1
|
Faua C, Ursenbach A, Fuchs A, Caspar S, Jegou F, Ruch Y, Hoellinger B, Laugel E, Velay A, Rey D, Fafi-Kremer S, Gantner P. HIV Productively Infects Highly Differentiated and Exhausted CD4+ T Cells During AIDS. Pathog Immun 2024; 8:92-114. [PMID: 38420260 PMCID: PMC10901154 DOI: 10.20411/pai.v8i2.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Background Throughout HIV infection, productively infected cells generate billions of viral particles and are thus responsible for body-wide HIV dissemination, but their phenotype during AIDS is unknown. As AIDS is associated with immunological changes, analyzing the phenotype of productively infected cells can help understand HIV production during this terminal stage. Methods Blood samples from 15 untreated viremic participants (recent infection, n=5; long-term infection, n=5; active opportunistic AIDS-defining disease, n=5) and 5 participants virologically controlled on antiretroviral therapy (ART) enrolled in the Analysis of the Persistence, Reservoir and HIV Latency (APRIL) study (NCT05752318) were analyzed. Cells expressing the capsid protein p24 (p24+ cells) after 18 hours of resting or 24 hours of stimulation (HIV-Flow) revealed productively infected cells from viremic participants or translation-competent reservoir cells from treated participants, respectively. Results The frequency of productively infected cells tended to be higher during AIDS in comparison with recent and long-term infections (median, 340, 72, and 32/million CD4+ T cells, respectively) and correlated with the plasma viral load at all stages of infection. Altogether, these cells were more frequently CD4low, HLA-ABClow, CD45RA-, Ki67+, PD-1+, with a non-negligible contribution from pTfh (CXCR5+PD-1+) cells, and were not significantly enriched in HIV coreceptors CCR5 nor CXCR4 expression. The comparison markers expression between stages showed that productively infected cells during AIDS were enriched in memory and exhausted cells. In contrast, the frequencies of infected pTfh were lower during AIDS compared to non-AIDS stages. A UMAP analysis revealed that total CD4+ T cells were grouped in 7 clusters and that productive p24+ cells were skewed to given clusters throughout the course of infection. Overall, the preferential targets of HIV during the latest stages seemed to be more frequently highly differentiated (memory, TTD-like) and exhausted cells and less frequently pTfh-like cells. In contrast, translation-competent reservoir cells were less frequent (5/million CD4+ T cells) and expressed more frequently HLA-ABC and less frequently PD-1. Conclusions In long-term infection and AIDS, productively infected cells were differentiated and exhausted. This could indicate that cells with these given features are responsible for HIV production and dissemination in an immune dysfunction environment occurring during the last stages of infection.
Collapse
Affiliation(s)
- Clayton Faua
- INSERM UMR_S1109, Strasbourg University, Strasbourg, France
| | - Axel Ursenbach
- Le Trait d'Union, HIV-Infection Care Center, Strasbourg University Hospital, Strasbourg, France
| | - Anne Fuchs
- Clinical Virology Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Stéphanie Caspar
- Clinical Virology Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Frédérick Jegou
- Clinical Virology Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Yvon Ruch
- Infectious Diseases Department, Strasbourg University Hospital, Strasbourg, France
| | - Baptiste Hoellinger
- Infectious Diseases Department, Strasbourg University Hospital, Strasbourg, France
| | - Elodie Laugel
- INSERM UMR_S1109, Strasbourg University, Strasbourg, France
- Clinical Virology Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Aurélie Velay
- INSERM UMR_S1109, Strasbourg University, Strasbourg, France
- Clinical Virology Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - David Rey
- Le Trait d'Union, HIV-Infection Care Center, Strasbourg University Hospital, Strasbourg, France
| | - Samira Fafi-Kremer
- INSERM UMR_S1109, Strasbourg University, Strasbourg, France
- Clinical Virology Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Pierre Gantner
- INSERM UMR_S1109, Strasbourg University, Strasbourg, France
- Clinical Virology Laboratory, Strasbourg University Hospital, Strasbourg, France
| |
Collapse
|
2
|
Mazzuti L, Turriziani O, Mezzaroma I. The Many Faces of Immune Activation in HIV-1 Infection: A Multifactorial Interconnection. Biomedicines 2023; 11:biomedicines11010159. [PMID: 36672667 PMCID: PMC9856151 DOI: 10.3390/biomedicines11010159] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Chronic immune activation has a significant role in HIV-1 disease pathogenesis and CD4+ T-cell depletion. The causes of chronic inflammation and immune activation are incompletely understood, but they are likely multifactorial in nature, involving both direct and indirect stimuli. Possible explanations include microbial translocation, coinfection, and continued presence of competent replicating virus. In fact, long-term viral suppression treatments are unable to normalize elevated markers of systemic immune activation. Furthermore, high levels of pro-inflammatory cytokines increase susceptibility to premature aging of the immune system. The phenomenon of "inflammaging" has begun to be evident in the last decades, as a consequence of increased life expectancy due to the introduction of cART. Quality of life and survival have improved substantially; however, PLWH are predisposed to chronic inflammatory conditions leading to age-associated diseases, such as inflammatory bowel disease, neurocognitive disorders, cardiovascular diseases, metabolic syndrome, bone abnormalities, and non-HIV-associated cancers. Several approaches have been studied in numerous uncontrolled and/or randomized clinical trials with the aim of reducing immune activation/inflammatory status in PLWH, none of which have achieved consistent results.
Collapse
Affiliation(s)
- Laura Mazzuti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Ombretta Turriziani
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Ivano Mezzaroma
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
3
|
Zingaropoli MA, Parente A, Kertusha B, Campagna R, Tieghi T, Garattini S, Marocco R, Carraro A, Tortellini E, Guardiani M, Dominelli F, Turriziani O, Ciardi MR, Mastroianni CM, Del Borgo C, Lichtner M. Longitudinal Virological and Immunological Profile in a Case of Human Monkeypox Infection. Open Forum Infect Dis 2022; 9:ofac569. [PMID: 36474633 PMCID: PMC9716865 DOI: 10.1093/ofid/ofac569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/29/2022] [Indexed: 10/03/2023] Open
Abstract
In a male with severe proctitis, monkeypox virus DNA was detected in skin lesions, blood, the nasopharynx, and the rectum, underlying generalized viral spreading. Rectal involvement was still found when skin lesions disappeared. At this early stage, an increase of cytotoxic and activated T cells was observed, while a reduction in CD56dimCD57+ NK cells compared with recovery time point was observed.
Collapse
Affiliation(s)
| | - Alberico Parente
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Blerta Kertusha
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Roberta Campagna
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Tiziana Tieghi
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Silvia Garattini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Raffaella Marocco
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Anna Carraro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Eeva Tortellini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Mariasilvia Guardiani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Federica Dominelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Cosmo Del Borgo
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Miriam Lichtner
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
- Department of Neurosciences, Mental Health, and Sense Organs, NESMOS, University of Rome, Rome, Italy
| |
Collapse
|
4
|
Ligotti ME, Pojero F, Accardi G, Aiello A, Caruso C, Duro G, Candore G. Immunopathology and Immunosenescence, the Immunological Key Words of Severe COVID-19. Is There a Role for Stem Cell Transplantation? Front Cell Dev Biol 2021; 9:725606. [PMID: 34595175 PMCID: PMC8477205 DOI: 10.3389/fcell.2021.725606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
The outcomes of Coronavirus disease-2019 (COVID-19) vary depending on the age, health status and sex of an individual, ranging from asymptomatic to lethal. From an immunologic viewpoint, the final severe lung damage observed in COVID-19 should be caused by cytokine storm, driven mainly by interleukin-6 and other pro-inflammatory cytokines. However, which immunopathogenic status precedes this "cytokine storm" and why the male older population is more severely affected, are currently unanswered questions. The aging of the immune system, i.e., immunosenescence, closely associated with a low-grade inflammatory status called "inflammageing," should play a key role. The remodeling of both innate and adaptive immune response observed with aging can partly explain the age gradient in severity and mortality of COVID-19. This review discusses how aging impacts the immune response to the virus, focusing on possible strategies to rejuvenate the immune system with stem cell-based therapies. Indeed, due to immunomodulatory and anti-inflammatory properties, multipotent mesenchymal stem cells (MSCs) are a worth-considering option against COVID-19 adverse outcomes.
Collapse
Affiliation(s)
- Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- International Society on Aging and Disease, Fort Worth, TX, United States
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
5
|
Foulkes AS, Azzoni L, Montaner LJ. Pre-selected class-level testing of longitudinal biomarkers reduces required multiple testing corrections to yield novel insights in longitudinal small sample human studies. STATISTICAL COMMUNICATIONS IN INFECTIOUS DISEASES 2020; 12:20190018. [PMID: 37288470 PMCID: PMC10243175 DOI: 10.1515/scid-2019-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/02/2020] [Indexed: 06/09/2023]
Abstract
Objectives Exploratory studies that aim to evaluate novel therapeutic strategies in human cohorts often involve the collection of hundreds of variables measured over time on a small sample of individuals. Stringent error control for testing hypotheses in this setting renders it difficult to identify statistically signification associations. The objective of this study is to demonstrate how leveraging prior information about the biological relationships among variables can increase power for novel discovery. Methods We apply the class level association score statistic for longitudinal data (CLASS-LD) as an analysis strategy that complements single variable tests. An example is presented that aims to evaluate the relationships among 14 T-cell and monocyte activation variables measured with CD4 T-cell count over three time points after antiretroviral therapy (n=62). Results CLASS-LD using three classes with emphasis on T-cell activation with either classical vs. intermediate/inflammatory monocyte subsets detected associations in two of three classes, while single variable testing detected only one out of the 14 variables considered. Conclusions Application of a class-level testing strategy provides an alternative to single immune variables by defining hypotheses based on a collection of variables that share a known underlying biological relationship. Broader use of class-level analysis is expected to increase the available information that can be derived from limited sample clinical studies.
Collapse
Affiliation(s)
- Andrea S. Foulkes
- Biostatistics Center, Massachusetts General Hospital, Boston, USA
- Department of Medicine, Harvard Medical School, Boston, USA
| | | | | |
Collapse
|
6
|
Iannetta M, Isnard S, Manuzak J, Guillerme JB, Notin M, Bailly K, Andrieu M, Amraoui S, Vimeux L, Figueiredo S, Charmeteau-de Muylder B, Vaton L, Hatton EX, Samri A, Autran B, Thiébaut R, Chaghil N, Glohi D, Charpentier C, Descamps D, Brun-Vézinet F, Matheron S, Cheynier R, Hosmalin A. Conventional Dendritic Cells and Slan + Monocytes During HIV-2 Infection. Front Immunol 2020; 11:1658. [PMID: 32903610 PMCID: PMC7438582 DOI: 10.3389/fimmu.2020.01658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022] Open
Abstract
HIV-2 infection is characterized by low viremia and slow disease progression as compared to HIV-1 infection. Circulating CD14++CD16+ monocytes were found to accumulate and CD11c+ conventional dendritic cells (cDC) to be depleted in a Portuguese cohort of people living with HIV-2 (PLWHIV-2), compared to blood bank healthy donors (HD). We studied more precisely classical monocytes; CD16+ inflammatory (intermediate, non-classical and slan+ monocytes, known to accumulate during viremic HIV-1 infection); cDC1, important for cross-presentation, and cDC2, both depleted during HIV-1 infection. We analyzed by flow cytometry these PBMC subsets from Paris area residents: 29 asymptomatic, untreated PLWHIV-2 from the IMMUNOVIR-2 study, part of the ANRS-CO5 HIV-2 cohort: 19 long-term non-progressors (LTNP; infection ≥8 years, undetectable viral load, stable CD4 counts≥500/μL; 17 of West-African origin -WA), and 10 non-LTNP (P; progressive infection; 9 WA); and 30 age-and sex-matched controls: 16 blood bank HD with unknown geographical origin, and 10 HD of WA origin (GeoHD). We measured plasma bacterial translocation markers by ELISA. Non-classical monocyte counts were higher in GeoHD than in HD (54 vs. 32 cells/μL, p = 0.0002). Slan+ monocyte counts were twice as high in GeoHD than in HD (WA: 28 vs. 13 cells/μL, p = 0.0002). Thus cell counts were compared only between participants of WA origin. They were similar in LTNP, P and GeoHD, indicating that there were no HIV-2 related differences. cDC counts did not show major differences between the groups. Interestingly, inflammatory monocyte counts correlated with plasma sCD14 and LBP only in PLWHIV-2, especially LTNP, and not in GeoHD. In conclusion, in LTNP PLWHIV-2, inflammatory monocyte counts correlated with LBP or sCD14 plasma levels, indicating a potential innate immune response to subclinical bacterial translocation. As GeoHD had higher inflammatory monocyte counts than HD, our data also show that specific controls are important to refine innate immunity studies.
Collapse
Affiliation(s)
- Marco Iannetta
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Stéphane Isnard
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Jennifer Manuzak
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - Mathilde Notin
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Karine Bailly
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Muriel Andrieu
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Sonia Amraoui
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Lene Vimeux
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | | | | | - Laura Vaton
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Etienne X Hatton
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Assia Samri
- Sorbonne Université, Inserm 1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Brigitte Autran
- Sorbonne Université, Inserm 1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Rodolphe Thiébaut
- INSERM, Univ. Bordeaux, CIC 1401, UMR 1219, Bordeaux Population Health Research Center, CHU Bordeaux, Bordeaux, France
| | - Nathalie Chaghil
- INSERM, Univ. Bordeaux, CIC 1401, UMR 1219, Bordeaux Population Health Research Center, CHU Bordeaux, Bordeaux, France
| | - David Glohi
- Service des Maladies Infectieuses, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Charlotte Charpentier
- Service des Maladies Infectieuses, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Diane Descamps
- Service des Maladies Infectieuses, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | | | - Sophie Matheron
- Service des Maladies Infectieuses, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France.,INSERM, UMR 1137, IAME (Infection Antimicrobials Modelling Evolution), Université de Paris, Paris, France
| | - Remi Cheynier
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Anne Hosmalin
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| |
Collapse
|
7
|
Perdomo-Celis F, Medina-Moreno S, Davis H, Bryant J, Zapata JC. HIV Replication in Humanized IL-3/GM-CSF-Transgenic NOG Mice. Pathogens 2019; 8:E33. [PMID: 30871027 PMCID: PMC6470732 DOI: 10.3390/pathogens8010033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/26/2022] Open
Abstract
The development of mouse models that mimic the kinetics of Human Immunodeficiency Virus (HIV) infection is critical for the understanding of the pathogenesis of disease and for the design of novel therapeutic strategies. Here, we describe the dynamics of HIV infection in humanized NOD/Shi-scid-IL2rγnull (NOG) mice bearing the human genes for interleukin (IL)-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF) (NOG-EXL mice). The kinetics of viral load, as well as the frequencies of T-cells, B-cells, Natural killer cells (NK), monocytes, and dendritic cells in blood and secondary lymphoid organs were evaluated throughout the time of infection. In comparison with a non-transgenic humanized mouse (NSG) strain, lymphoid and myeloid populations were more efficiently engrafted in humanized NOG-EXL mice, both in peripheral blood and lymphoid tissues. In addition, HIV actively replicated in humanized NOG-EXL mice, and infection induced a decrease in the percentage of CD4⁺ T-cells, inversion of the CD4:CD8 ratio, and changes in some cell populations, such as monocytes and dendritic cells, that recapitulated those found in human natural infection. Thus, the humanized IL-3/GM-CSF-transgenic NOG mouse model is suitable for the study of the dynamics of HIV infection and provides a tool for basic and preclinical studies.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín 050010, Colombia.
| | - Sandra Medina-Moreno
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Harry Davis
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Joseph Bryant
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Juan C Zapata
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|