1
|
de Barros RC, Araujo da Costa R, Farias SDP, de Albuquerque KCO, Marinho AMR, Campos MB, Marinho PSB, Dolabela MF. In silico studies on leishmanicide activity of limonoids and fatty acids from Carapa guianensis Aubl. Front Chem 2024; 12:1394126. [PMID: 39139919 PMCID: PMC11319150 DOI: 10.3389/fchem.2024.1394126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
The oil of Carapa guianensis showed leishmanicidal activity, with its activity being related to limonoids, but fatty acids are the major constituents of this oil. The present study evaluated the physicochemical, pharmacokinetic, and toxicity profiles of limonoids and fatty acids already identified in the species. Based on these results, 2 limonoids (methyl angosinlate, 6-OH-methyl angosinlate) and 2 fatty acids (arachidic acid; myristic acid) were selected for the prediction of possible targets and molecular docking. Included in this study were: Gedunin, 6α-acetoxygedunin, Methyl angosenlato, 7-deacetoxy-7-oxogedunin, Andirobin, 6-hydroxy-angolensate methyl, 17β-hydroxyazadiradione, 1,2-dihydro-3β-hydroxy-7-deacetoxy-7-oxogedunin, xyllocensin k, 11beta-Hydroxygedunin, 6α,11-11β-diacetoxygedunin, Oleic Acid, Palmitic Acid, Stearic Acid, Arachidic Acid, Myristic Acid, Palmitoleic Acid, Linoleic Acid, Linolenic Acid, and Beenic Acid. Regarding physicochemical aspects, fatty acids violated LogP, and only limonoid 11 violated Lipinski's rule. A common pharmacokinetic aspect was that all molecules were well absorbed in the intestine and inhibited CYP. All compounds showed toxicity in some model, with fatty acids being mutagenic and carcinogenic, and limonoids not being mutagenic and carcinogenic at least for rats. In in vivo models, fatty acids were less toxic. Molecular dockings were performed on COX-2 steroids (15 and 16) and hypoxia-inducible factor 1 alpha for limonoids (3,6), with this target being essential for the intracellular development of leishmania. Limonoids 3 and 6 appear to be promising as leishmanicidal agents, and fatty acids are promising as wound healers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Fani Dolabela
- Pharmaceutical Sciences Postgraduate Program, Federal University of Pará, Belém, PA, Brazil
- Faculty of Pharmacy, Federal University of Pará, Belém, PA, Brazil
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
2
|
DeMichele E, Sosnowski O, Buret AG, Allain T. Regulatory Functions of Hypoxia in Host-Parasite Interactions: A Focus on Enteric, Tissue, and Blood Protozoa. Microorganisms 2023; 11:1598. [PMID: 37375100 PMCID: PMC10303274 DOI: 10.3390/microorganisms11061598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Body tissues are subjected to various oxygenic gradients and fluctuations and hence can become transiently hypoxic. Hypoxia-inducible factor (HIF) is the master transcriptional regulator of the cellular hypoxic response and is capable of modulating cellular metabolism, immune responses, epithelial barrier integrity, and local microbiota. Recent reports have characterized the hypoxic response to various infections. However, little is known about the role of HIF activation in the context of protozoan parasitic infections. Growing evidence suggests that tissue and blood protozoa can activate HIF and subsequent HIF target genes in the host, helping or hindering their pathogenicity. In the gut, enteric protozoa are adapted to steep longitudinal and radial oxygen gradients to complete their life cycle, yet the role of HIF during these protozoan infections remains unclear. This review focuses on the hypoxic response to protozoa and its role in the pathophysiology of parasitic infections. We also discuss how hypoxia modulates host immune responses in the context of protozoan infections.
Collapse
Affiliation(s)
- Emily DeMichele
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olivia Sosnowski
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Thibault Allain
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
3
|
Ben-Cheikh A, Bali A, Guerfali FZ, Atri C, Attia H, Laouini D. Hypoxia-Inducible Factor-1 Alpha Stabilization in Human Macrophages during Leishmania major Infection Is Impaired by Parasite Virulence. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:317-325. [PMID: 36320108 PMCID: PMC9633161 DOI: 10.3347/kjp.2022.60.5.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is one of the master regulators of immune and metabolic cellular functions. HIF-1α, a transcriptional factor whose activity is closely related to oxygen levels, is a target for understanding infectious disease control. Several studies have demonstrated that HIF-1α plays an important role during the infectious process, while its role in relation to parasite virulence has not been addressed. In this work, we studied the expression levels of HIF-1α and related angiogenic vascular endothelial growth factor A (VEGF-A) in human macrophages infected with promastigotes of hypo- or hyper-virulent Leishmania major human isolates. L. major parasites readily subverted host macrophage functions for their survival and induced local oxygen consumption at the site of infection. In contrast to hypo-virulent parasites that induce high HIF-1α expression levels, hyper-virulent L. major reduced HIF-1α expression in macrophages under normoxic or hypoxic conditions, and consequently impeded the expression of VEGF-A mRNA. HIF-1α may play a key role during control of disease chronicity, severity, or outcome.
Collapse
Affiliation(s)
- Ali Ben-Cheikh
- Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis,
Tunisia,Université Tunis El Manar, Tunis,
Tunisia,Faculty of Sciences, Tunis,
Tunisia
| | - Aymen Bali
- Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis,
Tunisia,Université Tunis El Manar, Tunis,
Tunisia
| | - Fatma Z Guerfali
- Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis,
Tunisia,Université Tunis El Manar, Tunis,
Tunisia
| | - Chiraz Atri
- Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis,
Tunisia,Université Tunis El Manar, Tunis,
Tunisia
| | - Hanène Attia
- Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis,
Tunisia,Université Tunis El Manar, Tunis,
Tunisia
| | - Dhafer Laouini
- Institut Pasteur de Tunis, LR16IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis,
Tunisia,Université Tunis El Manar, Tunis,
Tunisia,Corresponding author (; )
| |
Collapse
|
4
|
Saraiva FMS, Cosentino-Gomes D, Inacio JDF, Almeida-Amaral EE, Louzada-Neto O, Rossini A, Nogueira NP, Meyer-Fernandes JR, Paes MC. Hypoxia Effects on Trypanosoma cruzi Epimastigotes Proliferation, Differentiation, and Energy Metabolism. Pathogens 2022; 11:pathogens11080897. [PMID: 36015018 PMCID: PMC9416468 DOI: 10.3390/pathogens11080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, faces changes in redox status and nutritional availability during its life cycle. However, the influence of oxygen fluctuation upon the biology of T. cruzi is unclear. The present work investigated the response of T. cruzi epimastigotes to hypoxia. The parasites showed an adaptation to the hypoxic condition, presenting an increase in proliferation and a reduction in metacyclogenesis. Additionally, parasites cultured in hypoxia produced more reactive oxygen species (ROS) compared to parasites cultured in normoxia. The analyses of the mitochondrial physiology demonstrated that hypoxic condition induced a decrease in both oxidative phosphorylation and mitochondrial membrane potential (ΔΨm) in epimastigotes. In spite of that, ATP levels of parasites cultivated in hypoxia increased. The hypoxic condition also increased the expression of the hexokinase and NADH fumarate reductase genes and reduced NAD(P)H, suggesting that this increase in ATP levels of hypoxia-challenged parasites was a consequence of increased glycolysis and fermentation pathways. Taken together, our results suggest that decreased oxygen levels trigger a shift in the bioenergetic metabolism of T. cruzi epimastigotes, favoring ROS production and fermentation to sustain ATP production, allowing the parasite to survive and proliferate in the insect vector.
Collapse
Affiliation(s)
- Francis M. S. Saraiva
- Trypanosomatids and Vectors Interaction Laboratory, Department of Biochemistry, Roberto Alcantara Gomes Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil
| | - Daniela Cosentino-Gomes
- Institute of Medical Biochemistry Leopoldo De Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Job D. F. Inacio
- Tripanosomatide Biochemistry Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Elmo E. Almeida-Amaral
- Tripanosomatide Biochemistry Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Orlando Louzada-Neto
- Laboratory of Toxicology and Molecular Biology, Department of Biochemistry, IBRAG- UERJ, Rio de Janeiro 20511-010, Brazil
| | - Ana Rossini
- Laboratory of Toxicology and Molecular Biology, Department of Biochemistry, IBRAG- UERJ, Rio de Janeiro 20511-010, Brazil
| | - Natália P. Nogueira
- Trypanosomatids and Vectors Interaction Laboratory, Department of Biochemistry, Roberto Alcantara Gomes Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil
- National Institute of Science and Technology—Molecular Entomology (INCT-EM), Brasília 70000-000, Brazil
| | - José R. Meyer-Fernandes
- Institute of Medical Biochemistry Leopoldo De Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Marcia C. Paes
- Trypanosomatids and Vectors Interaction Laboratory, Department of Biochemistry, Roberto Alcantara Gomes Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil
- National Institute of Science and Technology—Molecular Entomology (INCT-EM), Brasília 70000-000, Brazil
- Correspondence:
| |
Collapse
|
5
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
6
|
miR-294 and miR-410 Negatively Regulate Tnfa, Arginine Transporter Cat1/2, and Nos2 mRNAs in Murine Macrophages Infected with Leishmania amazonensis. Noncoding RNA 2022; 8:ncrna8010017. [PMID: 35202090 PMCID: PMC8875753 DOI: 10.3390/ncrna8010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate cellular processes by the post-transcriptional regulation of gene expression, including immune responses. The shift in the miRNA profiling of murine macrophages infected with Leishmania amazonensis can change inflammatory response and metabolism. L-arginine availability and its conversion into nitric oxide by nitric oxide synthase 2 (Nos2) or ornithine (a polyamine precursor) by arginase 1/2 regulate macrophage microbicidal activity. This work aimed to evaluate the function of miR-294, miR-301b, and miR-410 during early C57BL/6 bone marrow-derived macrophage infection with L. amazonensis. We observed an upregulation of miR-294 and miR-410 at 4 h of infection, but the levels of miR-301b were not modified. This profile was not observed in LPS-stimulated macrophages. We also observed decreased levels of those miRNAs target genes during infection, such as Cationic amino acid transporters 1 (Cat1/Slc7a1), Cat2/Slc7a22 and Nos2; genes were upregulated in LPS stimuli. The functional inhibition of miR-294 led to the upregulation of Cat2 and Tnfa and the dysregulation of Nos2, while miR-410 increased Cat1 levels. miR-294 inhibition reduced the number of amastigotes per infected macrophage, showing a reduction in the parasite growth inside the macrophage. These data identified miR-294 and miR-410 biomarkers for a potential regulator in the inflammatory profiles of microphages mediated by L. amazonensis infection. This research provides novel insights into immune dysfunction contributing to infection outcomes and suggests the use of the antagomiRs/inhibitors of miR-294 and miR-410 as new therapeutic strategies to modulate inflammation and to decrease parasitism.
Collapse
|
7
|
Bettadapura M, Roys H, Bowlin A, Venugopal G, Washam CL, Fry L, Murdock S, Wanjala H, Byrum SD, Weinkopff T. HIF-α Activation Impacts Macrophage Function during Murine Leishmania major Infection. Pathogens 2021; 10:pathogens10121584. [PMID: 34959539 PMCID: PMC8706659 DOI: 10.3390/pathogens10121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmanial skin lesions are characterized by inflammatory hypoxia alongside the activation of hypoxia-inducible factors, HIF-1α and HIF-2α, and subsequent expression of the HIF-α target VEGF-A during Leishmania major infection. However, the factors responsible for HIF-α activation are not known. We hypothesize that hypoxia and proinflammatory stimuli contribute to HIF-α activation during infection. RNA-Seq of leishmanial lesions revealed that transcripts associated with HIF-1α signaling were induced. To determine whether hypoxia contributes to HIF-α activation, we followed the fate of myeloid cells infiltrating from the blood and into hypoxic lesions. Recruited myeloid cells experienced hypoxia when they entered inflamed lesions, and the length of time in lesions increased their hypoxic signature. To determine whether proinflammatory stimuli in the inflamed tissue can also influence HIF-α activation, we subjected macrophages to various proinflammatory stimuli and measured VEGF-A. While parasites alone did not induce VEGF-A, and proinflammatory stimuli only modestly induced VEGF-A, HIF-α stabilization increased VEGF-A during infection. HIF-α stabilization did not impact parasite entry, growth, or killing. Conversely, the absence of ARNT/HIF-α signaling enhanced parasite internalization. Altogether, these findings suggest that HIF-α is active during infection, and while macrophage HIF-α activation promotes lymphatic remodeling through VEGF-A production, HIF-α activation does not impact parasite internalization or control.
Collapse
Affiliation(s)
- Manjunath Bettadapura
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Hayden Roys
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Anne Bowlin
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Gopinath Venugopal
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Charity L. Washam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.W.); (S.D.B.)
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Lucy Fry
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Steven Murdock
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Humphrey Wanjala
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.W.); (S.D.B.)
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
- Correspondence: ; Tel.: +1-501-686-5518
| |
Collapse
|
8
|
Bichiou H, Bouabid C, Rabhi I, Guizani-Tabbane L. Transcription Factors Interplay Orchestrates the Immune-Metabolic Response of Leishmania Infected Macrophages. Front Cell Infect Microbiol 2021; 11:660415. [PMID: 33898331 PMCID: PMC8058464 DOI: 10.3389/fcimb.2021.660415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Leishmaniasis is a group of heterogenous diseases considered as an important public health problem in several countries. This neglected disease is caused by over 20 parasite species of the protozoa belonging to the Leishmania genus and is spread by the bite of a female phlebotomine sandfly. Depending on the parasite specie and the immune status of the patient, leishmaniasis can present a wide spectrum of clinical manifestations. As an obligate intracellular parasite, Leishmania colonize phagocytic cells, mainly the macrophages that orchestrate the host immune response and determine the fate of the infection. Once inside macrophages, Leishmania triggers different signaling pathways that regulate the immune and metabolic response of the host cells. Various transcription factors regulate such immune-metabolic responses and the associated leishmanicidal and inflammatory reaction against the invading parasite. In this review, we will highlight the most important transcription factors involved in these responses, their interactions and their impact on the establishment and the progression of the immune response along with their effect on the physiopathology of the disease.
Collapse
Affiliation(s)
- Haifa Bichiou
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Cyrine Bouabid
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Imen Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia.,Biotechnology Department, Higher Institute of Biotechnology at Sidi-Thabet (ISBST), Biotechpole Sidi-Thabet- University of Manouba, Tunis, Tunisia
| | - Lamia Guizani-Tabbane
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
9
|
Mesquita I, Ferreira C, Moreira D, Kluck GEG, Barbosa AM, Torrado E, Dinis-Oliveira RJ, Gonçalves LG, Beauparlant CJ, Droit A, Berod L, Sparwasser T, Bodhale N, Saha B, Rodrigues F, Cunha C, Carvalho A, Castro AG, Estaquier J, Silvestre R. The Absence of HIF-1α Increases Susceptibility to Leishmania donovani Infection via Activation of BNIP3/mTOR/SREBP-1c Axis. Cell Rep 2021; 30:4052-4064.e7. [PMID: 32209468 DOI: 10.1016/j.celrep.2020.02.098] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/14/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is considered a global regulator of cellular metabolism and innate immune cell functions. Intracellular pathogens such as Leishmania have been reported to manipulate host cell metabolism. Herein, we demonstrate that myeloid cells from myeloid-restricted HIF-1α-deficient mice and individuals with loss-of-function HIF1A gene polymorphisms are more susceptible to L. donovani infection through increased lipogenesis. Absence of HIF-1α leads to a defect in BNIP3 expression, resulting in the activation of mTOR and nuclear translocation of SREBP-1c. We observed the induction of lipogenic gene transcripts, such as FASN, and lipid accumulation in infected HIF-1α-/- macrophages. L. donovani-infected HIF-1α-deficient mice develop hypertriglyceridemia and lipid accumulation in splenic and hepatic myeloid cells. Most importantly, our data demonstrate that manipulating FASN or SREBP-1c using pharmacological inhibitors significantly reduced parasite burden. As such, genetic deficiency of HIF-1α is associated with increased lipid accumulation, which results in impaired host-protective anti-leishmanial functions of myeloid cells.
Collapse
Affiliation(s)
- Inês Mesquita
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carolina Ferreira
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Moreira
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - George Eduardo Gabriel Kluck
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Laboratory of Lipid and Lipoprotein Biochemistry, Medical Biochemistry Institute, Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil
| | - Ana Margarida Barbosa
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Egídio Torrado
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Department of Sciences, IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luís Gafeira Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Charles-Joly Beauparlant
- Département de Médecine Moléculaire-Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Arnaud Droit
- Département de Médecine Moléculaire-Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Niedersachsen 30625, Germany
| | - Tim Sparwasser
- Department of Medical Microbiology and Hygiene, Medical Center of the Johannes Gutenberg-University of Mainz, Obere Zahlbacherstrasse, 6755131 Mainz, Germany
| | | | - Bhaskar Saha
- National Centre for Cell Science, 411007 Pune, India; Case Western Reserve University, Cleveland, OH 44106, USA; Trident Academy of Creative Technology, 751024 Bhubaneswar, Odisha, India
| | - Fernando Rodrigues
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Gil Castro
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jérôme Estaquier
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada; INSERM U1124, Université de Paris, 75006 Paris, France.
| | - Ricardo Silvestre
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
10
|
The Role of HIF in Immunity and Inflammation. Cell Metab 2020; 32:524-536. [PMID: 32853548 DOI: 10.1016/j.cmet.2020.08.002] [Citation(s) in RCA: 347] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/07/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
HIF is a transcription factor that plays an essential role in the cellular response to low oxygen, orchestrating a metabolic switch that allows cells to survive in this environment. In immunity, infected and inflamed tissues are often hypoxic, and HIF helps immune cells adapt. HIF-α stabilization can also occur under normoxia during immunity and inflammation, where it regulates metabolism but in addition can directly regulate expression of immune genes. Here we review the role of HIF in immunity, including its role in macrophages, dendritic cells, neutrophils, T cells, and B cells. Its role in immunity is as essential for cellular responses as it is in its original role in hypoxia, with HIF being implicated in multiple inflammatory diseases and in immunosuppression in tumors.
Collapse
|
11
|
Acuña SM, Floeter-Winter LM, Muxel SM. MicroRNAs: Biological Regulators in Pathogen-Host Interactions. Cells 2020; 9:E113. [PMID: 31906500 PMCID: PMC7016591 DOI: 10.3390/cells9010113] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
An inflammatory response is essential for combating invading pathogens. Several effector components, as well as immune cell populations, are involved in mounting an immune response, thereby destroying pathogenic organisms such as bacteria, fungi, viruses, and parasites. In the past decade, microRNAs (miRNAs), a group of noncoding small RNAs, have emerged as functionally significant regulatory molecules with the significant capability of fine-tuning biological processes. The important role of miRNAs in inflammation and immune responses is highlighted by studies in which the regulation of miRNAs in the host was shown to be related to infectious diseases and associated with the eradication or susceptibility of the infection. Here, we review the biological aspects of microRNAs, focusing on their roles as regulators of gene expression during pathogen-host interactions and their implications in the immune response against Leishmania, Trypanosoma, Toxoplasma, and Plasmodium infectious diseases.
Collapse
Affiliation(s)
| | | | - Sandra Marcia Muxel
- Department of Physiology, Universidade de São Paulo, 05508-090 São Paulo, Brazil; (S.M.A.); (L.M.F.-W.)
| |
Collapse
|
12
|
Leishmania Infection Induces Macrophage Vascular Endothelial Growth Factor A Production in an ARNT/HIF-Dependent Manner. Infect Immun 2019; 87:IAI.00088-19. [PMID: 31451620 PMCID: PMC6803331 DOI: 10.1128/iai.00088-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
Cutaneous leishmaniasis is characterized by vascular remodeling. Following infection with Leishmania parasites, the vascular endothelial growth factor A (VEGF-A)/VEGF receptor 2 (VEGFR-2) signaling pathway mediates lymphangiogenesis, which is critical for lesion resolution. Therefore, we investigated the cellular and molecular mediators involved in VEGF-A/VEGFR-2 signaling using a murine model of infection. We found that macrophages are the predominant cell type expressing VEGF-A during Leishmania major infection. Given that Leishmania parasites activate hypoxia-inducible factor 1α (HIF-1α) and this transcription factor can drive VEGF-A expression, we analyzed the expression of HIF-1α during infection. We showed that macrophages were also the major cell type expressing HIF-1α during infection and that infection-induced VEGF-A production is mediated by ARNT/HIF activation. Furthermore, mice deficient in myeloid ARNT/HIF signaling exhibited larger lesions without differences in parasite numbers. These data show that L. major infection induces macrophage VEGF-A production in an ARNT/HIF-dependent manner and suggest that ARNT/HIF signaling may limit inflammation by promoting VEGF-A production and, thus, lymphangiogenesis during infection.
Collapse
|
13
|
Knight M, Stanley S. HIF-1α as a central mediator of cellular resistance to intracellular pathogens. Curr Opin Immunol 2019; 60:111-116. [PMID: 31229914 DOI: 10.1016/j.coi.2019.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/30/2019] [Accepted: 05/11/2019] [Indexed: 12/12/2022]
Abstract
Hypoxia-inducible transcription factor-1α (HIF-1α) was originally identified as a master regulator of cellular responses to hypoxia. More recently, HIF-1α has emerged as a critical regulator of immune cell function that couples shifts in cellular metabolism to cell type-specific transcriptional outputs. Activation of macrophages with inflammatory stimuli leads to induction of the metabolic program aerobic glycolysis and to HIF-1α stabilization, which reinforce one another in a positive feedback loop that helps drive macrophage activation. This activation of aerobic glycolysis and HIF-1α is important both for production of inflammatory cytokines, such as IL-1β, and for cell intrinsic control of infection. Here, we review the importance of HIF-1α for control of bacterial, fungal, and protozoan intracellular pathogens, highlighting recent findings that reveal mechanisms by which HIF-1α is activated during infection and how HIF-1α coordinates antimicrobial responses of macrophages.
Collapse
Affiliation(s)
- Matthew Knight
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States
| | - Sarah Stanley
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, CA, United States; School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, CA, United States.
| |
Collapse
|
14
|
Costa SS, Fornazim MC, Nowill AE, Giorgio S. Leishmania amazonensisinduces modulation of costimulatory and surface marker molecules in human macrophages. Parasite Immunol 2018; 40:e12519. [DOI: 10.1111/pim.12519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
Affiliation(s)
- S. S. Costa
- Department of Animal Biology; Biology Institute; Campinas State University; Campinas São Paulo Brazil
| | - M. C. Fornazim
- Faculty of Medical Sciences; Campinas State University; Campinas São Paulo Brazil
| | - A. E. Nowill
- Faculty of Medical Sciences; Campinas State University; Campinas São Paulo Brazil
| | - S. Giorgio
- Department of Animal Biology; Biology Institute; Campinas State University; Campinas São Paulo Brazil
| |
Collapse
|
15
|
Schatz V, Neubert P, Rieger F, Jantsch J. Hypoxia, Hypoxia-Inducible Factor-1α, and Innate Antileishmanial Immune Responses. Front Immunol 2018. [PMID: 29520262 PMCID: PMC5827161 DOI: 10.3389/fimmu.2018.00216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Low oxygen environments and accumulation of hypoxia-inducible factors (HIFs) are features of infected and inflamed tissues. Here, we summarize our current knowledge on oxygen levels found in Leishmania-infected tissues and discuss which mechanisms potentially contribute to local tissue oxygenation in leishmanial lesions. Moreover, we review the role of hypoxia and HIF-1 on innate antileishmanial immune responses.
Collapse
Affiliation(s)
- Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Franz Rieger
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Hammami A, Abidin BM, Charpentier T, Fabié A, Duguay AP, Heinonen KM, Stäger S. HIF-1α is a key regulator in potentiating suppressor activity and limiting the microbicidal capacity of MDSC-like cells during visceral leishmaniasis. PLoS Pathog 2017; 13:e1006616. [PMID: 28892492 PMCID: PMC5608422 DOI: 10.1371/journal.ppat.1006616] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/21/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Leishmania donovani is known to induce myelopoiesis and to dramatically increase extramedullary myelopoiesis. This results in splenomegaly, which is then accompanied by disruption of the splenic microarchitecture, a chronic inflammatory environment, and immunosuppression. Chronically inflamed tissues are typically hypoxic. The role of hypoxia on myeloid cell functions during visceral leishmaniasis has not yet been studied. Here we show that L. donovani promotes the output from the bone marrow of monocytes with a regulatory phenotype that function as safe targets for the parasite. We also demonstrate that splenic myeloid cells acquire MDSC-like function in a HIF-1α-dependent manner. HIF-1α is also involved in driving the polarization towards M2-like macrophages and rendering intermediate stage monocytes more susceptible to L. donovani infection. Our results suggest that HIF-1α is a major player in the establishment of chronic Leishmania infection and is crucial for enhancing immunosuppressive functions and lowering leishmanicidal capacity of myeloid cells. The protozoan parasite Leishmania donovani causes chronic infection in the spleen, which is accompanied by a chronic inflammatory environment, an enlargement of the organ, and immunosuppression. The environment of chronically inflamed tissues is characterized by low oxygen levels and tissue disruption, which induce the expression of the transcription factor HIF-1α in all cells. The kinetics of monocyte production and differentiation in the bone marrow and the spleen, and the role of hypoxia in myeloid cell functions during visceral leishmaniasis have not yet been studied. Here we show that L. donovani promotes the output from the bone marrow of monocytes with a regulatory phenotype that function as safe targets for the parasite. We also demonstrate that HIF-1α potentiates inhibitory functions of myeloid cells and is involved in driving the polarization towards M2-like macrophages and rendering them more susceptible to L. donovani infection. Our results suggest that HIF-1α is a major player in the establishment of chronic Leishmania infection and is crucial for enhancing immunosuppressive functions and lowering leishmanicidal capacity of myeloid cells.
Collapse
Affiliation(s)
- Akil Hammami
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), Canada
| | - Belma Melda Abidin
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), Canada
| | - Tania Charpentier
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), Canada
| | - Aymeric Fabié
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), Canada
| | - Annie-Pier Duguay
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), Canada
| | - Krista M. Heinonen
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), Canada
| | - Simona Stäger
- INRS-Institut Armand-Frappier and Center for Host-Parasite interactions, 531 Boulevard des Prairies, Laval (QC), Canada
- * E-mail:
| |
Collapse
|
17
|
Charpentier T, Hammami A, Stäger S. Hypoxia inducible factor 1α: A critical factor for the immune response to pathogens and Leishmania. Cell Immunol 2016; 309:42-49. [DOI: 10.1016/j.cellimm.2016.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022]
|
18
|
Schatz V, Strüssmann Y, Mahnke A, Schley G, Waldner M, Ritter U, Wild J, Willam C, Dehne N, Brüne B, McNiff JM, Colegio OR, Bogdan C, Jantsch J. Myeloid Cell-Derived HIF-1α Promotes Control of Leishmania major. THE JOURNAL OF IMMUNOLOGY 2016; 197:4034-4041. [PMID: 27798163 DOI: 10.4049/jimmunol.1601080] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α), which accumulates in mammalian host organisms during infection, supports the defense against microbial pathogens. However, whether and to what extent HIF-1α expressed by myeloid cells contributes to the innate immune response against Leishmania major parasites is unknown. We observed that Leishmania-infected humans and L. major-infected C57BL/6 mice exhibited substantial amounts of HIF-1α in acute cutaneous lesions. In vitro, HIF-1α was required for leishmanicidal activity and high-level NO production by IFN-γ/LPS-activated macrophages. Mice deficient for HIF-1α in their myeloid cell compartment had a more severe clinical course of infection and increased parasite burden in the skin lesions compared with wild-type controls. These findings were paralleled by reduced expression of type 2 NO synthase by lesional CD11b+ cells. Together, these data illustrate that HIF-1α is required for optimal innate leishmanicidal immune responses and, thereby, contributes to the cure of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Yannic Strüssmann
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Alexander Mahnke
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie, und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Gunnar Schley
- Medizinische Klinik 4, Nephrologie und Hypertensiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Maximilian Waldner
- Medizinische Klinik 1, Gastroenterologie, Pneumologie und Endokrinologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Uwe Ritter
- Institute of Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Jens Wild
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Carsten Willam
- Medizinische Klinik 4, Nephrologie und Hypertensiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nathalie Dehne
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Bernhard Brüne
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Jennifer M McNiff
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510
| | - Oscar R Colegio
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510
| | - Christian Bogdan
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie, und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany;
| |
Collapse
|
19
|
Zhu C, Zhu Q, Wang C, Zhang L, Wei F, Cai Q. Hostile takeover: Manipulation of HIF-1 signaling in pathogen-associated cancers (Review). Int J Oncol 2016; 49:1269-76. [PMID: 27499495 DOI: 10.3892/ijo.2016.3633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/23/2016] [Indexed: 11/05/2022] Open
Abstract
Hypoxia-inducible factor (HIF)-1 is a central regulator in the adaptation process of cell response to hypoxia (low oxygen). Emerging evidence has demonstrated that HIF-1 plays an important role in the development and progression of many types of human diseases, including pathogen-associated cancers. In the present review, we summarize the recent understandings of how human pathogenic agents including viruses, bacteria and parasites deregulate cellular HIF-1 signaling pathway in their associated cancer cells, and highlight the common molecular mechanisms of HIF-1 signaling activated by these pathogenic infection, which could act as potential diagnostic markers and new therapeutic strategies against human infectious cancers.
Collapse
Affiliation(s)
- Caixia Zhu
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Qing Zhu
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Chong Wang
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Liming Zhang
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Qiliang Cai
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
20
|
Dal'Bó Pelegrini M, Pereira JB, Dos Santos Costa S, Salazar Terreros MJ, Degrossoli A, Giorgio S. Evaluation of hypoxia inducible factor targeting pharmacological drugs as antileishmanial agents. ASIAN PAC J TROP MED 2016; 9:652-7. [PMID: 27393092 DOI: 10.1016/j.apjtm.2016.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To evaluate whether hypoxia inducible factor (HIF-1α) targeting pharmacological drugs, echinomycin, resveratrol and CdCl2 which inhibit HIF-1α stimulation, and mimosine, which enhances the stability of HIF-1α present antileishmanial properties. METHODS The leishmanicidal effect of drugs was evaluated in mouse macrophages and Balb/c mouse model for cutaneous leishmaniosis. RESULTS Resveratrol and CdCl2 reduced the parasite load [IC50, (27.3 ± 2.25) μM and (24.8 ± 0.95) μM, respectively]. The IC50 value of echinomycin was (22.7 ± 7.36) nM and mimosine did not alter the parasite load in primary macrophages. The macrophage viability IC50 values for resveratrol, echinomycin and CdCl2 and mimosine were >40 μM, >100 nM, >200 μM and>2000 μM, respectively. In vivo no differences between cutaneous lesions from control, resveratrol- and echinomycin-treated Balb/c mice were detected. CONCLUSIONS Resveratrol, echinomycin and CdCl2 reduce parasite survival in vitro. The HIF-1α targeting pharmacological drugs require further study to more fully determine their anti-Leishmania potential and their role in therapeutic strategies.
Collapse
Affiliation(s)
- Marina Dal'Bó Pelegrini
- Department of Animal Biology, Biology Institute, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Juliana Biar Pereira
- Department of Animal Biology, Biology Institute, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Solange Dos Santos Costa
- Department of Animal Biology, Biology Institute, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | - Adriana Degrossoli
- Department of Animal Biology, Biology Institute, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Selma Giorgio
- Department of Animal Biology, Biology Institute, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
21
|
Hammami A, Charpentier T, Smans M, Stäger S. IRF-5-Mediated Inflammation Limits CD8+ T Cell Expansion by Inducing HIF-1α and Impairing Dendritic Cell Functions during Leishmania Infection. PLoS Pathog 2015; 11:e1004938. [PMID: 26046638 PMCID: PMC4457842 DOI: 10.1371/journal.ppat.1004938] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/06/2015] [Indexed: 11/18/2022] Open
Abstract
Inflammation is known to be necessary for promoting, sustaining, and tuning CD8+ T cell responses. Following experimental Leishmania donovani infection, the inflammatory response is mainly induced by the transcription factor IRF-5. IRF-5 is responsible for the activation of several genes encoding key pro-inflammatory cytokines, such as IL-6 and TNF. Here, we investigate the role of IRF-5-mediated inflammation in regulating antigen-specific CD8+ T cell responses during L. donovani infection. Our data demonstrate that the inflammatory response induced by IRF-5 limits CD8+ T cell expansion and induces HIF-1α in dendritic cells. Ablation of HIF-1α in CD11c+ cells resulted into a higher frequency of short-lived effector cells (SLEC), enhanced CD8+ T cell expansion, and increased IL-12 expression by splenic DCs. Moreover, mice with a targeted depletion of HIF-1α in CD11c+ cells had a significantly lower splenic parasite burden, suggesting that induction of HIF-1α may represent an immune evasive mechanism adopted by Leishmania parasites to establish persistent infections. Inflammation is essential for inducing, sustaining, and regulating CD8+ T cell responses. The transcription factor IRF-5 is mainly responsible for initiating the inflammatory response following experimental Leishmani donovani infection. IRF-5 activates several genes encoding key pro-inflammatory cytokines, such as IL-6 and TNF. In this study, we investigate the role of IRF-5-mediated inflammation in regulating antigen-specific CD8+ T cell responses during L. donovani infection. Our data demonstrate that the inflammatory response induced by IRF-5 limits the expansion CD8+ T cell. This negative effect is mediated by the induction of HIF-1α in dendritic cells. Indeed, we observed a significant increase in CD8+ T cell expansion in mice lacking HIF-1α expression in dendritic cells. Moreover, these mice had a significantly lower parasite burden in the spleen, suggesting that induction of HIF-1α may represent an immune evasive mechanism adopted by Leishmania parasites to establish persistent infections.
Collapse
Affiliation(s)
- Akil Hammami
- INRS—Institut Armand-Frappier, Laval, Quebec, Canada
| | | | - Mélina Smans
- INRS—Institut Armand-Frappier, Laval, Quebec, Canada
| | - Simona Stäger
- INRS—Institut Armand-Frappier, Laval, Quebec, Canada
- * E-mail:
| |
Collapse
|
22
|
Araujo AP, Giorgio S. Immunohistochemical evidence of stress and inflammatory markers in mouse models of cutaneous leishmaniosis. Arch Dermatol Res 2015; 307:671-82. [PMID: 25896942 DOI: 10.1007/s00403-015-1564-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/06/2015] [Accepted: 04/11/2015] [Indexed: 01/20/2023]
Abstract
Leishmanioses are chronic parasitic diseases and host responses are associated with pro- or anti-inflammatory cytokines involved, respectively, in the control or exacerbation of infection. The relevance of other inflammatory mediators and stress markers has not been widely studied and there is a need to search for biomarkers to leishmaniasis. In this work, the stress and inflammatory molecules p38 mitogen-activated protein kinase, cyclooxygenase-2, migration inhibitory factor, macrophage inflammatory protein 2, heat shock protein 70 kDa, vascular endothelial factor (VEGF), hypoxia-inducible factors (HIF-1α and HIF-2α), heme oxygenase and galectin-3 expression were assessed immunohistochemically in self-controlled lesions in C57BL/6 mice and severe lesions in Balb/c mice infected with Leishmania amazonensis. The results indicated that the majority of molecules were expressed in the cutaneous lesions of both C57BL/6 and Balb/c mice during various phases of infection, suggesting no obvious correlation between the stress and inflammatory molecule expression and the control/exacerbation of leishmanial lesions. However, the cytokine VEGF was only detected in C57BL/6 footpad lesions and small lesions in Balb/c mice treated with antimonial pentavalent. These findings suggest that VEGF expression could be a predictive factor for murine leishmanial control, a hypothesis that should be tested in human leishmaniosis.
Collapse
Affiliation(s)
- Alexandra Paiva Araujo
- Department of Animal Biology, Biology Institute, Universidade Estadual de Campinas, Caixa Postal 6109, Campinas, São Paulo, 13083-970, Brazil
| | - Selma Giorgio
- Department of Animal Biology, Biology Institute, Universidade Estadual de Campinas, Caixa Postal 6109, Campinas, São Paulo, 13083-970, Brazil.
| |
Collapse
|
23
|
Jantsch J, Schödel J. Hypoxia and hypoxia-inducible factors in myeloid cell-driven host defense and tissue homeostasis. Immunobiology 2014; 220:305-14. [PMID: 25439732 DOI: 10.1016/j.imbio.2014.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/01/2014] [Accepted: 09/05/2014] [Indexed: 02/08/2023]
Abstract
The impact of tissue oxygenation and hypoxia on immune cells has been recognized as a major determinant of host defense and tissue homeostasis. In this review, we will summarize the available data on tissue oxygenation in inflamed and infected tissue and the effect of low tissue oxygenation on myeloid cell function. Furthermore, we will highlight effects of the master regulators of the cellular hypoxic response, hypoxia-inducible transcription factors (HIF), in myeloid cells in antimicrobial defense and tissue homeostasis.
Collapse
Affiliation(s)
- Jonathan Jantsch
- Institut für Klinische Mikrobiologie und Hygiene, Universitätsklinikum Regensburg, Germany; Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| | - Johannes Schödel
- Medizinische Klinik 4, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Translational Research Center, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
24
|
Mahnke A, Meier RJ, Schatz V, Hofmann J, Castiglione K, Schleicher U, Wolfbeis OS, Bogdan C, Jantsch J. Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages. J Invest Dermatol 2014; 134:2339-2346. [DOI: 10.1038/jid.2014.121] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/03/2014] [Accepted: 02/15/2014] [Indexed: 12/22/2022]
|
25
|
Bhandari T, Nizet V. Hypoxia-Inducible Factor (HIF) as a Pharmacological Target for Prevention and Treatment of Infectious Diseases. Infect Dis Ther 2014; 3:159-74. [PMID: 25134687 PMCID: PMC4269623 DOI: 10.1007/s40121-014-0030-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Indexed: 02/07/2023] Open
Abstract
In the present era of ever-increasing antibiotic resistance and increasingly complex and immunosuppressed patient populations, physicians and scientists are seeking novel approaches to battle difficult infectious disease conditions. Development of a serious infection implies a failure of innate immune capabilities in the patient, and one may consider whether pharmacological strategies exist to correct and enhance innate immune cell function. Hypoxia-inducible factor-1 (HIF-1), the central regulator of the cellular response to hypoxic stress, has recently been recognized to control the activation state and key microbicidal functions of immune cells. HIF-1 boosting drugs are in clinical development for anemia and other indications, and could be repositioned as infectious disease therapeutics. With equal attention to opportunities and complexities, we review our current understanding of HIF-1 regulation of microbial host-pathogen interactions with an eye toward future drug development.
Collapse
Affiliation(s)
- Tamara Bhandari
- Center for Immunity, Infection and Inflammation, Department of Pediatrics and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, USA
| | - Victor Nizet
- Center for Immunity, Infection and Inflammation, Department of Pediatrics and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA.
- Center for Immunity, Infection and Inflammation, Medical Sciences Research 4113, University of California, San Diego, 9500 Gilman Drive, MC 0760, La Jolla, CA, 92093-0760, USA.
| |
Collapse
|
26
|
Ng S, March S, Galstian A, Hanson K, Carvalho T, Mota MM, Bhatia SN. Hypoxia promotes liver-stage malaria infection in primary human hepatocytes in vitro. Dis Model Mech 2013; 7:215-24. [PMID: 24291761 PMCID: PMC3917242 DOI: 10.1242/dmm.013490] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Homeostasis of mammalian cell function strictly depends on balancing oxygen exposure to maintain energy metabolism without producing excessive reactive oxygen species. In vivo, cells in different tissues are exposed to a wide range of oxygen concentrations, and yet in vitro models almost exclusively expose cultured cells to higher, atmospheric oxygen levels. Existing models of liver-stage malaria that utilize primary human hepatocytes typically exhibit low in vitro infection efficiencies, possibly due to missing microenvironmental support signals. One cue that could influence the infection capacity of cultured human hepatocytes is the dissolved oxygen concentration. We developed a microscale human liver platform comprised of precisely patterned primary human hepatocytes and nonparenchymal cells to model liver-stage malaria, but the oxygen concentrations are typically higher in the in vitro liver platform than anywhere along the hepatic sinusoid. Indeed, we observed that liver-stage Plasmodium parasite development in vivo correlates with hepatic sinusoidal oxygen gradients. Therefore, we hypothesized that in vitro liver-stage malaria infection efficiencies might improve under hypoxia. Using the infection of micropatterned co-cultures with Plasmodium berghei, Plasmodium yoelii or Plasmodium falciparum as a model, we observed that ambient hypoxia resulted in increased survival of exo-erythrocytic forms (EEFs) in hepatocytes and improved parasite development in a subset of surviving EEFs, based on EEF size. Further, the effective cell surface oxygen tensions (pO2) experienced by the hepatocytes, as predicted by a mathematical model, were systematically perturbed by varying culture parameters such as hepatocyte density and height of the medium, uncovering an optimal cell surface pO2 to maximize the number of mature EEFs. Initial mechanistic experiments revealed that treatment of primary human hepatocytes with the hypoxia mimetic, cobalt(II) chloride, as well as a HIF-1α activator, dimethyloxalylglycine, also enhance P. berghei infection, suggesting that the effect of hypoxia on infection is mediated in part by host-dependent HIF-1α mechanisms.
Collapse
Affiliation(s)
- Shengyong Ng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Lemaire J, Mkannez G, Guerfali FZ, Gustin C, Attia H, Sghaier RM, Dellagi K, Laouini D, Renard P. MicroRNA expression profile in human macrophages in response to Leishmania major infection. PLoS Negl Trop Dis 2013; 7:e2478. [PMID: 24098824 PMCID: PMC3789763 DOI: 10.1371/journal.pntd.0002478] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 08/30/2013] [Indexed: 12/31/2022] Open
Abstract
Background Leishmania (L.) are intracellular protozoan parasites able to survive and replicate in the hostile phagolysosomal environment of infected macrophages. They cause leishmaniasis, a heterogeneous group of worldwide-distributed affections, representing a paradigm of neglected diseases that are mainly embedded in impoverished populations. To establish successful infection and ensure their own survival, Leishmania have developed sophisticated strategies to subvert the host macrophage responses. Despite a wealth of gained crucial information, these strategies still remain poorly understood. MicroRNAs (miRNAs), an evolutionarily conserved class of endogenous 22-nucleotide non-coding RNAs, are described to participate in the regulation of almost every cellular process investigated so far. They regulate the expression of target genes both at the levels of mRNA stability and translation; changes in their expression have a profound effect on their target transcripts. Methodology/Principal Findings We report in this study a comprehensive analysis of miRNA expression profiles in L. major-infected human primary macrophages of three healthy donors assessed at different time-points post-infection (three to 24 h). We show that expression of 64 out of 365 analyzed miRNAs was consistently deregulated upon infection with the same trends in all donors. Among these, several are known to be induced by TLR-dependent responses. GO enrichment analysis of experimentally validated miRNA-targeted genes revealed that several pathways and molecular functions were disturbed upon parasite infection. Finally, following parasite infection, miR-210 abundance was enhanced in HIF-1α-dependent manner, though it did not contribute to inhibiting anti-apoptotic pathways through pro-apoptotic caspase-3 regulation. Conclusions/Significance Our data suggest that alteration in miRNA levels likely plays an important role in regulating macrophage functions following L. major infection. These results could contribute to better understanding of the dynamics of gene expression in host cells during leishmaniasis. Leishmania parasites belong to different species, each one characterized by specific vectors and reservoirs, and causes cutaneous or visceral disease(s) of variable clinical presentation and severity. In its mammalian host, the parasite is an obligate intracellular pathogen infecting the monocyte/macrophage lineage. Leishmania have developed ambiguous relationships with macrophages. Indeed, these cells are the shelter of invading parasites, where they will grow and eventually will reside in a silent state for life. But macrophages are also the cells that participate, through the induction of several pro-inflammatory mediators and antigen presentation, to shape the host immune response and ultimately kill the invader. To subvert these anti-parasite responses, Leishmania manipulate the host machinery for their own differentiation and survival. We aimed to evaluate the impact of L. major (the causative agent of zoonotic cutaneous leishmaniasis) infection on deregulation of non-coding miRNAs, a class of important regulators of gene expression. Our results revealed the implication of several miRNAs on macrophage fate upon parasite infection through regulation of different pathways, including cell death. Our findings provided a new insight for understanding mechanisms governing this miRNA deregulation by parasite infection and will help to provide clues for the development of control strategies for this disease.
Collapse
Affiliation(s)
- Julien Lemaire
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS-University of Namur, Namur, Belgium
| | - Ghada Mkannez
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Fatma Z. Guerfali
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Cindy Gustin
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS-University of Namur, Namur, Belgium
| | - Hanène Attia
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Rabiaa M. Sghaier
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | | | - Koussay Dellagi
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
- Institut de Recherche pour le Développement (IRD) et Centre de Recherche et de Veille sur les Maladies Emergentes dans l'Océan Indien (CRVOI), Sainte Clotilde, Reunion Island, France
| | - Dhafer Laouini
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
- * E-mail: , (DL); (PR)
| | - Patricia Renard
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS-University of Namur, Namur, Belgium
- * E-mail: , (DL); (PR)
| |
Collapse
|
28
|
Giorgio S. Macrophages: plastic solutions to environmental heterogeneity. Inflamm Res 2013; 62:835-43. [DOI: 10.1007/s00011-013-0647-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/05/2013] [Indexed: 12/14/2022] Open
|
29
|
Infection by Leishmania amazonensis in mice: a potential model for chronic hypoxia. Acta Histochem 2012; 114:797-804. [PMID: 22360823 DOI: 10.1016/j.acthis.2012.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 11/20/2022]
Abstract
Hypoxia is a common feature of injured and infected tissues. Hypoxia inducible factors 1α and 2α (HIF-1α, HIF-2α) are heterodimeric transcription factors mediating the cellular responses to hypoxia and also the vascular endothelial growth factor (VEGF). VEGF is a cytokine which can be induced by hypoxia, whose pathogenic mechanisms are still unclear and which is the subject of debate. Murine cutaneous lesions during Leishmania amazonensis parasite infection are chronic, although they are small and self-controlled in C57BL/6 mice and severe in BALB/c mice. In the present study we examined the presence of hypoxia, HIF-1α, HIF-2α and VEGF during the course of infection in both mouse strains. Hypoxia was detected in lesions from BALB/c mice by pimonidazole marking, which occurred earlier than in lesions from C57Bl/6 mice. The lesions in the BALB/c mice showed HIF-1α and HIF-2α expression in the cytoplasm of macrophages and failed to promote any VEGF expression, while lesions in the C57BL/6 mice showed HIF-2α nuclear accumulation and subsequent VEGF expression. In conclusion, the animal models of leishmaniasis demonstrated a diversity of patterns of expression, cell localization and activity of the main transducers of hypoxia and may be useful models for studying the pathogenic mechanisms of HIF-1α and HIF-2α during chronic hypoxic diseases.
Collapse
|
30
|
Singh AK, Mukhopadhyay C, Biswas S, Singh VK, Mukhopadhyay CK. Intracellular pathogen Leishmania donovani activates hypoxia inducible factor-1 by dual mechanism for survival advantage within macrophage. PLoS One 2012; 7:e38489. [PMID: 22701652 PMCID: PMC3373497 DOI: 10.1371/journal.pone.0038489] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
Recent evidence established a crucial role for mammalian oxygen sensing transcription factor hypoxia inducible factor-1 (HIF-1) in innate immunity against intracellular pathogens. In response to most of these pathogens host phagocytes increase transcription of HIF-1α, the regulatory component of HIF-1 to express various effector molecules against invaders. Leishmania donovani (LD), a protozoan parasite and the causative agent of fatal visceral leishmaniasis resides in macrophages within mammalian host. The mechanism of HIF-1 activation or its role in determining the fate of LD in infected macrophages is still not known. To determine that J774 macrophages were infected with LD and about four-fold increase in HIF-1 activity and HIF-1α expression were detected. A strong increase in HIF-1α expression and nuclear localization was also detected in LD-infected J774 cells, peritoneal macrophages and spleen derived macrophages of LD-infected BALB/c mice. A two-fold increase in HIF-1α mRNA was detected in LD-infected macrophages suggesting involvement of a transcriptional mechanism that was confirmed by promoter activity. We further revealed that LD also induced HIF-1α expression by depleting host cellular iron pool to affect prolyl hydroxylase activity resulting in to stabilization of HIF-1α. To determine the role of HIF-1 on intracellular LD, cells were transfected with HIF-1α siRNA to attenuate its expression and then infected with LD. Although, initial infection rate of LD in HIF-1α attenuated cells was not affected but intracellular growth of LD was significantly inhibited; while, over-expression of stabilized form of HIF-1α promoted intracellular growth of LD in host macrophage. Our results strongly suggest that LD activates HIF-1 by dual mechanism for its survival advantage within macrophage.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Chaitali Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sudipta Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vandana Kumari Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Chinmay K. Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
31
|
Degrossoli A, Arrais-Silva WW, Colhone MC, Gadelha FR, Joazeiro PP, Giorgio S. The Influence of Low Oxygen on Macrophage Response to Leishmania Infection. Scand J Immunol 2011; 74:165-75. [DOI: 10.1111/j.1365-3083.2011.02566.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Araújo AP, Frezza TF, Allegretti SM, Giorgio S. Hypoxia, hypoxia-inducible factor-1α and vascular endothelial growth factor in a murine model of Schistosoma mansoni infection. Exp Mol Pathol 2010; 89:327-33. [PMID: 20858486 DOI: 10.1016/j.yexmp.2010.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/09/2010] [Accepted: 09/09/2010] [Indexed: 11/28/2022]
Abstract
Schistosomiasis mansoni is a chronic parasitic disease where much of the symptomatology is attributed to granuloma formation, an immunopathological reaction against Schistosoma eggs. To more clearly understand the immunopathology of schistosomiasis, the tissue microenvironment generated by S. mansoni infected mice was investigated. Using the hypoxia marker pimonidazole, we provide immunohistochemical evidence that hypoxia occurred in inflammatory cells infiltrated around the eggs and cells surrounding granulomas in the liver, intestine, spleen and lungs of infected mice. Hypoxia-inducible factor-1α (HIF-1α) was mainly expressed in inflammatory cells surrounding the eggs and in hepatocytes surrounding cellular and fibrocellular granulomas in infected mouse liver. HIF-1α expression was also verified in granulomas in the other tissues tested (intestine, spleen and lungs). Vascular endothelial growth factor (VEGF) expression was observed in the extracellular space surrounding inflammatory cells in liver granuloma. The VEGF expression pattern verified in infected mouse liver was very similar to that observed in the other tissues tested. A strong positive correlation occurred between pimonidazole binding and HIF-1α and VEGF expression in the tissues tested, except for lung. This work is the first evidence that infection by a helminth parasite, S. mansoni, produces a hypoxic tissue microenvironment and induces HIF-1α and VEGF expression.
Collapse
Affiliation(s)
- Alexandra Paiva Araújo
- Department of Animal Biology, Biology Institute, Universidade Estadual de Campinas, Caixa Postal 6109, Cep 13083-970, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
33
|
BOSSETO MAIRACEGATTI, PALMA PATRICIAVIANNABONINI, COVAS DIMASTADEU, GIORGIO SELMA. Hypoxia modulates phenotype, inflammatory response, and leishmanial infection of human dendritic cells. APMIS 2010; 118:108-14. [DOI: 10.1111/j.1600-0463.2009.02568.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Ayres DC, Pinto LA, Giorgio S. Efficacy of pentavalent antimony, amphotericin B, and miltefosine in Leishmania amazonensis-infected macrophages under normoxic and hypoxic conditions. J Parasitol 2009; 94:1415-7. [PMID: 18576874 DOI: 10.1645/ge-1613.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 05/19/2008] [Indexed: 11/10/2022] Open
Abstract
Recently, our group demonstrated that mouse lesions infected with Leishmania amazonensis are hypoxic. Evidence indicates the negative impact of hypoxia on the efficacy of a variety of chemotherapeutic agents against tumors, fungi, bacteria, and malaria parasites. In the present study, comparison of the effect of antileishmanial drugs on L. amazonensis-infected macrophages under normoxic and hypoxic conditions was performed. We compared the effect of 5% oxygen tension with a tension of 21% oxygen on peritoneal murine macrophage cultures infected with the parasite and treated with glucantime, amphotericin B, or miltefosine. Analysis of the infection index (percentage of infected macrophages x number of amastigotes per macrophage), dose-dependent efficacy of drugs, and IC(50) values demonstrated that hypoxia conferred a small, but significant, resistance to all 3 antileishmanial drugs. The present finding suggests that in vitro assays under hypoxia should not be neglected in drug studies.
Collapse
Affiliation(s)
- D C Ayres
- Departamento de Parasitologia, Instituto de Biologia, Universidade Estadual de Campinas, Cx. Postal 6109, Campinas, SP, Brazil
| | | | | |
Collapse
|
35
|
Pereira BAS, Alves CR. Immunological characteristics of experimental murine infection with Leishmania (Leishmania) amazonensis. Vet Parasitol 2008; 158:239-55. [PMID: 18922635 DOI: 10.1016/j.vetpar.2008.09.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/02/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
Abstract
The murine models of Leishmania infection are well-studied and suitable models for studying this disease, which, despite its incidence of nearly 2 million new cases worldwide per year and its prevalence of 12 million cases, has been a somewhat neglected disease. Data obtained using such models are important for a better understanding of the disease in humans due to similarities in physiology and the advantage provided by the uniform infection profile within each mouse strain. In this review, we focus on studies of experimental murine infection with Leishmania (Leishmania) amazonensis, a species that has been associated with infections exhibiting various clinical features in humans. Mainly, we point out and discuss reports on: the effects of variations of the inoculum (such as strain, site, and size) in the establishment and development of the infection; characteristics of the infection in distinct mouse strains; and, the effects and subversions of the infection on components of the host innate and adaptive immune responses. The results obtained in these studies show that L. (L.) amazonensis infection in mice presents some unique features and immunoregulatory mechanisms, making it an interesting model for obtaining further knowledge of potential drugs targets and immunotherapy in Leishmania infection.
Collapse
Affiliation(s)
- Bernardo Acácio Santini Pereira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|