury and colocalized with astrocytes, demonstrating a myriad of opportunities for IL-12 to induce an inflammatory response. IL-12p40-/- mice demonstrated significantly improved functional recovery and reduced lesion sizes compared to wild-type mice. Targeted gene array analysis in wild-type and IL-12p40-/- female mice after SCI revealed an upregulation of genes associated with worsened recovery after SCI. Taken together, our data reveal a pathogenic role of IL-12p40 in the secondary damage after SCI, hindering functional recovery. IL-12p40 (IL-12/IL-23) is thus an enticing neuroinflammatory target for further study as a potential therapeutic target to benefit recovery in acute SCI.
Collapse
Affiliation(s)
- Jose Rosas Almanza
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Kyle E Stehlik
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Justin J Page
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Shuana H Xiong
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Emma G Tabor
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Brandy Aperi
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Kishan Patel
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Rajiv Kodali
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Shekar Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Sergey Tarima
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Karin Swartz
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
17
|
The alarmin interleukin-1α triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury. Nat Commun 2022; 13:5786. [PMID: 36184639 PMCID: PMC9527244 DOI: 10.1038/s41467-022-33463-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/16/2022] [Indexed: 01/18/2023] Open
Abstract
Spinal cord injury (SCI) triggers neuroinflammation, and subsequently secondary degeneration and oligodendrocyte (OL) death. We report that the alarmin interleukin (IL)-1α is produced by damaged microglia after SCI. Intra-cisterna magna injection of IL-1α in mice rapidly induces neutrophil infiltration and OL death throughout the spinal cord, mimicking the injury cascade seen in SCI sites. These effects are abolished through co-treatment with the IL-1R1 antagonist anakinra, as well as in IL-1R1-knockout mice which demonstrate enhanced locomotor recovery after SCI. Conditional restoration of IL-1R1 expression in astrocytes or endothelial cells (ECs), but not in OLs or microglia, restores IL-1α-induced effects, while astrocyte- or EC-specific Il1r1 deletion reduces OL loss. Conditioned medium derived from IL-1α-stimulated astrocytes results in toxicity for OLs; further, IL-1α-stimulated astrocytes generate reactive oxygen species (ROS), and blocking ROS production in IL-1α-treated or SCI mice prevented OL loss. Thus, after SCI, microglia release IL-1α, inducing astrocyte- and EC-mediated OL degeneration.
Collapse
|
18
|
The Yin and Yang of toll-like receptors in endothelial dysfunction. Int Immunopharmacol 2022; 108:108768. [DOI: 10.1016/j.intimp.2022.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
19
|
Liang W, Han B, Hai Y, Liu Y, Liu X, Yang J, Sun D, Yin P. The Role of Microglia/Macrophages Activation and TLR4/NF-κB/MAPK Pathway in Distraction Spinal Cord Injury-Induced Inflammation. Front Cell Neurosci 2022; 16:926453. [PMID: 35755773 PMCID: PMC9218068 DOI: 10.3389/fncel.2022.926453] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Distraction spinal cord injuries (DSCIs) often occur as the neurological complication of distraction forces following the implantation of internal fixation devices during scoliosis correction surgery. However, the underlying mechanism behind these injuries remains unclear. The present study aimed to explore the activation of microglia and macrophages, as well as changes in TLR4-mediated NF-κB and MAPK pathway activity after DSCIs in Bama miniature pigs. Prior to surgical intervention, the pigs were randomly divided into three groups: the sham group, the complete distraction spinal cord injury (CDSCI) group, and the incomplete distraction spinal cord injury (IDSCI) group. After surgery, the Tarlov scale and individual limb motor scale (ILMS) were used to evaluate changes in the pigs’ behavior. All pigs were euthanized 7 days after surgery, and histopathological examinations of the spinal cord tissues were performed. Immunohistochemistry was used to detect Caspase-3 expression in the anterior horn of spinal gray matter tissues. Immunofluorescence staining was utilized to assess the M1/M2 phenotype changes in microglia/macrophages and NF-κB P65 expression in central DSCI lesions, while western blotting was performed to determine the expression of TLR4/NF-κB/MAPK pathway-related proteins. The results of the present study showed that the Tarlov and ILMS scores decreased significantly in the two DSCI groups compared with the sham group. Hematoxylin and eosin (HE) and Nissl staining revealed that the tissue structure and nerve fiber tracts in the distracted spinal cord tissues were destroyed. Both DSCI groups showed the number of survived neurons decreased and the Caspase-3 expression increased. The results of the immunofluorescence staining indicated that the CD16 and CD206 expression in the microglia/macrophages increased. Between the two DSCI groups, the CDSCI group showed increased CD16 and decreased CD206 expression levels. The intensity of the fluorescence of NF-κB P65 was found to be significantly enhanced in pigs with DSCIs. Moreover, western blot results revealed that the expression of TLR4, p-IκBα, NF-κB P65, p-JNK, p-ERK, and p-P38 proteins increased in spinal cord tissues following DSCI. The present study was based on a porcine DSCI model that closely mimicked clinical DSCIs while clarifying DSCI-associated neuroinflammation mechanisms, in turn providing evidence for identifying potential anti-inflammatory targets.
Collapse
Affiliation(s)
- Weishi Liang
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bo Han
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yuzeng Liu
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xing Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jincai Yang
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Duan Sun
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Peng Yin
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Li XW, Wu P, Yao J, Zhang K, Jin GY. Genistein Protects against Spinal Cord Injury in Mice by Inhibiting Neuroinflammation via TLR4-Mediated Microglial Polarization. Appl Bionics Biomech 2022; 2022:4790344. [PMID: 35498148 PMCID: PMC9054478 DOI: 10.1155/2022/4790344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Objective The present study was designed to study the effect of genistein on spinal cord injury (SCI) in mice and to explore its underlying mechanisms. Methods We established SCI mouse model, and genistein was administered for treatment. We used the Basso, Beattie, and Bresnahan (BBB) exercise rating scale to evaluate exercise recovery, and the detection of spinal cord edema was done using the wet/dry weight method. Apoptosis was determined by TUNEL staining, and inflammation was evaluated by measuring inflammatory factors by an ELISA kit. The expression of M1 and M2 macrophage markers was determined using flow cytometry, and the expression of proteins was detected using immunoblotting. Results Genistein treatment not only improved the BBB score but also reduced spinal cord edema in SCI mice. Genistein treatment reduced apoptosis by increasing Bcl2 protein expression and decreasing Bax and caspase 3 protein expression. It also reduced the expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) in the SCI area of SCI mice. Flow cytometry analysis indicated that genistein treatment significantly decreased the ratio of M1 macrophages (CD45+/Gr-1-/CD11b+/iNOS+) and increased the ratio of M2 macrophages (CD45+/Gr-1-/CD11b+/Arginase 1+) in the SCI area of SCI mice on the 28th day after being treated with genistein. We also found that genistein treatment significantly decreased the expression of TLR4, MyD88, and TRAF6 protein in the SCI area of SCI mice on 28th day after being treated with genistein. Conclusion Our findings suggested that genistein exerted neuroprotective action by inhibiting neuroinflammation by promoting the activation of M2 macrophages, and its underlying mechanisms might be related to the inhibition of the TLR4-mediated MyD88-dependent signaling pathway.
Collapse
Affiliation(s)
- Xin-Wu Li
- Department of Orthopedics, The 904th Hospital of Joint Logistic Support Force of PLA, 214000 Wuxi, China
| | - Peng Wu
- Department of Orthopedics, The 904th Hospital of Joint Logistic Support Force of PLA, 214000 Wuxi, China
| | - Jian Yao
- Department of Orthopedics, The 904th Hospital of Joint Logistic Support Force of PLA, 214000 Wuxi, China
| | - Kai Zhang
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 200011 Shanghai, China
| | - Gen-Yang Jin
- Department of Orthopedics, The 904th Hospital of Joint Logistic Support Force of PLA, 214000 Wuxi, China
| |
Collapse
|
21
|
Yue Y, Zong L, Chen Y, Feng N, Tang J, Xu H, Zhao M. Liver kinase B1 (LKB1) reduced inflammation and oxidative stress by regulating the AMPK/NLRP3 signaling pathway in LPS-induced lung injury. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Van Broeckhoven J, Sommer D, Dooley D, Hendrix S, Franssen AJPM. Macrophage phagocytosis after spinal cord injury: when friends become foes. Brain 2021; 144:2933-2945. [PMID: 34244729 DOI: 10.1093/brain/awab250] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 11/14/2022] Open
Abstract
After spinal cord injury (SCI), macrophages can exert either beneficial or detrimental effects depending on their phenotype. Aside from their critical role in inflammatory responses, macrophages are also specialized in the recognition, engulfment, and degradation of pathogens, apoptotic cells, and tissue debris. They promote remyelination and axonal regeneration by removing inhibitory myelin components and cellular debris. However, excessive intracellular presence of lipids and dysregulated intracellular lipid homeostasis result in the formation of foamy macrophages. These develop a pro-inflammatory phenotype that may contribute to further neurological decline. Additionally, myelin-activated macrophages play a crucial role in axonal dieback and retraction. Here, we review the opposing functional consequences of phagocytosis by macrophages in SCI, including remyelination and regeneration versus demyelination, degeneration, and axonal dieback. Furthermore, we discuss how targeting the phagocytic ability of macrophages may have therapeutic potential for the treatment of SCI.
Collapse
Affiliation(s)
- Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Daniela Sommer
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield Dublin 4, Ireland.,UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,Medical School Hamburg, Hamburg, Germany
| | - Aimée J P M Franssen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
23
|
Wang D, Zhao S, Pan J, Wang Z, Li Y, Xu X, Yang J, Zhang X, Wang Y, Liu M. Ginsenoside Rb1 attenuates microglia activation to improve spinal cord injury via microRNA-130b-5p/TLR4/NF-κB axis. J Cell Physiol 2021; 236:2144-2155. [PMID: 32761843 DOI: 10.1002/jcp.30001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Ginsenoside Rb1 (GRb1), a major ingredient of ginseng, has been found to be a potential protective agent in spinal cord injury (SCI) and in activated microglia-induced neuronal injury. This study discovered that GRb1 could facilitate miR-130b-5p expression in SCI rats and Toll-like receptor 4 (TLR4; a crucial player in inflammation) was a potential target of miR-130b-5p. Hence, we further investigated whether GRb1 could relieve SCI by reducing microglia-mediated inflammatory responses and neuronal injury via miR-130b-5p/TLR4 pathways. The results showed that GRb1 alleviated SCI through inhibiting neuronal apoptosis and proinflammatory factor expression via increasing miR-130b-5p.GRb1 weakened the damage of activated microglia to neurons through upregulating miR-130b-5p. miR-130b-5p attenuated activated microglia-induced neuron injury via targeting TLR4. GRb1 inactivated TLR4/nuclear factor-κB (NF-κB) activation and inhibited proinflammatory cytokine secretion by increasing miR-130b-5p in activated microglia. As a conclusion, GRb1 alleviated SCI through reducing activated microglia-induced neuronal injury via miR-130b-5p/TLR4/NF-κB axis, providing a deep insight into the molecular basis of GRb1 in the treatment of SCI.
Collapse
Affiliation(s)
- Dan Wang
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shixin Zhao
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junwei Pan
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Wang
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Li
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoxiao Xu
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiahao Yang
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Zhang
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yisheng Wang
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming Liu
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Zhang T, Zhang K, Ji K, Zhang C, Jiang Y, Zhang Q, Tian Z, Wang X, Zhang M, Li X. microRNA-365 inhibits YAP through TLR4-mediated IRF3 phosphorylation and thereby alleviates gastric precancerous lesions. Cancer Cell Int 2020; 20:549. [PMID: 33292210 PMCID: PMC7664090 DOI: 10.1186/s12935-020-01578-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
Background Gastric carcinoma (GC) is currently one of the most common malignant tumors of the digestive system, and gastric precancerous lesions play a vital role in studying the mechanism of GC. Multiple microRNAs (miRNAs) have been documented to be potential biomarkers to indicate progression of gastric precancerous lesions. In this study, we explained the anti-cancer effect of miR-365 in gastric precancerous lesions via regulation of the TLR4/IRF3/YAP/CDX2 axis. Methods miR-365, TLR4, CDX2 and IPF3 expression was determined in GC and atrophic gastritis tissues and cells. After transfection of shRNA and overexpression plasmids, in vitro experiments detected the alteration of cell viability, apoptosis and inflammatory factors. Bioinformatics analysis, Co-IP and dual luciferase reporter gene assay were conducted to evaluate the binding between miR-365 and TLR4 as well as IRF3 and YAP. Rat models were established to explore the effect of the miR-365 and TLR4 on gastric precancerous lesions. Results miR-365 was poorly expressed in GC and atrophic gastritis tissues and GC cell lines, while TLR4, CDX2 and IRF3 were overexpressed. Of note, miR-365 was indicated to target TLR4 and thereby suppressed cancer progression and increased hemoglobin content. Interestingly, silencing of TLR4 was accompanied by decreased IRF3 phosphorylation and reduced expression with less binding between CDX2 and IRF3. Downregulation of YAP resulted in declined CDX2 expression in cancer cells. Moreover, the inhibitory role of miR-365 was further confirmed in animal models. Conclusion Taken together, miR-365-mediated TLR4 inhibition reduces IRF3 phosphorylation and YAP-mediated CDX2 transcription to impede progression of gastric precancerous lesions.
Collapse
Affiliation(s)
- Tianqi Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Kunpeng Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Kaiyue Ji
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Cuiping Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Yueping Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Qi Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Xinyu Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Mengyuan Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China
| | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, People's Republic of China.
| |
Collapse
|
25
|
The Protective Effects of Pre- and Post-Administration of Micronized Palmitoylethanolamide Formulation on Postoperative Pain in Rats. Int J Mol Sci 2020; 21:ijms21207700. [PMID: 33080989 PMCID: PMC7589788 DOI: 10.3390/ijms21207700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Postoperative pain (PO) is a common form of acute pain. Inadequate PO treatment is an important health problem, as it leads to worse outcomes, such as chronic post-surgical pain. Therefore, it is necessary to acquire new knowledge on PO mechanisms to develop therapeutic options with greater efficacy than those available today and to lower the risk of adverse effects. For this reason, we evaluated the ability of micronized palmitoylethanolamide (PEA-m) to resolve the pain and inflammatory processes activated after incision of the hind paw in an animal model of PO. Methods: The animals were subjected to surgical paw incision and randomized into different groups. PEA-m was administered orally at 10 mg/kg at different time points before or after incision. Results: Our research demonstrated that the pre- and post-treatment with PEA-m reduced the activation of mast cells at the incision site and the expression of its algogenic mediator nerve growth factor (NGF) in the lumbar spinal cord. Furthermore, again at the spinal level, it was able to decrease the activation of phospho-extracellular signal-regulated kinases (p-ERK), ionized calcium binding adaptor molecule 1 (Iba1), glial fibrillary acidic protein (GFAP), and the expression of brain-derived neurotrophic factor (BDNF). PEA-m also reduced the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) spinal pathway, showing a protective effect in a rat model of PO. Conclusion: The results obtained reinforce the idea that PEA-m may be a potential treatment for the control of pain and inflammatory processes associated with PO. In addition, pre- and post-treatment with PEA-m is more effective than treatment alone after the surgery and this limits the time of taking the compound and the abuse of analgesics.
Collapse
|
26
|
Li Y, Yang S, Lun J, Gao J, Gao X, Gong Z, Wan Y, He X, Cao H. Inhibitory Effects of the Lactobacillus rhamnosus GG Effector Protein HM0539 on Inflammatory Response Through the TLR4/MyD88/NF-кB Axis. Front Immunol 2020; 11:551449. [PMID: 33123130 PMCID: PMC7573360 DOI: 10.3389/fimmu.2020.551449] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and relapsing intestinal inflammatory condition with no effective treatment. Probiotics have gained wide attention because of their outstanding advantages in intestinal health issues. In previous studies, a novel soluble protein, HM0539, which is derived from Lactobacillus rhamnosus GG (LGG), showed significant protective effects against murine colitis, but no clear precise mechanism for this effect was provided. In this study, we hypothesized that the protective function of HM0539 might be derived from its modulation of the TLR4/Myd88/NF-κB axis signaling pathway, which is a critical pathway widely involved in the modulation of inflammatory responses. To test this hypothesis, the underlying anti-inflammatory effects and associated mechanisms of HM0539 were determined both in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and in dextran sulfate sodium (DSS)-induced murine colitis. Our results showed that HM0539 inhibited the expression of cyclooxygenase-2 (COX-2) and the expression inducible nitric oxide synthase (iNOS) by down-regulating the activation of their respective promoter, and as a result this inhibited the production of prostaglandin E2 (PGE2) and nitric oxide (NO). Meanwhile, we demonstrated that HM0539 could ultimately modulate the activation of distal NF-κB by reducing the activation of TLR4 and suppressing the transduction of MyD88. However, even though the overexpression of TLR4 or MyD88 obviously reversed the effect of HM0539 on LPS-induced inflammation, HM0539 still retained some anti-inflammatory activity. Consistent with the in vitro findings, we found that HM0539 inhibited to a great extent the production of inflammatory mediators associated with the suppression of the TLR4/Myd88/NF-κB axis activation in colon tissue. In conclusion, HM0539 was shown to be a promising anti-inflammatory agent, at least in part through its down-regulation of the TLR4-MyD88 axis as well as of the downstream MyD88-dependent activated NF-κB signaling, and hence might be considered as a potential therapeutic option for IBD.
Collapse
Affiliation(s)
- Yubin Li
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaojie Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jingxian Lun
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jie Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xuefeng Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zelong Gong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Wan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
TLR4 promotes microglial pyroptosis via lncRNA-F630028O10Rik by activating PI3K/AKT pathway after spinal cord injury. Cell Death Dis 2020; 11:693. [PMID: 32826878 PMCID: PMC7443136 DOI: 10.1038/s41419-020-02824-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022]
Abstract
Neuroinflammation plays a crucial role in the secondary phase of spinal cord injury (SCI), and is initiated following the activation of toll-like receptor 4 (TLR4). However, the downstream mechanism remains unknown. Pyroptosis is a form of inflammatory programmed cell death, which is closely involved in neuroinflammation, and it can be regulated by TLR4 according to a recent research. In addition, several studies have shown that long non-coding RNAs (lncRNAs) based mechanisms were related to signal transduction downstream of TLR4 in the regulation of inflammation. Thus, in this study, we want to determine whether TLR4 can regulate pyroptosis after SCI via lncRNAs. Our results showed that TLR4 was activated following SCI and promoted the expression of lncRNA-F630028O10Rik. This lncRNA functioned as a ceRNA for miR-1231-5p/Col1a1 axis and enhanced microglial pyroptosis after SCI by activating the PI3K/AKT pathway. Furthermore, we determined STAT1 was the upstream transcriptional factor of IncRNA-F630028O10Rik and was induced by the damage-responsive TLR4/MyD88 signal. Our findings provide new insights and a novel therapeutic strategy for treating SCI.
Collapse
|
28
|
Xia Y, Chen Y, Wang G, Yang Y, Song X, Xiong Z, Zhang H, Lai P, Wang S, Ai L. Lactobacillus plantarum AR113 alleviates DSS-induced colitis by regulating the TLR4/MyD88/NF-κB pathway and gut microbiota composition. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103854] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
29
|
Carrillo-Jimenez A, Deniz Ö, Niklison-Chirou MV, Ruiz R, Bezerra-Salomão K, Stratoulias V, Amouroux R, Yip PK, Vilalta A, Cheray M, Scott-Egerton AM, Rivas E, Tayara K, García-Domínguez I, Garcia-Revilla J, Fernandez-Martin JC, Espinosa-Oliva AM, Shen X, St George-Hyslop P, Brown GC, Hajkova P, Joseph B, Venero JL, Branco MR, Burguillos MA. TET2 Regulates the Neuroinflammatory Response in Microglia. Cell Rep 2019; 29:697-713.e8. [PMID: 31618637 DOI: 10.1016/j.celrep.2019.09.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/18/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
Epigenomic mechanisms regulate distinct aspects of the inflammatory response in immune cells. Despite the central role for microglia in neuroinflammation and neurodegeneration, little is known about their epigenomic regulation of the inflammatory response. Here, we show that Ten-eleven translocation 2 (TET2) methylcytosine dioxygenase expression is increased in microglia upon stimulation with various inflammogens through a NF-κB-dependent pathway. We found that TET2 regulates early gene transcriptional changes, leading to early metabolic alterations, as well as a later inflammatory response independently of its enzymatic activity. We further show that TET2 regulates the proinflammatory response in microglia of mice intraperitoneally injected with LPS. We observed that microglia associated with amyloid β plaques expressed TET2 in brain tissue from individuals with Alzheimer's disease (AD) and in 5xFAD mice. Collectively, our findings show that TET2 plays an important role in the microglial inflammatory response and suggest TET2 as a potential target to combat neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Alejandro Carrillo-Jimenez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Özgen Deniz
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | | | - Rocio Ruiz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Karina Bezerra-Salomão
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | - Vassilis Stratoulias
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rachel Amouroux
- MRC London Institute of Medical Sciences/Institute of Clinical Sciences Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ping Kei Yip
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Mathilde Cheray
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Eloy Rivas
- Department of Pathology, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Khadija Tayara
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Irene García-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Juan Garcia-Revilla
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Juan Carlos Fernandez-Martin
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Ana Maria Espinosa-Oliva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Xianli Shen
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Peter St George-Hyslop
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0SP, UK
| | - Guy Charles Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Petra Hajkova
- MRC London Institute of Medical Sciences/Institute of Clinical Sciences Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jose Luis Venero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Miguel Ramos Branco
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK.
| | - Miguel Angel Burguillos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK.
| |
Collapse
|
30
|
Gao S, Guo X, Zhao S, Jin Y, Zhou F, Yuan P, Cao L, Wang J, Qiu Y, Sun C, Kang Z, Gao F, Xu W, Hu X, Yang D, Qin Y, Ning K, Shaw PJ, Zhong G, Cheng L, Zhu H, Gao Z, Chen X, Xu J. Differentiation of human adipose-derived stem cells into neuron/motoneuron-like cells for cell replacement therapy of spinal cord injury. Cell Death Dis 2019; 10:597. [PMID: 31395857 PMCID: PMC6687731 DOI: 10.1038/s41419-019-1772-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/24/2019] [Accepted: 05/31/2019] [Indexed: 01/06/2023]
Abstract
Human adipose-derived stem cells (hADSCs) are increasingly presumed to be a prospective stem cell source for cell replacement therapy in various degenerative and/or traumatic diseases. The potential of trans-differentiating hADSCs into motor neuron cells indisputably provides an alternative way for spinal cord injury (SCI) treatment. In the present study, a stepwise and efficient hADSC trans-differentiation protocol with retinoic acid (RA), sonic hedgehog (SHH), and neurotrophic factors were developed. With this protocol hADSCs could be converted into electrophysiologically active motoneuron-like cells (hADSC-MNs), which expressed both a cohort of pan neuronal markers and motor neuron specific markers. Moreover, after being primed for neuronal differentiation with RA/SHH, hADSCs were transplanted into SCI mouse model and they survived, migrated, and integrated into injured site and led to partial functional recovery of SCI mice. When ablating the transplanted hADSC-MNs harboring HSV-TK-mCherry overexpression system with antivirial Ganciclovir (GCV), functional relapse was detected by motor-evoked potential (MEP) and BMS assays, implying that transplanted hADSC-MNs participated in rebuilding the neural circuits, which was further confirmed by retrograde neuronal tracing system (WGA). GFP-labeled hADSC-MNs were subjected to whole-cell patch-clamp recording in acute spinal cord slice preparation and both action potentials and synaptic activities were recorded, which further confirmed that those pre-conditioned hADSCs indeed became functionally active neurons in vivo. As well, transplanted hADSC-MNs largely prevented the formation of injury-induced cavities and exerted obvious immune-suppression effect as revealed by preventing astrocyte reactivation and favoring the secretion of a spectrum of anti-inflammatory cytokines and chemokines. Our work suggests that hADSCs can be readily transformed into MNs in vitro, and stay viable in spinal cord of the SCI mouse and exert multi-therapeutic effects by rebuilding the broken circuitry and optimizing the microenvironment through immunosuppression.
Collapse
Affiliation(s)
- Shane Gao
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xuanxuan Guo
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Simeng Zhao
- iHuman Institute, Shanghai Science and Technology University, Shanghai, 201210, China
| | - Yinpeng Jin
- Shanghai Public Health Clinical Center, Fudan University, JinShan, Shanghai, 201508, China
| | - Fei Zhou
- Department of Neurology, Third Affiliated Hospital of Navy Military Medical University, Shanghai, 200438, China
| | - Ping Yuan
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Limei Cao
- Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, 200233, China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yue Qiu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Chenxi Sun
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhanrong Kang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 200137, China
| | - Fengjuan Gao
- Zhoupu hospital, Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Wei Xu
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Hu
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Danjing Yang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ying Qin
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Guisheng Zhong
- iHuman Institute, Shanghai Science and Technology University, Shanghai, 201210, China.
| | - Liming Cheng
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Hongwen Zhu
- Tianjin Hospital, Tianjin, 300211, China. .,BOE Technology Group Co., Ltd., Beijing, 100176, China.
| | - Zhengliang Gao
- Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Xu Chen
- Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, 200233, China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
31
|
Toll-like receptor 9 antagonism modulates astrocyte function and preserves proximal axons following spinal cord injury. Brain Behav Immun 2019; 80:328-343. [PMID: 30953770 DOI: 10.1016/j.bbi.2019.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that innate immune receptors play important, yet controversial, roles in traumatic central nervous system (CNS) injury. Despite many advances, the contributions of toll-like receptors (TLRs) to spinal cord injury (SCI) remain inadequately defined. We previously reported that a toll-like receptor 9 (TLR9) antagonist, oligodeoxynucleotide 2088 (ODN 2088), administered intrathecally, improves the functional and histopathological outcomes of SCI. However, the molecular and cellular changes that occur at the injury epicenter following ODN 2088 treatment are not completely understood. Following traumatic SCI, a glial scar, consisting primarily of proliferating reactive astrocytes, forms at the injury epicenter and assumes both beneficial and detrimental roles. Increased production of chondroitin sulfate proteoglycans (CSPGs) by reactive astrocytes inhibits the regeneration of injured axons. Astrocytes express TLR9, which can be activated by endogenous ligands released by damaged cells. It is not yet known how TLR9 antagonism modifies astrocyte function at the glial scar and how this affects axonal preservation or re-growth following SCI. The present studies were undertaken to address these issues. We report that in female mice sustaining a severe mid-thoracic (T8) contusion injury, the number of proliferating astrocytes in regions rostral and caudal to the lesion border increased significantly by 30- and 24-fold, respectively, compared to uninjured controls. Intrathecal ODN 2088 treatment significantly reduced the number of proliferating astrocytes by 60% in both regions. This effect appeared to be, at least partly, mediated through the direct actions of ODN 2088 on astrocytes, since the antagonist decreased proliferation in pure SC astrocyte cultures by preventing the activation of the Erk/MAPK signaling pathway. In addition, CSPG immunoreactivity at the lesion border was more pronounced in vehicle-treated injured mice compared to uninjured controls and was significantly reduced following administration of ODN 2088 to injured mice. Moreover, ODN 2088 significantly decreased astrocyte migration in an in vitro scratch-wound assay. Anterograde tracing and quantification of corticospinal tract (CST) axons in injured mice, indicated that ODN 2088 preserves proximal axons. Taken together, these findings suggest that ODN 2088 modifies the glial scar and creates a milieu that fosters axonal protection at the injury site.
Collapse
|
32
|
Chen J, Wu Y, Duan FX, Wang SN, Guo XY, Ding SQ, Zhou JH, Hu JG, Lü HZ. Effect of M2 macrophage adoptive transfer on transcriptome profile of injured spinal cords in rats. Exp Biol Med (Maywood) 2019; 244:880-892. [PMID: 31159561 DOI: 10.1177/1535370219854668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The previous studies showed that alternatively activated anti-inflammatory macrophage (M2) adoptive immunity can improve the proportion of local M2 cells and play the neuroprotective effect after spinal cord injury (SCI). Its molecular mechanism is not yet very clear. Therefore, this study aims to analyze the effect of the M2 adoptive transfer on the local expression of gene transcription. Sprague-Dawley (SD) rats were used for culture of macrophages and establishment of SCI models. After SCI, the polarized M2 macrophages were transferred to the injured rats by tail vein injection. Seven days after operation, the differentially expressed genes (DEGs) in the spinal cords were analyzed by RNA-sequencing (RNA-Seq). Then, the functional enrichment analysis and pathways were performed by using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), respectively. RNA-Seq showed that M2 adoptive immunity can down-regulate many well-studied gene expressions associated with signaling pathways of inflammatory, such as antigen processing and presentation, phagosome, cell adhesion molecules, natural killer cell-mediated cytotoxicity, endocytosis, proteasome, and Toll-like receptor signaling pathway. These may explain the mechanism of our previous adoptive immunization of M2 cells to provide neuroprotection for SCI. In addition, a novel pathway, retinoic acid-inducible gene-1 (RIG-I)-like receptor signaling pathway was found to be involved in the pathological process of SCI and the response to M2 adoptive immunity as well. This will provide a new explanation for the pathological mechanism of SCI and a new theoretical and experimental basis for its clinical treatment. The raw Illumina data are available at http://www.ncbi.nlm.nih.gov/sra (accession number PRJNA517238). Impact statement This research aimed to analyze the effect of M2 macrophage adoptive transfer on the local expression of gene transcription after SCI by RNA-Seq. The results showed that M2 adoptive immunity can down-regulate many well-studied gene expressions associated with signaling pathways of inflammatory. These may explain the mechanism of our previous adoptive immunization of M2 cells to provide neuroprotection for SCI. In addition, a novel pathway, RIG-I-like receptor signaling pathway was also found to involve in the pathological process of SCI and the response to M2 adoptive immunity. This will provide a new explanation for the pathological mechanism of SCI and a new theoretical and experimental basis for its clinical treatment.
Collapse
Affiliation(s)
- Jing Chen
- 1 Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,2 Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,3 Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Yan Wu
- 1 Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,2 Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,3 Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Fei-Xiang Duan
- 1 Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,2 Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Sai-Nan Wang
- 1 Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,2 Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,3 Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Xue-Yan Guo
- 1 Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,2 Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Shu-Qin Ding
- 1 Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,2 Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Ji-Hong Zhou
- 3 Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Jian-Guo Hu
- 1 Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,2 Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - He-Zuo Lü
- 1 Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,2 Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.,3 Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| |
Collapse
|
33
|
Li H, Wang Y, Hu X, Ma B, Zhang H. Thymosin beta 4 attenuates oxidative stress-induced injury of spinal cord-derived neural stem/progenitor cells through the TLR4/MyD88 pathway. Gene 2019; 707:136-142. [PMID: 31054361 DOI: 10.1016/j.gene.2019.04.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 01/22/2023]
Abstract
Neural stem/progenitor cells (NSPCs) can enhance regeneration after spinal cord injury (SCI), but survival of transplanted cells remains poor. Understanding how NSPCs respond to the chemical mediators of secondary injury thus is essential for treating SCI. Thymosin β4 (Tβ4) has physiological functions that are highly relevant to SCI. We exposed NSPCs to oxidative stress and found reduced expression of Tβ4 in H2O2-injured NSPCs. Using an MTT assay, we found that Tβ4 dose dependently increased viability of the injured NSPCs. Tβ4 also reversed the decreases of intracellular Ca2+ concentration and increases of lactate dehydrogenase in NSPCs induced by H2O2 treatment. H2O2 exposure increased NSPC apoptosis, which Tβ4 decreased. In H2O2-induced NSPCs, ROS production and pro-inflammatory cytokines increased, and again, Tβ4 reversed these effects. We investigated the toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) signaling pathway as an underlying mechanism in Tβ4's protective effect on H2O2-exposed NSPCs. Our results showed that Tβ4 reduced expression of TLR4 and MyD88. Moreover, H2O2-exposed NSPCs that were treated with the TLR4/MyD88 pathway inhibitor showed a reversal of all the effects caused by H2O2, similar to Tβ4's effects. In conclusion, our study determined that Tβ4 attenuated H2O2-induced oxidative stress injury in NSPCs via the TLR4/MyD88 pathway.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Spine SurgAery, Lanzhou University Second Hospital, Lanzhou 740030, Gansu, China
| | - Yonggang Wang
- Department of Spine SurgAery, Lanzhou University Second Hospital, Lanzhou 740030, Gansu, China
| | - Xuchang Hu
- Department of Spine SurgAery, Lanzhou University Second Hospital, Lanzhou 740030, Gansu, China
| | - Bing Ma
- Department of Spine SurgAery, Lanzhou University Second Hospital, Lanzhou 740030, Gansu, China
| | - Haihong Zhang
- Department of Spine SurgAery, Lanzhou University Second Hospital, Lanzhou 740030, Gansu, China.
| |
Collapse
|
34
|
Campolo M, Paterniti I, Siracusa R, Filippone A, Esposito E, Cuzzocrea S. TLR4 absence reduces neuroinflammation and inflammasome activation in Parkinson's diseases in vivo model. Brain Behav Immun 2019; 76:236-247. [PMID: 30550933 DOI: 10.1016/j.bbi.2018.12.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a progressive, disabling neurodegenerative disorder. It has been shown Toll like receptor (TLR) 4-deficient mice protect against MPTP toxicity, suggesting that dopaminergic cell death is TLR4-dependent. The aim of this study was to demonstrate, in an in vivo model of PD, how TLR4 plays its important role in the pathogenesis of PD by using MPTP neurotoxin model (4 × 20 mg/kg, 2 h apart, i.p). Our experiments have demonstrated that the absence of TLR4 prevented dopamine depletion, increased tyrosine hydroxylase and dopamine transporter activities and reduced the number of α-synuclein-positive neurons. The absence of TLR4 also had an impact on inflammatory processes, modulating the transcription factors NF-κB p65 and AP-1, and reducing astrogliosis. Importantly, we demonstrated that the absence of TLR4 modulated inflammosome pathway. Moreover, it has been shown that TLR4 modulated motor and non-motor symptoms typical of PD. Our results clearly demonstrated that absence of TLR4 reduces the development of neuroinflammation associated with PD through NF-κB, AP-1 and inflammasome pathways modulation; therefore, TLR4 could be considered as an encouraging therapeutic target in neurodegenerative disorders.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy; Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, USA.
| |
Collapse
|
35
|
Campolo M, Siracusa R, Cordaro M, Filippone A, Gugliandolo E, Peritore AF, Impellizzeri D, Crupi R, Paterniti I, Cuzzocrea S. The association of adelmidrol with sodium hyaluronate displays beneficial properties against bladder changes following spinal cord injury in mice. PLoS One 2019; 14:e0208730. [PMID: 30653511 PMCID: PMC6336272 DOI: 10.1371/journal.pone.0208730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 11/22/2018] [Indexed: 01/02/2023] Open
Abstract
The disruption of coordinated control between the brain, spinal cord and peripheral nervous system caused by spinal cord injury (SCI) leads to several secondary pathological conditions, including lower urinary tract dysfunction. In fact, urinary tract dysfunction associated with SCI is urinary dysfunction could be a consequence of a lack of neuroregeneration of supraspinal pathways that control bladder function. The object of the current research was to explore the effects of adelmidrol + sodium hyaluronate, on bladder damage generated after SCI in mice. Spinal cord was exposed via laminectomy, and SCI was induced by extradural compression at T6 to T7 level, by an aneurysm clip with a closing force of 24 g. Mice were treated intravesically with adelmidrol + sodium hyaluronate daily for 48 h and 7 days after SCI. Adelmidrol + sodium hyaluronate reduced significantly mast cell degranulation and down-regulated the nuclear factor-κB pathway in the bladder after SCI both at 48 h and 7days. Moreover, adelmidrol + sodium hyaluronate reduced nerve growth factor expression, suggesting an association between neurotrophins and bladder pressure. At 7 days after SCI, the bladder was characterized by a marked bacterial infection and proteinuria; surprisingly, adelmidrol + sodium hyaluronate reduced significantly both parameters. These data show the protective roles of adelmidrol + sodium hyaluronate on bladder following SCI, highlighting a potential therapeutic target for the reduction of bladder changes.
Collapse
Affiliation(s)
- Michela Campolo
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Rosalba Siracusa
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Marika Cordaro
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Alessia Filippone
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Enrico Gugliandolo
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Alessio F. Peritore
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Daniela Impellizzeri
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Rosalia Crupi
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Irene Paterniti
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Salvatore Cuzzocrea
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
- Saint Louis University School of Medicine, Department of Pharmacological and Physiological Science, Saint Louis, United States of America
- * E-mail:
| |
Collapse
|
36
|
Shi Z, Ning G, Zhang B, Yuan S, Zhou H, Pan B, Li J, Wei Z, Cao F, Kong X, Feng S. Signatures of altered long noncoding RNAs and messenger RNAs expression in the early acute phase of spinal cord injury. J Cell Physiol 2018; 234:8918-8927. [PMID: 30341912 DOI: 10.1002/jcp.27560] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/14/2018] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) is a highly severe disease and it can lead to the destruction of the motor and sensory function resulting in temporary or permanent disability. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nt that play a critical role in central nervous system (CNS) injury. However, the exact roles of lncRNAs and messenger RNAs (mRNAs) in the early acute phase of SCI remain to be elucidated. We examined the expression of mRNAs and lncRNAs in a rat model at 2 days after SCI and identified the differentially expressed lncRNAs (DE lncRNAs) and differentially expressed mRNAs (DE mRNAs) using microarray analysis. Subsequently, a comprehensive bioinformatics analysis was also performed to clarify the interaction between DE mRNAs. A total of 3,193 DE lncRNAs and 4,308 DE mRNAs were identified between the injured group and control group. Classification, length distribution, and chromosomal distribution of the dysregulated lncRNAs were also performed. The gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed to identify the critical biological processes and pathways. A protein-protein interaction (PPI) network indicated that IL6, TOP2A, CDK1, POLE, CCNB1, TNF, CCNA2, CDC20, ITGAM, and MYC were the top 10 core genes. The subnetworks from the PPI network were identified to further elucidate the most significant functional modules of the DE mRNAs. These data may provide novel insights into the molecular mechanism of the early acute phase of SCI. The identification of lncRNAs and mRNAs may offer potential diagnostic and therapeutic targets for SCI.
Collapse
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Harvard Medical School, Boston, Massachusetts
| | - Guangzhi Ning
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Zhang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiyang Yuan
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Pan
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiahe Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhijian Wei
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fujiang Cao
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
37
|
Toll-Like Receptor 4 (TLR4) Expression Affects Schwann Cell Behavior in vitro. Sci Rep 2018; 8:11179. [PMID: 30046125 PMCID: PMC6060163 DOI: 10.1038/s41598-018-28516-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injury can result in the decreased quality of life and bring us economic burden on society and individuals. Wallerian degeneration (WD) is critical for nerve degeneration and regeneration, but the mechanisms of WD are still elusive. Here, we report the effect of Toll-like receptor 4 (TLR4) on cultured Schwann cells (SCs) in vitro. The data showed that TLR4 expression was up-regulated after sciatic nerve injury of rat. TLR4 was expressed in cultured SCs. Enhanced or silenced expression of TLR4 affected SC proliferation, migration, apoptosis and relative gene expression. Furthermore, altered expression of TLR4 resulted in expression changes in c-Jun, ERK and catenin but not AKT and c-Fos pathways in SCs. These results suggested that TLR4 may be an important effective target in peripheral nerve degeneration and/or regeneration during WD in future investigations.
Collapse
|
38
|
Zhou H, Shi Z, Kang Y, Wang Y, Lu L, Pan B, Liu J, Li X, Liu L, Wei Z, Kong X, Feng S. Investigation of candidate long noncoding RNAs and messenger RNAs in the immediate phase of spinal cord injury based on gene expression profiles. Gene 2018; 661:119-125. [PMID: 29580899 DOI: 10.1016/j.gene.2018.03.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Spinal cord injury (SCI) is a serious devastating condition and it has a high mortality rate and morbidity rate. The early pathological changes in the immediate phase of SCI may play a major part in the development of secondary injury. Alterations in the expression of many long noncoding RNAs (lncRNAs) have been shown to play fundamental roles in the diseases of the central nervous system. However, the roles of lncRNAs and messenger RNAs (mRNAs) in the immediate phase of SCI are not clear. We examined the expression of mRNAs and lncRNAs in a rat model at 2 h after SCI and identified the differentially expressed lncRNAs (DE lncRNAs) and differentially expressed mRNAs (DE mRNAs) using microarray analysis. 772 DE lncRNAs and 992 DE mRNAs were identified in spinal cord samples in the immediate phase following SCI compared with control samples. Moreover, Gene Ontology (GO) term annotation results showed that CXCR chemokine receptor binding, neutrophil apoptotic process, neutrophil migration, neutrophil extravasation, macrophage differentiation, monocyte chemotaxis and cellular response to interleukin-1 (IL-1) were the main significantly enriched GO terms. The results of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were enriched in toll-like receptor signaling pathway, p53 signaling pathway, MAPK signaling pathway and Jak-STAT signaling pathway. IL6, MBOAT4, FOS, TNF, JUN, STAT3, CSF2, MYC, CCL2 and FGF2 were the top 10 high-degree hub nodes and may be important targets in the immediate phase of SCI. The current study on provides novel insights into how lncRNAs and mRNAs regulate the pathogenesis of the immediate phase after SCI.
Collapse
Affiliation(s)
- Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yao Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Bin Pan
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Jun Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, PR China
| | - Lu Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zhijian Wei
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xiaohong Kong
- 221 Laboratory, School of Medicine, Nankai University, Tianjin, PR China.
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
39
|
Yuan J, Zhang X, Zhu R, Cui Z, Hu W. Sparstolonin B attenuates spinal cord injury‑induced inflammation in rats by modulating TLR4‑trafficking. Mol Med Rep 2018; 17:6016-6022. [PMID: 29436632 DOI: 10.3892/mmr.2018.8561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 09/22/2017] [Indexed: 11/06/2022] Open
Abstract
The present study used a spinal cord injury (SCI) model to evaluate whether sparstolonin B was able to prevent SCI, and to investigate the underlying signaling mechanism. Sparstolonin B attenuated the SCI‑induced Batto, Beattie and Bresnahan score and water content in rats. Sparstolonin B attenuated the mRNA expression of proinflammatory cytokines interleukin (IL)‑18, IL‑6, IL‑1β, and IL‑23, decreased the levels of tumor necrosis factor‑α and interferon‑γ, and decreased caspase‑3 activity and apoptosis regulator Bax protein expression in SCI rats. Similarly, sparstolonin B inhibited monocyte chemoattractant protein‑1 mRNA levels, and Toll‑like receptor (TLR) 4, myeloid differentiation primary response protein MyD88 (MyD88) and nuclear factor (NF)‑κB protein levels in SCI rats. The present results suggested that sparstolonin B may attenuate SCI‑induced inflammation and apoptosis in rats by modulating the TLR4/MyD88/NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Jianjun Yuan
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, Hongqiao 300121, P.R. China
| | - Xueli Zhang
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, Hongqiao 300121, P.R. China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, Hongqiao 300121, P.R. China
| | - Zijian Cui
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, Hongqiao 300121, P.R. China
| | - Wei Hu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, Hongqiao 300121, P.R. China
| |
Collapse
|
40
|
Yin H, Jiang T, Deng X, Yu M, Xing H, Ren X. A cellular spinal cord scaffold seeded with rat adipose‑derived stem cells facilitates functional recovery via enhancing axon regeneration in spinal cord injured rats. Mol Med Rep 2017; 17:2998-3004. [PMID: 29257299 PMCID: PMC5783519 DOI: 10.3892/mmr.2017.8238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI), usually resulting in severe sensory and motor deficits, is a major public health concern. Adipose-derived stem cells (ADSCs), one type of adult stem cell, are free from ethical restriction, easily isolated and enriched. Therefore, ADSCs may provide a feasible cell source for cell-based therapies in treatment of SCI. The present study successfully isolated rat ADSCs (rADSCs) from Sprague-Dawley male rats and co-cultured them with acellular spinal cord scaffolds (ASCs). Then, a rat spinal cord hemisection model was built and rats were randomly divided into 3 groups: SCI only, ASC only, and ASC + ADSCs. Furthermore, behavioral tests were conducted to evaluate functional recovery. Hematoxylin & Eosin staining and immunofluorence were carried out to assess histopathological remodeling. In addition, biotinylated dextran amines anterograde tracing was employed to visualize axon regeneration. The data demonstrated that harvested cells, which were positive for cell surface antigen cluster of differentiation (CD) 29, CD44 and CD90 and negative for CD4, detected by flow cytometry analysis, held the potential to differentiate into osteocytes and adipocytes. Rats that received transplantation of ASCs seeded with rADSCs benefited greatly in functional recovery through facilitation of histopathological rehabilitation, axon regeneration and reduction of reactive gliosis. rADSCs co-cultured with ASCs may survive and integrate into the host spinal cord on day 14 post-SCI.
Collapse
Affiliation(s)
- Hong Yin
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Tao Jiang
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Xi Deng
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Miao Yu
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Hui Xing
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Xianjun Ren
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
41
|
Paterniti I, Campolo M, Cordaro M, Impellizzeri D, Siracusa R, Crupi R, Esposito E, Cuzzocrea S. PPAR-α Modulates the Anti-Inflammatory Effect of Melatonin in the Secondary Events of Spinal Cord Injury. Mol Neurobiol 2017; 54:5973-5987. [PMID: 27686077 DOI: 10.1007/s12035-016-0131-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/14/2016] [Indexed: 12/25/2022]
Abstract
Melatonin is the principal secretory product of the pineal gland, and its role as an immunomodulator is well established. Recent evidence shows that melatonin is a scavenger of oxyradicals and peroxynitrite and reduces the development of inflammation and tissue injury events associated with spinal cord trauma. Previous results suggest that peroxisome proliferator-activated receptor α (PPAR-α), a nuclear receptor protein that functions as a transcription factor activated by fatty acids, plays a role in control of secondary inflammatory process associated with spinal cord injury (SCI).With the aim to characterize the role of PPAR-α in melatonin-mediated anti-inflammatory activity, we tested the efficacy of melatonin (30 mg/kg) in an experimental model of spinal cord trauma, induced in mice, by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy, and comparing mice lacking PPAR-α (PPAR-α KO) with wild-type (WT) mice.The results obtained indicate that melatonin-mediated anti-inflammatory activity is weakened in PPAR-α KO mice, as compared to WT controls. In particular, melatonin was less effective in PPAR-α KO, compared to WT mice, as evaluated by inhibition of the degree of spinal cord inflammation and tissue injury, neutrophil infiltration, pro-inflammatory cytokine expression, nuclear factor κB (NF-κB) activation, and inducible nitric oxide synthase (iNOS) expression. This study indicates that PPAR-α can contribute to the anti-inflammatory activity of melatonin in SCI.
Collapse
Affiliation(s)
- I Paterniti
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - M Campolo
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - M Cordaro
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - D Impellizzeri
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - R Siracusa
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - R Crupi
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - E Esposito
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - S Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy.
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO, 63103, USA.
| |
Collapse
|
42
|
Krieg SM, Voigt F, Knuefermann P, Kirschning CJ, Plesnila N, Ringel F. Decreased Secondary Lesion Growth and Attenuated Immune Response after Traumatic Brain Injury in Tlr2/4-/- Mice. Front Neurol 2017; 8:455. [PMID: 28912751 PMCID: PMC5582067 DOI: 10.3389/fneur.2017.00455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022] Open
Abstract
Danger-associated molecular patterns are released by damaged cells and trigger neuroinflammation through activation of non-specific pattern recognition receptors, e.g., toll-like receptors (TLRs). Since the role of TLR2 and 4 after traumatic brain injury (TBI) is still unclear, we examined the outcome and the expression of pro-inflammatory mediators after experimental TBI in Tlr2/4−/− and wild-type (WT) mice. Tlr2/4−/− and WT mice were subjected to controlled cortical injury and contusion volume and brain edema formation were assessed 24 h thereafter. Expression of inflammatory markers in brain tissue was measured by quantitative PCR 15 min, 3 h, 6 h, 12 h, and 24 h after controlled cortical impact (CCI). Contusion volume was significantly attenuated in Tlr2/4−/− mice (29.7 ± 0.7 mm3 as compared to 33.5 ± 0.8 mm3 in WT; p < 0.05) after CCI while brain edema was not affected. Only interleukin (IL)-1β gene expression was increased after CCI in the Tlr2/4−/− relative to WT mice. Inducible nitric oxide synthetase, TNF, IL-6, and COX-2 were similar in injured WT and Tlr2/4−/− mice, while the increase in high-mobility group box 1 was attenuated at 6 h. TLR2 and 4 are consequently shown to potentially promote secondary brain injury after experimental CCI via neuroinflammation and may therefore represent a novel therapeutic target for the treatment of TBI.
Collapse
Affiliation(s)
- Sandro M Krieg
- Department of Neurosurgery, Technische Universität München, Munich, Germany
| | - Florian Voigt
- Department of Neurosurgery, Technische Universität München, Munich, Germany.,Institute for Surgical Research, University of Munich Medical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Pascal Knuefermann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | | | - Nikolaus Plesnila
- Institute for Surgical Research, University of Munich Medical Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Institute for Stroke and Dementia Research, University of Munich Medical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Ringel
- Department of Neurosurgery, Technische Universität München, Munich, Germany.,Department of Neurosurgery, University of Mainz, Mainz, Germany
| |
Collapse
|
43
|
He Z, Zhou Y, Lin L, Wang Q, Khor S, Mao Y, Li J, Zhen Z, Chen J, Gao Z, Wu F, Zhang X, Zhang H, Xu HZ, Wang Z, Xiao J. Dl-3-n-butylphthalide attenuates acute inflammatory activation in rats with spinal cord injury by inhibiting microglial TLR4/NF-κB signalling. J Cell Mol Med 2017; 21:3010-3022. [PMID: 28842949 PMCID: PMC5661102 DOI: 10.1111/jcmm.13212] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
In this study, we examined the neuroprotective effects and anti-inflammatory properties of Dl-3-n-butylphthalide (NBP) in Sprague-Dawley (SD) rats following traumatic spinal cord injury (SCI) as well as microglia activation and inflammatory response both in vivo and in vitro. Our results showed that NBP improved the locomotor recovery of SD rats after SCI an significantly diminished the lesion cavity area of the spinal cord, apoptotic activity in neurons, and the number of TUNEL-positive cells at 7 days post-injury. NBP inhibited activation of microglia, diminished the release of inflammatory mediators, and reduced the upregulation of microglial TLR4/NF-κB expression at 1 day post-injury. In a co-culture system with BV-2 cells and PC12 cells, NBP significantly reduced the cytotoxicity of BV-2 cells following lipopolysaccharide (LPS) stimulation. In addition, NBP reduced the activation of BV-2 cells, diminished the release of inflammatory mediators, and inhibited microglial TLR4/NF-κB expression in BV-2 cells. Our findings demonstrate that NBP may have neuroprotective and anti-inflammatory properties in the treatment of SCI by inhibiting the activation of microglia via TLR4/NF-κB signalling.
Collapse
Affiliation(s)
- Zili He
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yulong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Lin
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yuqin Mao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiawei Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zengming Zhen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenzhen Gao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fenzan Wu
- Department of Neurosurgery, Affiliated Cixi People's Hospital, Wenzhou Medical University, Ningbo, China
| | - Xie Zhang
- Department of Gastroenterology, Ningbo Medical Treatment Center Li Hui-li Hospital, Ningbo, Zhejiang, China
| | - Hongyu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hua-Zi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
44
|
Pattern of cardiotoxin-induced muscle remodeling in distinct TLR-4 deficient mouse strains. Histochem Cell Biol 2017; 148:49-60. [DOI: 10.1007/s00418-017-1556-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2017] [Indexed: 01/04/2023]
|
45
|
Shi LL, Zhang N, Xie XM, Chen YJ, Wang R, Shen L, Zhou JS, Hu JG, Lü HZ. Transcriptome profile of rat genes in injured spinal cord at different stages by RNA-sequencing. BMC Genomics 2017; 18:173. [PMID: 28201982 PMCID: PMC5312572 DOI: 10.1186/s12864-017-3532-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
Background Spinal cord injury (SCI) results in fatal damage and currently has no effective treatment. The pathological mechanisms of SCI remain unclear. In this study, genome-wide transcriptional profiling of spinal cord samples from injured rats at different time points after SCI was performed by RNA-Sequencing (RNA-Seq). The transcriptomes were systematically characterized to identify the critical genes and pathways that are involved in SCI pathology. Results RNA-Seq results were obtained from total RNA harvested from the spinal cords of sham control rats and rats in the acute, subacute, and chronic phases of SCI (1 day, 6 days and 28 days after injury, respectively; n = 3 in every group). Compared with the sham-control group, the number of differentially expressed genes was 1797 in the acute phase (1223 upregulated and 574 downregulated), 6590 in the subacute phase (3460 upregulated and 3130 downregulated), and 3499 in the chronic phase (1866 upregulated and 1633 downregulated), with an adjusted P-value <0.05 by DESeq. Gene ontology (GO) enrichment analysis showed that differentially expressed genes were most enriched in immune response, MHC protein complex, antigen processing and presentation, translation-related genes, structural constituent of ribosome, ion gated channel activity, small GTPase mediated signal transduction and cytokine and/or chemokine activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the most enriched pathways included ribosome, antigen processing and presentation, retrograde endocannabinoid signaling, axon guidance, dopaminergic synapses, glutamatergic synapses, GABAergic synapses, TNF, HIF-1, Toll-like receptor, NF-kappa B, NOD-like receptor, cAMP, calcium, oxytocin, Rap1, B cell receptor and chemokine signaling pathway. Conclusions This study has not only characterized changes in global gene expression through various stages of SCI progression in rats, but has also systematically identified the critical genes and signaling pathways in SCI pathology. These results will expand our understanding of the complex molecular mechanisms involved in SCI and provide a foundation for future studies of spinal cord tissue damage and repair. The sequence data from this study have been deposited into Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra; accession number PRJNA318311). Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3532-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling-Ling Shi
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China.,Department of Immunology, Bengbu Medical College, Anhui, 233030, People's Republic of China
| | - Nan Zhang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Xiu-Mei Xie
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Yue-Juan Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Lin Shen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Jian-Sheng Zhou
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China. .,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China.
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China. .,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China. .,Department of Immunology, Bengbu Medical College, Anhui, 233030, People's Republic of China.
| |
Collapse
|
46
|
Calpain inhibitor attenuates ER stress-induced apoptosis in injured spinal cord after bone mesenchymal stem cells transplantation. Neurochem Int 2016; 97:15-25. [DOI: 10.1016/j.neuint.2016.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/09/2016] [Accepted: 04/28/2016] [Indexed: 12/25/2022]
|
47
|
Salvador B, Arranz A, Francisco S, Córdoba L, Punzón C, Llamas MÁ, Fresno M. Modulation of endothelial function by Toll like receptors. Pharmacol Res 2016; 108:46-56. [PMID: 27073018 DOI: 10.1016/j.phrs.2016.03.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 12/23/2022]
Abstract
Endothelial cells (EC) are able to actively control vascular permeability, coagulation, blood pressure and angiogenesis. Most recently, a role for endothelial cells in the immune response has been described. Therefore, the endothelium has a dual role controlling homeostasis but also being the first line for host defence and tissue damage repair thanks to its ability to mount an inflammatory response. Endothelial cells have been shown to express pattern-recognition receptors (PRR) including Toll-like receptors (TLR) that are activated in response to stimuli within the bloodstream including pathogens and damage signals. TLRs are strategic mediators of the immune response in endothelial cells but they also regulate the angiogenic process critical for tissue repair. Nevertheless, endothelial activation and angiogenesis can contribute to some pathologies. Thus, inappropriate endothelial activation, also known as endothelial dysfunction, through TLRs contributes to tissue damage during autoimmune and inflammatory diseases such as atherosclerosis, hypertension, ischemia and diabetes associated cardiovascular diseases. Also TLR induced angiogenesis is required for the growth of some tumors, atherosclerosis and rheumatoid arthritis, among others. In this review we discuss the importance of various TLRs in modulating the activation of endothelial cells and their importance in immunity to infection and vascular disease as well as their potential as therapeutic targets.
Collapse
Affiliation(s)
| | - Alicia Arranz
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Madrid, Spain.
| | - Sara Francisco
- Diomune SL, Parque Científico de Madrid, Madrid, Spain; Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Madrid, Spain.
| | - Laura Córdoba
- Diomune SL, Parque Científico de Madrid, Madrid, Spain.
| | - Carmen Punzón
- Diomune SL, Parque Científico de Madrid, Madrid, Spain.
| | | | - Manuel Fresno
- Diomune SL, Parque Científico de Madrid, Madrid, Spain; Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|