1
|
Groffmann J, Hoppe I, Ahmed WAN, Hoang Y, Gryzik S, Radbruch A, Worm M, Beyer K, Baumgrass R. Identification of a New and Effective Marker Combination for a Standardized and Automated Bin-Based Basophil Activation Test (BAT) Analysis. Diagnostics (Basel) 2024; 14:1959. [PMID: 39272743 PMCID: PMC11394212 DOI: 10.3390/diagnostics14171959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
(1) Background: The basophil activation test (BAT) is a functional whole blood-based ex vivo assay to quantify basophil activation after allergen exposure by flow cytometry. One of the most important prerequisites for the use of the BAT in the routine clinical diagnosis of allergies is a reliable, standardized and reproducible data analysis workflow. (2) Methods: We re-analyzed a public mass cytometry dataset from peanut (PN) allergic patients (n = 6) and healthy controls (n = 3) with our binning approach "pattern recognition of immune cells" (PRI). Our approach enabled a comprehensive analysis of the dataset, evaluating 30 markers to achieve optimal basophil identification and activation through multi-parametric analysis and visualization. (3) Results: We found FcεRIα/CD32 (FcγRII) as a new marker couple to identify basophils and kept CD63 as an activation marker to establish a modified BAT in combination with our PRI analysis approach. Based on this, we developed an algorithm for automated raw data processing, which enables direct data analysis and the intuitive visualization of the test results including controls and allergen stimulations. Furthermore, we discovered that the expression pattern of CD32 correlated with FcεRIα, anticorrelated with CD63 and was detectable in both the re-analyzed public dataset and our own flow cytometric results. (4) Conclusions: Our improved BAT, combined with our PRI procedure (bin-BAT), provides a reliable test with a fully reproducible analysis. The advanced bin-BAT enabled the development of an automated workflow with an intuitive visualization to discriminate allergic patients from non-allergic individuals.
Collapse
Affiliation(s)
- Johannes Groffmann
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, 10117 Berlin, Germany
| | - Ines Hoppe
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, 10117 Berlin, Germany
| | | | - Yen Hoang
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, 10117 Berlin, Germany
| | - Stefanie Gryzik
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, 10117 Berlin, Germany
| | - Andreas Radbruch
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, 10117 Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Ria Baumgrass
- German Rheumatology Research Center (DRFZ), A Leibniz Institute, 10117 Berlin, Germany
- Institute of Biochemistry and Biology, Faculty of Science, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
2
|
Xiao L, Zhang L, Guo C, Xin Q, Gu X, Jiang C, Wu J. "Find Me" and "Eat Me" signals: tools to drive phagocytic processes for modulating antitumor immunity. Cancer Commun (Lond) 2024; 44:791-832. [PMID: 38923737 PMCID: PMC11260773 DOI: 10.1002/cac2.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Phagocytosis, a vital defense mechanism, involves the recognition and elimination of foreign substances by cells. Phagocytes, such as neutrophils and macrophages, rapidly respond to invaders; macrophages are especially important in later stages of the immune response. They detect "find me" signals to locate apoptotic cells and migrate toward them. Apoptotic cells then send "eat me" signals that are recognized by phagocytes via specific receptors. "Find me" and "eat me" signals can be strategically harnessed to modulate antitumor immunity in support of cancer therapy. These signals, such as calreticulin and phosphatidylserine, mediate potent pro-phagocytic effects, thereby promoting the engulfment of dying cells or their remnants by macrophages, neutrophils, and dendritic cells and inducing tumor cell death. This review summarizes the phagocytic "find me" and "eat me" signals, including their concepts, signaling mechanisms, involved ligands, and functions. Furthermore, we delineate the relationships between "find me" and "eat me" signaling molecules and tumors, especially the roles of these molecules in tumor initiation, progression, diagnosis, and patient prognosis. The interplay of these signals with tumor biology is elucidated, and specific approaches to modulate "find me" and "eat me" signals and enhance antitumor immunity are explored. Additionally, novel therapeutic strategies that combine "find me" and "eat me" signals to better bridge innate and adaptive immunity in the treatment of cancer patients are discussed.
Collapse
Affiliation(s)
- Lingjun Xiao
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Louqian Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Ciliang Guo
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Xiaosong Gu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| |
Collapse
|
3
|
Zhang J, Yang X, Chen G, Hu J, He Y, Ma J, Ma Z, Chen H, Huang Y, Wu Q, Liu Y, Yu L, Zhang H, Lai H, Zhang J, Zhai J, Huang M, Zou Z, Tao A. Efficacy and safety of intratonsillar immunotherapy for allergic rhinitis: A randomized, double-blind, placebo-controlled clinical trial. Ann Allergy Asthma Immunol 2024; 132:346-354.e1. [PMID: 37913839 DOI: 10.1016/j.anai.2023.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND A lower adherence rate existed in patients receiving allergen-specific immunotherapy due to its lengthy period and adverse effects even though it is the only curative treatment for IgE-mediated allergies. Therefore, exploring innovative allergen-specific immunotherapy routes is necessary. OBJECTIVE To explore the efficacy and safety of the intratonsillar injection of house dust mite (HDM) extract in patients with HDM-induced allergic rhinitis (AR). METHODS A randomized, double-blind, placebo-controlled clinical trial was conducted. A total of 80 patients with HDM-induced AR were randomized to receive 6 intratonsillar injections with HDM extract or placebo in 3 months. The total nasal symptom score (TNSS), visual analogue scale of nasal symptoms, combined symptom and medication score, mini rhinoconjunctivitis quality of life questionnaire, and serum allergen-specific IgG4 to Dermatophagoides pteronyssinus were all monitored at baseline and 3 months, 6 months, and 12 months after the treatment was finished. The intent-to-treat and per-protocol set (PPS) are both analyzed. RESULTS The primary end points TNSS and ΔTNSS were improved significantly at 3 months after the patients with AR finished a 3-month 6-injection intratonsillar immunotherapy compared with those in the placebo treatment in both intent-to-treat and PPS. Results of visual analogue scale, combined symptom and medication score, and mini rhinoconjunctivitis quality of life questionnaire were also improved significantly at 3 months after the treatment in PPS. However, the improvement effect of intratonsillar immunotherapy at 6 and 12 months was limited and uncertain based on the data. The increase of serum Der p IgG4 in the active group was significantly higher than that in the placebo group at 3, 6, and 12 months after the treatment was finished. Adverse events were monitored, and no systemic adverse reactions were observed. CONCLUSION The clinical trial revealed that intratonsillar injection with HDM extract was safe and effective in patients with AR. Optimizing the protocol and allergen formulations is expected to increase and maintain the efficacy of this novel approach. TRIAL REGISTRATION https://www.chictr.org.cn/index.html, identifier: ChiCTR-TRC-13003600.
Collapse
Affiliation(s)
- Junyan Zhang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaobin Yang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guangui Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jintao Hu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ying He
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jinxiang Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhaoen Ma
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huifang Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yuyi Huang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qiurong Wu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yongping Liu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lu Yu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Hong Zhang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - He Lai
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jianguo Zhang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jinming Zhai
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Minqi Huang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zehong Zou
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ailin Tao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
4
|
Chen K, Hao Y, Guzmán M, Li G, Cerutti A. Antibody-mediated regulation of basophils: emerging views and clinical implications. Trends Immunol 2023; 44:408-423. [PMID: 37147229 PMCID: PMC10219851 DOI: 10.1016/j.it.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
An increasing number of human diseases, including allergies, infections, inflammation, and cancer, involve roles for basophils. Traditionally viewed as the rarest leukocytes that are present only in the circulation, basophils have recently emerged as important players in systemic as well as tissue-specific immune responses. Their functions are regulated by immunoglobulins (Igs), and this enables basophils to integrate diverse adaptive and innate immunity signals. IgE is well known to regulate basophil responses in the context of type 2 immunity and allergic inflammation; however, growing evidence shows that IgG, IgA, and IgD also shape specific aspects of basophil functions relevant to many human diseases. We discuss recent mechanistic advances underpinning antibody-mediated basophil responses and propose strategies for the treatment of basophil-associated disorders.
Collapse
Affiliation(s)
- Kang Chen
- Departments of Obstetrics and Gynecology, Oncology, Biochemistry, and Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yujing Hao
- Departments of Obstetrics and Gynecology, Oncology, Biochemistry, and Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mauricio Guzmán
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona 08003, Spain
| | - Genxia Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Andrea Cerutti
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona 08003, Spain; Marc and Jennifer Lipschultz Precision Immunology Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona Biomedical Research Park, Barcelona 08003, Spain.
| |
Collapse
|
5
|
Zala A, Thomas R. Antigen-specific immunotherapy to restore antigen-specific tolerance in Type 1 diabetes and Graves' disease. Clin Exp Immunol 2023; 211:164-175. [PMID: 36545825 PMCID: PMC10019129 DOI: 10.1093/cei/uxac115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes and Graves' disease are chronic autoimmune conditions, characterized by a dysregulated immune response. In Type 1 diabetes, there is beta cell destruction and subsequent insulin deficiency whereas in Graves' disease, there is unregulated excessive thyroid hormone production. Both diseases result in significant psychosocial, physiological, and emotional burden. There are associated risks of diabetic ketoacidosis and hypoglycaemia in Type 1 diabetes and risks of thyrotoxicosis and orbitopathy in Graves' disease. Advances in the understanding of the immunopathogenesis and response to immunotherapy in Type 1 diabetes and Graves' disease have facilitated the introduction of targeted therapies to induce self-tolerance, and subsequently, the potential to induce long-term remission if effective. We explore current research surrounding the use of antigen-specific immunotherapies, with a focus on human studies, in Type 1 diabetes and Graves' disease including protein-based, peptide-based, dendritic-cell-based, and nanoparticle-based immunotherapies, including discussion of factors to be considered when translating immunotherapies to clinical practice.
Collapse
Affiliation(s)
- Aakansha Zala
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Ranjeny Thomas
- Correspondence: Ranjeny Thomas, Frazer Institute, The University of Queensland.
| |
Collapse
|
6
|
Gonzalez-Visiedo M, Li X, Munoz-Melero M, Kulis MD, Daniell H, Markusic DM. Single-dose AAV vector gene immunotherapy to treat food allergy. Mol Ther Methods Clin Dev 2022; 26:309-322. [PMID: 35990748 PMCID: PMC9361215 DOI: 10.1016/j.omtm.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022]
Abstract
Immunotherapies for patients with food allergy have shown some success in limiting allergic responses. However, these approaches require lengthy protocols with repeated allergen dosing and patients can relapse following discontinuation of treatment. The purpose of this study was to test if a single dose of an adeno-associated virus (AAV) vector can safely prevent and treat egg allergy in a mouse model. AAV vectors expressing ovalbumin (OVA) under an ubiquitous or liver-specific promoter were injected prior to or after epicutaneous sensitization with OVA. Mice treated with either AAV8-OVA vector were completely protected from allergy sensitization. These animals had a significant reduction in anaphylaxis mediated by a reduction in OVA-specific IgE titers. In mice with established OVA allergy, allergic responses were mitigated only in mice treated with an AAV8-OVA vector expressing OVA from an ubiquitous promoter. In conclusion, an AAV vector with a liver-specific promoter was more effective for allergy prevention, but higher OVA levels were necessary for reducing symptoms in preexisting allergy. Overall, our AAV gene immunotherapy resulted in an expansion of OVA-specific FoxP3+ CD4+ T cells, an increase in the regulatory cytokine IL-10, and a reduction in the IgE promoting cytokine IL-13.
Collapse
Affiliation(s)
- Miguel Gonzalez-Visiedo
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| | - Xin Li
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| | - Maite Munoz-Melero
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| | - Michael D Kulis
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M Markusic
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
McKendry RT, Kwok M, Hemmings O, James LK, Santos AF. Allergen-specific IgG show distinct patterns in persistent and transient food allergy. Pediatr Allergy Immunol 2021; 32:1508-1518. [PMID: 34057765 DOI: 10.1111/pai.13567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Immediate food-allergic reactions are IgE-mediated, but many individuals with detectable allergen-specific IgE do not react to the food. Allergen-specific IgG may interfere with allergen-IgE interaction and/or through intracellular inhibitory signalling to suppress mast cell and basophil response to food allergens. We aimed to understand the role of allergen-specific IgG in food allergy and natural tolerance. METHODS IgG and IgG isotypes specific to peanut, cow's milk and egg were measured using ImmunoCAP and ELISA respectively in samples of children with suspected food allergies. Expression of IgE and IgG and their receptors and expression of activation markers following allergen stimulation were measured on basophils and mast cells by flow cytometry, with and without blockade of FcγRIIα or FcγRIIβ receptors. RESULTS The levels of peanut-specific IgG, IgG1, IgG2, IgG3 and IgG4 in ELISA were higher in peanut-allergic than in non-peanut-allergic children. No difference in allergen-specific IgG isotypes was observed between allergic and non-allergic children to milk or egg, except for milk-specific IgG4 that was higher in non-cow's milk-allergic than in cow's milk-allergic children. Basophils and LAD2 cells expressed IgG receptors, but IgG and IgA were not detected on the surface of either cell type and blocking FcγRIIα or FcγRIIβ did not modify basophil or mast cell activation in response to allergen in allergic or tolerant children. CONCLUSION Allergen-specific IgG patterns were distinct in persistent (peanut) versus transient (milk and egg) food allergies. We found no evidence that FcγRIIα or FcγRIIβ receptors affect allergen-induced activation of mast cells and basophils in food allergy or natural tolerance.
Collapse
Affiliation(s)
- Richard T McKendry
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Matthew Kwok
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Oliver Hemmings
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Louisa K James
- Blizard Institute, Queen Mary University of London, London, UK
| | - Alexandra F Santos
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.,Children's Allergy Service, Guy's and St Thomas' Hospital, London, UK
| |
Collapse
|
8
|
MacGlashan D, Alvarez-Arango S, Tversky J. Subclasses of allergen-specific IgG: Serum IgG2 and IgG3 levels are not predicted by IgG1/IgG4 levels. Clin Exp Allergy 2021; 51:1093-1095. [PMID: 34192382 PMCID: PMC9235034 DOI: 10.1111/cea.13977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/19/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Donald MacGlashan
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Jody Tversky
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Hymenoptera Venom Immunotherapy: Immune Mechanisms of Induced Protection and Tolerance. Cells 2021; 10:cells10071575. [PMID: 34206562 PMCID: PMC8306808 DOI: 10.3390/cells10071575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 01/03/2023] Open
Abstract
Hymenoptera venom allergy is one of the most severe allergic diseases, with a considerable prevalence of anaphylactic reaction, making it potentially lethal. In this review, we provide an overview of the current knowledge and recent findings in understanding induced immune mechanisms during different phases of venom immunotherapy. We focus on protection mechanisms that occur early, during the build-up phase, and on the immune tolerance, which occurs later, during and after Hymenoptera venom immunotherapy. The short-term protection seems to be established by the early desensitization of mast cells and basophils, which plays a crucial role in preventing anaphylaxis during the build-up phase of treatment. The early generation of blocking IgG antibodies seems to be one of the main reasons for the lower activation of effector cells. Long-term tolerance is reached after at least three years of venom immunotherapy. A decrease in basophil responsiveness correlates with tolerated sting challenge. Furthermore, the persistent decline in IgE levels and, by monitoring the cytokine profiles, a shift from a Th2 to Th1 immune response, can be observed. In addition, the generation of regulatory T and B cells has proven to be essential for inducing allergen tolerance. Most studies on the mechanisms and effectiveness data have been obtained during venom immunotherapy (VIT). Despite the high success rate of VIT, allergen tolerance may not persist for a prolonged time. There is not much known about immune mechanisms that assure long-term tolerance post-therapy.
Collapse
|
10
|
Jakubczyk D, Górska S. Impact of Probiotic Bacteria on Respiratory Allergy Disorders. Front Microbiol 2021; 12:688137. [PMID: 34234762 PMCID: PMC8256161 DOI: 10.3389/fmicb.2021.688137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Respiratory allergy is a common disease with an increased prevalence worldwide. The effective remedy is still unknown, and a new therapeutic approach is highly desirable. The review elaborates the influence of probiotic bacteria on respiratory allergy prevention and treatment with particular emphasis on the impact of the current methods of their administration – oral and intranasal. The background of the respiratory allergy is complex thus, we focused on the usefulness of probiotics in the alleviation of different allergy factors, in particular involved in pathomechanism, local hypersensitive evidence and the importance of epithelial barrier. In this review, we have shown that (1) probiotic strains may vary in modulatory potential in respiratory allergy, (2) probiotic bacteria are beneficial in oral and intranasal administration, (3) recombinant probiotic bacteria can modulate the course of respiratory allergy.
Collapse
Affiliation(s)
- Dominika Jakubczyk
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Sabina Górska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
11
|
Ebo DG, Bridts CH, Mertens CH, Sabato V. Principles, potential, and limitations of ex vivo basophil activation by flow cytometry in allergology: A narrative review. J Allergy Clin Immunol 2021; 147:1143-1153. [DOI: 10.1016/j.jaci.2020.10.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
|
12
|
Berger AE, Durrieu C, Dzviga C, Perrot JL, Lambert C. Human peripheral basophils extended phenotype shows a high expression of CD244 immuno-regulatory receptor. J Immunol Methods 2021; 492:112951. [PMID: 33493550 DOI: 10.1016/j.jim.2020.112951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Basophils play a major physio-pathological role in hypersensitivity related diseases. Basophils express high affinity Immunoglobulin (Ig) E receptors (FcεRI), IgG and complement regulatory. Basophils also have immunoregulatory activity through interaction with T cells. The aim of this study was to look for the expression of markers reflecting the activation status of peripheral Basophil in healthy donors. METHOD the study was performed on 29 healthy donors, 62% females with a mean age of 50.1 + 17.0 years. Basophils were identified on their expression of CD123 without HLA-DR and/or CD193 in two 8 colors panels including CD46, CD55, CD59, CD203c, CD32 (FcγRII), CD64 (FcγRIII), CD163, CD137L (4-1BBL), CD252 (OX40L), CD244 (2B4) and CD3 on whole blood. Basophil activation with anti IgE was performed on 14 donors. RESULTS AND DISCUSSION Our results confirmed the Basophil expression of CD123, CD193 and CD203 (the latter is strongly increased under stimulation). Complement regulatory proteins (CD46, CD55, CD59) were expressed at the same levels as on other leukocytes; CD46, CD59 expression being slightly increased under stimulation. CD32 and CD163 scavenger were slightly higher than on lympho and not influenced by activation. CD252 or CD137L were expressed at low levels and significantly induced by stimulation. Most of all, CD244 was highly expressed on Basophils as compared to any other leukocytes in fresh peripheral blood. CONCLUSIONS Our study shows that human resting Basophils express IgE and IgG Fc receptors and check point receptor CD244 that could potentially play a role in their previously reported immunoregulatory activity in sensitization and even in tumor immune escape.
Collapse
Affiliation(s)
- Anne-Emmanuelle Berger
- Immunology laboratory, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France
| | - Coralie Durrieu
- Immunology laboratory, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France
| | - Charles Dzviga
- Allergology unit, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France
| | - Jean-Luc Perrot
- Dermatology department, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France
| | - Claude Lambert
- Immunology laboratory, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France; Allergology unit, University Hospital Saint-Etienne, 42055 Saint-Etienne, Cedex 2, France.
| |
Collapse
|
13
|
Nguyen TG. The therapeutic implications of activated immune responses via the enigmatic immunoglobulin D. Int Rev Immunol 2021; 41:107-122. [PMID: 33410368 DOI: 10.1080/08830185.2020.1861265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immunoglobulin D (IgD) is an enigmatic antibody and the least appreciated member of the immunoglobulin (Ig) family. Since its discovery over half a century ago, the essence of its function in the immune system has been somewhat enigmatic and less well-defined than other antibody classes. Membrane-bound IgD (mIgD) is mostly recognized as B-cell receptor (BCR) while secreted IgD (sIgD) has been recently implicated in 'arming' basophils and mast cells in mucosal innate immunity. Activations of immune responses via mIgD-BCR or sIgD by specific antigens or anti-IgD antibody thereby produce a broad and complex mix of cellular, antibody and cytokine responses from both the innate and adaptive immune systems. Such broadly activated immune responses via IgD were initially deemed to potentiate and exacerbate the onset of autoimmune and allergic conditions. Paradoxically, treatments with anti-IgD antibody suppressed and ameliorated autoimmune conditions and allergic inflammations in mouse models without compromising the host's general immune defence, demonstrating a unique and novel therapeutic application for anti-IgD antibody treatment. Herein, this review endeavored to collate and summarize the evidence of the unique characteristics and features of activated immune responses via mIgD-BCR and sIgD that revealed an unappreciated immune-regulatory function of IgD in the immune system via an amplifying loop of anti-inflammatory Th2 and tolerogenic responses, and highlighted a novel therapeutic paradigm in harnessing these immune responses to treat human autoimmune and allergic conditions.
Collapse
|
14
|
Paranjape A, Tsai M, Mukai K, Hoh RA, Joshi SA, Chinthrajah RS, Nadeau KC, Boyd SD, Galli SJ. Oral Immunotherapy and Basophil and Mast Cell Reactivity in Food Allergy. Front Immunol 2020; 11:602660. [PMID: 33381123 PMCID: PMC7768812 DOI: 10.3389/fimmu.2020.602660] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
Basophil activation tests (BATs) can closely monitor, in vitro, a patient's propensity to develop type I hypersensitivity reactions. Because of their high specificity and sensitivity, BATs have become promising diagnostic tools, especially in cases with equivocal clinical histories, skin prick test results, and/or levels of specific IgE to allergen extracts. BATs also are useful as tools for monitoring the effects of treatment, since oral immunotherapy (OIT) studies report a diminution in patients' basophil responsiveness over the course of OIT. This review will discuss the BAT findings obtained before, during, and after OIT for food allergy. We will mainly focus on the association of basophil responsiveness, and alterations in basophil surface markers, with clinical outcomes and other clinical features, such as blood levels of specific IgG and IgE antibodies. The detailed analysis of these correlations will ultimately facilitate the use of BATs, along with other blood biomarkers, to differentiate short-term desensitization versus sustained unresponsiveness and to improve treatment protocols. Given the critical anatomic location of mast cells adjacent to the many IgE+ plasma cells found in the gastrointestinal tissues of allergic individuals, we will also discuss the role of gastrointestinal mast cells in manifestations of food allergies.
Collapse
Affiliation(s)
- Anuya Paranjape
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Ramona A. Hoh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Shilpa A. Joshi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - R. Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine and Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford University School of Medicine, Stanford, CA, United States
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine and Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford University School of Medicine, Stanford, CA, United States
| | - Scott D. Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Allergen immunotherapy is the only treatment modality which alters the natural course of allergic diseases by restoring immune tolerance against allergens. Deeper understanding of tolerance mechanisms will lead to the development of new vaccines, which target immune responses and promote tolerance. RECENT FINDINGS Successful allergen immunotherapy (AIT) induces allergen-specific peripheral tolerance, characterized mainly by the generation of allergen-specific Treg cells and reduction of Th2 cells. At the early phase, AIT leads to a decrease in the activity and degranulation of mast cells and basophils and a decrease in inflammatory responses of eosinophils in inflamed tissues. Treg cells show their effects by secreting inhibitory cytokines including interleukin (IL)-10, transforming growth factor-β, interfering with cellular metabolisms, suppressing antigen presenting cells and innate lymphoid cells (ILCs) and by cytolysis. AIT induces the development of regulatory B cells producing IL-10 and B cells expressing allergen-specific IgG4. Recent investigations have demonstrated that AIT is also associated with the formation of ILC2reg and DCreg cells which contribute to tolerance induction. SUMMARY Research done so far, has shown that multiple molecular and cellular factors are dysregulated in allergic diseases and modified by AIT. Studies should now focus on finding the best target and ideal biomarkers to identify ideal candidates for AIT.
Collapse
|
16
|
Otsuka K, Otsuka H, Matsune S, Okubo K. Allergen-specific subcutaneous immunotherapy for Japanese cedar pollinosis decreases the number of metachromatic cells and eosinophils in nasal swabs during the preseason and in season. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:258-266. [PMID: 32239697 PMCID: PMC7416053 DOI: 10.1002/iid3.301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
Abstract
Background and objective Nasal symptoms of allergic rhinitis can be reduced with allergen‐specific subcutaneous immunotherapy (SCIT). However, the mechanisms underlying the effectiveness of SCIT for Japanese cedar pollinosis are not well understood. We studied changes in the numbers of metachromatic cells, eosinophils and neutrophils in nasal swabs following SCIT for Japanese cedar pollinosis. Methods Subjects were either untreated or given SCIT for 0.5 to 13 years duration. For the 2019 seasons, nasal swabs were taken in the pollinosis preseason (immunotherapy n = 36; untreated control, n = 62) and in the pollinosis season (immunotherapy n = 45; untreated control n = 46) and the numbers of mast cells, eosinophils and neutrophils assessed by microscopy. Results There were significant improvements in symptom severities following SCIT in comparison to untreated subjects (P < .0003, the Mann‐Whitney U test) in preseason, and (P < .00001) in season. Metachromatic cell counts from nasal swabs of SCIT subjects in preseason and in the season were lower than those of untreated subjects (P = .0029 and P = .031, respectively). Eosinophil numbers in nasal swabs of subjects given SCIT were lower than in untreated subjects (P = .0031) in season, but not in preseason. There were no significant differences in degrees of neutrophilia between untreated and SCIT subjects in preseason and in season. Conclusion One mechanism underlying the effectiveness of SCIT for Japanese cedar pollinosis involves a reduction in the number of metachromatic cells in nasal swabs in the preseason and an inhibition of increases in the number of metachromatic cells and eosinophils in season.
Collapse
Affiliation(s)
- Kuninori Otsuka
- Otsuka ENT Clinic, Yokohama, Kanagawa, Japan.,Otorhinolaryngology, Shin-yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | - Hirokuni Otsuka
- Otsuka ENT Clinic, Yokohama, Kanagawa, Japan.,Otorhinolaryngology, Nippon Medical School, Musashikosugi Hospital, Kawasaki, Kanagawa, Japan
| | - Shoji Matsune
- Otorhinolaryngology, Nippon Medical School, Musashikosugi Hospital, Kawasaki, Kanagawa, Japan
| | - Kimihiro Okubo
- Otorhinolaryngology and Head and Neck Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
17
|
Wai CY, Leung NY, Chu KH, Leung PS, Leung AS, Wong GW, Leung TF. Overcoming Shellfish Allergy: How Far Have We Come? Int J Mol Sci 2020; 21:ijms21062234. [PMID: 32210187 PMCID: PMC7139905 DOI: 10.3390/ijms21062234] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
Shellfish allergy caused by undesirable immunological responses upon ingestion of crustaceans and mollusks is a common cause of food allergy, especially in the Asia-Pacific region. While the prevalence of shellfish allergy is increasing, the mainstay of clinical diagnosis for these patients includes extract-based skin prick test and specific IgE measurement while clinical management consists of food avoidance and as-needed use of adrenaline autoinjector should they develop severe allergic reactions. Such a standard of care is unsatisfactory to both patients and healthcare practitioners. There is a pressing need to introduce more specific diagnostic methods, as well as effective and safe therapies for patients with shellfish allergy. Knowledge gained on the identifications and defining the immuno-molecular features of different shellfish allergens over the past two decades have gradually translated into the design of new diagnostic and treatment options for shellfish allergy. In this review, we will discuss the epidemiology, the molecular identification of shellfish allergens, recent progress in various diagnostic methods, as well as current development in immunotherapeutic approaches including the use of unmodified allergens, hypoallergens, immunoregulatory peptides and DNA vaccines for the prevention and treatment of shellfish allergy. The prospect of a “cure “for shellfish allergy is within reach.
Collapse
Affiliation(s)
- Christine Y.Y. Wai
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nicki Y.H. Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong;
| | - Patrick S.C. Leung
- Division of Rheumatology/Allergy, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Agnes S.Y. Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Gary W.K. Wong
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Ting Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong
- Correspondence: ; Tel.: +852-3505-2981; Fax: +852-2636-0020
| |
Collapse
|
18
|
Martínez D, Munera M, Cantillo JF, Wortmann J, Zakzuk J, Keller W, Caraballo L, Puerta L. An Engineered Hybrid Protein from Dermatophagoides pteronyssinus Allergens Shows Hypoallergenicity. Int J Mol Sci 2019; 20:ijms20123025. [PMID: 31234267 PMCID: PMC6628193 DOI: 10.3390/ijms20123025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
The house dust mite (HDM) Dermatophagoides pteronyssinus is an important risk factor for asthma and rhinitis. Allergen specific immunotherapy that is based on recombinant proteins has been proposed for the safer and more efficient treatment of allergic diseases. The aim of this study was to design and obtain a hybrid protein (DPx4) containing antigenic regions of allergens Der p 1, Der p 2, Der p 7, and Der p 10 from this mite. DPx4 was produced in Escherichia coli and its folding was determined by circular dichroism. Non-denaturing dot-blot, ELISA, basophil activation test, dot blot with monoclonal antibodies, ELISA inhibition, and cysteine protease activity assays were performed. Mice that were immunized with DPx4 were also analyzed. We found that DPx4 had no cysteine protease activity and it showed significantly lower IgE reactivity than Der p 1, Der p 2, and D. pteronyssinus extract. DPx4 induced lower basophil activation than Der p 2 and the allergen extract. Immunized mice produced IgG antibodies that inhibited the binding of allergic patient’s IgE to the allergen extract and induced comparatively higher levels of IL-10 than the extract in peripheral blood mononuclear cells (PBMC) culture. These results suggest that DPx4 has immunological properties that are useful for the development of a mite allergy vaccine.
Collapse
Affiliation(s)
- Dalgys Martínez
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| | - Marlon Munera
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| | - Jose Fernando Cantillo
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| | - Judith Wortmann
- Division of Structural Biology, Institute of Molecular Biosciences, BioTechMed, University of Graz, 8036 Graz, Austria.
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| | - Walter Keller
- Division of Structural Biology, Institute of Molecular Biosciences, BioTechMed, University of Graz, 8036 Graz, Austria.
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| | - Leonardo Puerta
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| |
Collapse
|
19
|
Crowley AR, Ackerman ME. Mind the Gap: How Interspecies Variability in IgG and Its Receptors May Complicate Comparisons of Human and Non-human Primate Effector Function. Front Immunol 2019; 10:697. [PMID: 31024542 PMCID: PMC6463756 DOI: 10.3389/fimmu.2019.00697] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
The field of HIV research relies heavily on non-human primates, particularly the members of the macaque genus, as models for the evaluation of candidate vaccines and monoclonal antibodies. A growing body of research suggests that successful protection of humans will not solely rely on the neutralization activity of an antibody's antigen binding fragment. Rather, immunological effector functions prompted by the interaction of the immunoglobulin G constant region and its cognate Fc receptors help contribute to favorable outcomes. Inherent differences in the sequences, expression, and activities of human and non-human primate antibody receptors and immunoglobulins have the potential to produce disparate results in the observations made in studies conducted in differing species. Having a more complete understanding of these differences, however, should permit the more fluent translation of observations between model organisms and the clinic. Here we present a guide to such translations that encompasses not only what is presently known regarding the affinity of the receptor-ligand interactions but also the influence of expression patterns and allelic variation, with a focus on insights gained from use of this model in HIV vaccines and passive antibody therapy and treatment.
Collapse
Affiliation(s)
- Andrew R. Crowley
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, United States
| | - Margaret E. Ackerman
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
20
|
Anania JC, Chenoweth AM, Wines BD, Hogarth PM. The Human FcγRII (CD32) Family of Leukocyte FcR in Health and Disease. Front Immunol 2019; 10:464. [PMID: 30941127 PMCID: PMC6433993 DOI: 10.3389/fimmu.2019.00464] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
FcγRs have been the focus of extensive research due to their key role linking innate and humoral immunity and their implication in both inflammatory and infectious disease. Within the human FcγR family FcγRII (activatory FcγRIIa and FcγRIIc, and inhibitory FcγRIIb) are unique in their ability to signal independent of the common γ chain. Through improved understanding of the structure of these receptors and how this affects their function we may be able to better understand how to target FcγR specific immune activation or inhibition, which will facilitate in the development of therapeutic monoclonal antibodies in patients where FcγRII activity may be desirable for efficacy. This review is focused on roles of the human FcγRII family members and their link to immunoregulation in healthy individuals and infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Jessica C Anania
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Alicia M Chenoweth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Gomez G. Current Strategies to Inhibit High Affinity FcεRI-Mediated Signaling for the Treatment of Allergic Disease. Front Immunol 2019; 10:175. [PMID: 30792720 PMCID: PMC6374298 DOI: 10.3389/fimmu.2019.00175] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Allergies and asthma are a major cause of chronic disease whose prevalence has been on the rise. Allergic disease including seasonal rhinitis, atopic dermatitis, urticaria, anaphylaxis, and asthma, are associated with activation of tissue-resident mast cells and circulating basophils. Although these cells can be activated in different ways, allergic reactions are normally associated with the crosslinking of the high affinity Fc receptor for Immunoglobulin E, FcεRI, with multivalent antigen. Inflammatory mediators released from cytoplasmic granules, or biosynthesized de novo, following FcεRI crosslinking induce immediate hypersensitivity reactions, including life-threatening anaphylaxis, and contribute to prolonged inflammation leading to chronic diseases like asthma. Thus, inappropriate or unregulated activation of mast cells and basophils through antigenic crosslinking of FcεRI can have deleterious, sometimes deadly, consequences. Accordingly, FcεRI has emerged as a viable target for the development of biologics that act to inhibit or attenuate the activation of mast cells and basophils. At the forefront of these strategies are (1) Anti-IgE monoclonal antibody, namely omalizumab, which has the secondary effect of reducing FcεRI surface expression, (2) Designed Ankyrin Repeat Proteins (DARPins), which take advantage of the most common structural motifs in nature involved in protein-protein interactions, to inhibit FcεRI-IgE interactions, and (3) Fusion proteins to co-aggregate FcεRI with the inhibitory FcγRIIb. This review presents the published research studies that support omalizumab, DARPins, and fusion proteins as, arguably, the three most currently viable strategies for inhibiting the expression and activation of the high affinity FcεRI on mast cells and basophils.
Collapse
Affiliation(s)
- Gregorio Gomez
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
22
|
Eckl-Dorna J, Villazala-Merino S, Linhart B, Karaulov AV, Zhernov Y, Khaitov M, Niederberger-Leppin V, Valenta R. Allergen-Specific Antibodies Regulate Secondary Allergen-Specific Immune Responses. Front Immunol 2019; 9:3131. [PMID: 30705676 PMCID: PMC6344431 DOI: 10.3389/fimmu.2018.03131] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/18/2018] [Indexed: 01/08/2023] Open
Abstract
Immunoglobulin E (IgE)-associated allergy is the most common immunologically-mediated hypersensensitivity disease. It is based on the production of IgE antibodies and T cell responses against per se innocuous antigens (i.e., allergens) and subsequent allergen-induced inflammation in genetically pre-disposed individuals. While allergen exposure in sensitized subjects mainly boosts IgE production and T cell activation, successful allergen-specific immunotherapy (AIT) induces the production of allergen-specific IgG antibodies and reduces T cell activity. Under both circumstances, the resulting allergen-antibody complexes play a major role in modulating secondary allergen-specific immune responses: Allergen-IgE complexes induce mast cell and basophil activation and perpetuate allergen-specific T cell responses via presentation of allergen by allergen presenting cells to T cells, a process called IgE-facilitated antigen presentation (FAP). In addition, they may induce activation of IgE memory B cells. Allergen-induced production of specific IgGs usually exerts ameliorating effects but under certain circumstances may also contribute to exacerbation. Allergen-specific IgG antibodies induced by AIT which compete with IgE for allergen binding (i.e., blocking IgG) inhibit formation of IgE-allergen complexes and reduce activation of effector cells, B cells and indirectly T cells as FAP is prevented. Experimental data provide evidence that by binding of allergen-specific IgG to epitopes different from those recognized by IgE, allergen-specific IgG may enhance IgE-mediated activation of mast cells, basophils and allergen-specific IgE+ B cells. In this review we provide an overview about the role of allergen-specific antibodies in regulating secondary allergen-specific immune responses.
Collapse
Affiliation(s)
- Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | | | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexander V Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yury Zhernov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | | | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia.,NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| |
Collapse
|
23
|
Tabesh S, Fanuel S, Fazlollahi MR, Yekaninejad MS, Kardar GA, Razavi SA. Design and evaluation of a hypoallergenic peptide-based vaccine for Salsola kali allergy. Int Immunopharmacol 2018; 66:62-68. [PMID: 30445308 DOI: 10.1016/j.intimp.2018.10.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The Salsola kali (S. kali) pollen is one of the most important causes of allergic rhinitis in the deserts and semi-desert areas. Immunotherapy with allergen extracts remains the only available treatment addressing the underlying mechanism of allergy. However, given the low efficacy of this method, it is necessary to find more effective and alternative therapeutic interventions using molecular biology and bioinformatics tools. In this study, a hypoallergenic vaccine was designed on the basis of B-cell epitope approach for S. kali immunotherapy. METHODS Using the Immune Epitope Database (IEDB), a 35-mer peptide was selected and chemically conjugated to a keyhole limpet hemocyanin (KLH) molecule. Specific IgG and IgE from immunized BALB/c mice sera against the vaccine (Sal k 1-KLH), S. kali extract and the recombinant protein, rSal k 1, were measured using ELISA. Also, inhibition of IgE by mouse IgG was evaluated using an inhibitory ELISA. Finally, the IgE reactivity and T-cell reactivity of the designed vaccine were evaluated by dot blot assay and MTT assay. RESULTS Vaccination with the vaccine produced high levels of protective IgG in mice, which inhibited the binding of patients IgE to recombinant proteins. The result showed that the designed vaccine, unlike the recombinant protein and extract, did not induce T-cell lymphocytes response and also exhibited decreased IgE reactivity. CONCLUSION The designed vaccine can be considered as a promising candidate for therapeutic allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Saeideh Tabesh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Iran; Immunology Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Iran
| | - Songwe Fanuel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Department of Applied Biosciences and Biotechnology, Faculty of Science and Technology, Midlands State University (MSU), Zimbabwe
| | | | - Mir Saeed Yekaninejad
- Department of epidemiology and biostatics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Ali Kardar
- Immunology Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran
| | - Seyed Alireza Razavi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Iran.
| |
Collapse
|
24
|
Nguyen TG. Immune-modulation via IgD B-cell receptor suppresses allergic skin inflammation in experimental contact hypersensitivity models despite of a Th2-favoured humoral response. Immunol Lett 2018; 203:29-39. [PMID: 30218740 DOI: 10.1016/j.imlet.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/30/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022]
Abstract
Atopic dermatitis (AD) and allergic contact dermatitis (ACD) are common skin inflammatory conditions. B and T cells are strongly implicated in allergic contact hypersensitivity (CHS) conditions. Activation of IgD B-cell receptor (BCR) by anti-IgD stimulation depletes mature B cells and modulates T-helper cell type 1/2 (Th1/2) responses in vivo. It is not known whether these effects by anti-IgD exacerbates or ameliorates chronic skin inflammations. This study investigated the effects of anti-IgD and B-cell depleting anti-CD20 antibody on skin inflammation in CHS murine models. Chronic CHS were induced by challenges with allergens trimellitic anhydride (TMA) or 2,4 dinitrochlorobenzene (DNCB). Mice were treated with an anti-IgD or anti-CD20 at various time-points following allergen challenges. This study revealed that early therapeutic treatments with anti-IgD at 4 h after allergen challenge significantly reduced skin inflammation in both TMA- and DNCB-induced CHS models (P < 0.05). In contrast, anti-CD20 treatment exacerbated skin inflammation in DNCB-induced CHS despite of an extensive B cell depletion (P < 0.05). Anti-IgD treatment depleted mature CD19+IgD+ B cells but enhanced allergen-specific IgM and total IgE productions, suggesting a Th2-favoured humoral response. Anti-IgD reduced neutrophilic infiltrations but increases accumulation of mast cells in dermal tissues. The anti-inflammatory effects of anti-IgD were supported by evidence of an increase in the percentage of regulatory B cells and T cells. Collectively, this study demonstrates that immune-modulation by anti-IgD treatment suppresses Th2-mediated allergic skin inflammation in murine models despite a skew toward a Th2-favvoured humoral response and therefore may present a novel treatment for chronic human AD and ACD.
Collapse
Affiliation(s)
- Tue G Nguyen
- Autoimmunity and Immunotherapy Research, Kolling Institute, Australia; Perinatal Research, Kolling Institute at Royal North Shore Hospital, St Leonards, NSW, 2065, Australia; ImmunoTherapeutic Mab Group, Macquarie Park, Sydney, NSW, 2113, Australia.
| |
Collapse
|
25
|
Głobińska A, Boonpiyathad T, Satitsuksanoa P, Kleuskens M, van de Veen W, Sokolowska M, Akdis M. Mechanisms of allergen-specific immunotherapy: Diverse mechanisms of immune tolerance to allergens. Ann Allergy Asthma Immunol 2018; 121:306-312. [PMID: 29966703 DOI: 10.1016/j.anai.2018.06.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The aim of this review is to provide an overview of the current knowledge on the mechanisms of allergen immunotherapy based on the recent publications and clinical trials. DATA SOURCES PubMed literature review. STUDY SELECTIONS In this review, we focus on diverse mechanisms of AIT and provide an insight into alternative routes of administration. Additionally, we review and discuss the most recent studies investigating potential biomarkers and highlight their role in clinical settings. RESULTS Successful allergen-specific immunotherapy (AIT) induces the reinstatement of tolerance toward allergens and represents a disease-modifying treatment. In the last decades, substantial progress in understanding the mechanisms of AIT has been achieved. Establishment of long-term clinical tolerance to allergens engages a complex network of interactions, modulating the functions of basophils, mast cells, allergen-specific regulatory T and B cells, and production of specific antibodies. The reduction of symptoms and clinical improvement is achieved by skewing the immune response away from allergic inflammation. CONCLUSION Although the complex nature of AIT mechanisms is becoming more clear, the need to discover reliable biomarkers to define patients likely to respond to the treatment is emerging.
Collapse
Affiliation(s)
- Anna Głobińska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere, Davos, Switzerland
| | - Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere, Davos, Switzerland
| | - Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere, Davos, Switzerland
| | - Mirelle Kleuskens
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere, Davos, Switzerland; Wageningen University and Research, Cell Biology and Immunology, Wageningen, Netherlands
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere, Davos, Switzerland.
| |
Collapse
|
26
|
Igarashi A, Ebihara Y, Kumagai T, Hirai H, Nagata K, Tsuji K. Mast cells derived from human induced pluripotent stem cells are useful for allergen tests. Allergol Int 2018; 67:234-242. [PMID: 28919488 DOI: 10.1016/j.alit.2017.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Several methods have been developed to detect allergen-specific IgE in sera. The passive IgE sensitization assay using human IgE receptor-expressing rat cell line RBL-2H3 is a powerful tool to detect biologically active allergen-specific IgE in serum samples. However, one disadvantage is that RBL-2H3 cells are vulnerable to high concentrations of human sera. Only a few human cultured cell lines are easily applicable to the passive IgE sensitization assay. However, the use of human induced pluripotent stem cells (iPSCs) to generate human mast cells (MCs) has not yet been reported. METHODS The nuclear factor-kappa B (NF-κB)-responsive luciferase reporter gene was stably introduced into a human iPSC line 201B7, and the transfectants were induced to differentiate into MCs (iPSC-MCs). The iPSC-MCs were sensitized overnight with sera from subjects who were allergic to cedar pollen, ragweed pollen, mites, or house dust, and then stimulated with an extract of corresponding allergens. Activation of iPSC-MCs was evaluated by β-hexosaminidase release, histamine release, or luciferase intensity. RESULTS iPSCs-MCs stably expressed high-affinity IgE receptor and functionally responded to various allergens when sensitized with human sera from relevant allergic subjects. This passive IgE sensitization system, which we termed the induced mast cell activation test (iMAT), worked well even with undiluted human sera. CONCLUSIONS iMAT may serve as a novel determining system for IgE/allergens in the clinical and research settings.
Collapse
Affiliation(s)
- Akira Igarashi
- Division of Advanced Technology and Development, BML, Inc., Saitama, Japan.
| | - Yasuhiro Ebihara
- Department of Laboratory Medicine, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Tomoaki Kumagai
- Division of Advanced Technology and Development, BML, Inc., Saitama, Japan
| | - Hiroyuki Hirai
- Division of Advanced Technology and Development, BML, Inc., Saitama, Japan
| | - Kinya Nagata
- Division of Advanced Technology and Development, BML, Inc., Saitama, Japan
| | - Kohichiro Tsuji
- Department of Pediatric, National Hospital Organization Shinshu Ueda Medical Center, Nagano, Japan
| |
Collapse
|
27
|
Wines BD, Billings H, Mclean MR, Kent SJ, Hogarth PM. Antibody Functional Assays as Measures of Fc Receptor-Mediated Immunity to HIV - New Technologies and their Impact on the HIV Vaccine Field. Curr HIV Res 2018; 15:202-215. [PMID: 28322167 PMCID: PMC5543561 DOI: 10.2174/1570162x15666170320112247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 12/23/2022]
Abstract
Background: There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fc-dependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. Method: This brief review highlights the importance of Fc properties for immunity to HIV, particular-ly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ecto-domains to detect functionally relevant viral antigen-specific antibodies. Results: The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the es-sential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reli-ably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. Conclusion: We propose the assay has broader implications for the evaluation of the quality of anti-body responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections.
Collapse
Affiliation(s)
- Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia.,Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Victoria, 3010, Australia
| | - Hugh Billings
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia
| | - Milla R Mclean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Parkville, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Victoria, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia.,Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
28
|
Martínez D, Cantillo JF, Herazo H, Wortmann J, Keller W, Caraballo L, Puerta L. Characterization of a hybrid protein designed with segments of allergens from Blomia tropicalis and Dermatophagoides pteronyssinus. Immunol Lett 2018; 196:103-112. [PMID: 29408409 DOI: 10.1016/j.imlet.2018.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sensitization to allergens of the house dust mites Dermatophagoides pteronyssinnus and Blomia tropicalis is an important risk factor for asthma and allergic diseases. Allergen-specific immunotherapy is currently based on natural allergen extracts, however, in the last years recombinant allergens with different modifications have shown promising immunological properties that may be advantageously applied for developing novel allergy vaccines. METHODS A hybrid molecule (MAVAC-BD-2) containing epitopes of B. tropicalis (Blo t 5, Blo t 8 and Blo t 10) and D. pteronyssinus (Der p 1, Der p 2, Der p 7 and Der p 8) allergens was constructed, expressed in Escherichia coli and purified by affinity chromatography. Its folding was analyzed by circular dichroism. Antibody reactivities were evaluated by ELISA and non-denaturing dot blot assays using a battery of sera from mite allergic patients and non-allergic subjects. ELISA inhibition and dot blot assays with monoclonal antibodies were used to detect B-cell epitopes. Human basophil activation and induction of IgG-blocking antibodies in mice immunized with the hybrid protein were also evaluated. RESULTS MAVAC-BD-2, expressed as a 22.8 kDa protein, showed a lower frequency and strength of IgE reactivity compared to Blo t 5, Der p 1, Der p 2 and the extracts of B. tropicalis and D. pteronyssinus. MAVAC-BD-2 inhibited 26% of IgE reactivity to Der p 2 and Blo t 5, reacted with anti-Der p 1 and anti-Der p 2 monoclonal antibodies and did not induce relevant basophil activation. MAVAC-BD-2 immunized mice produced specific antibodies that reacted against mite extracts and the purified allergens, as well as IgG antibodies that blocked the human IgE reactivity to mite extracts. CONCLUSION MAVAC-BD-2 has hypoallergenic characteristics and in mice induces IgG antibodies that block the human IgE reactivity to mite extracts.
Collapse
Affiliation(s)
- Dalgys Martínez
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - Helber Herazo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Judith Wortmann
- Division of Structural Biology, Institute of Molecular Biosciences, BioTechMed, University of Graz, Graz, Austria
| | - Walter Keller
- Division of Structural Biology, Institute of Molecular Biosciences, BioTechMed, University of Graz, Graz, Austria
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Leonardo Puerta
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia.
| |
Collapse
|
29
|
Chirumbolo S, Bjørklund G, Sboarina A, Vella A. The role of basophils as innate immune regulatory cells in allergy and immunotherapy. Hum Vaccin Immunother 2018; 14:815-831. [PMID: 29257936 DOI: 10.1080/21645515.2017.1417711] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Basophils are circulating cells that are associated quite exclusively with allergy response and hypersensitivity reactions but their role in the immune network might be much more intriguing and complex than previously expected. The feasibility of testing their biology in vitro for allergy research and diagnosis, due fundamentally to their quite easy availability in the peripheral blood, made them the major source for assessing allergy in the laboratory assay, when yet many further cells such as mast cells and eosinophils are much more involved as effector cells in allergy than circulating basophils. Interestingly, basophil numbers change rarely in peripheral blood during an atopic response, while we might yet observe an increase in eosinophils and modification in the biology of mast cells in the tissue during an hypersensitivity response. Furthermore, the fact that basophils are very scanty in numbers suggests that they should mainly serve as regulatory cells in immunity, rather than effector leukocytes, as still believed by the majority of physicians. In this review we will try to describe and elucidate the possible role of these cells, known as "innate IL4-producing cells" in the immune regulation of allergy and their function in allergen immunotherapy.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- a Department of Neurological and Movement Sciences , University of Verona , Verona , Italy
| | - Geir Bjørklund
- b Council for Nutritional and Environmental Medicine (CONEM) , Mo i Rana , Norway
| | - Andrea Sboarina
- c Department of Surgery , Dentistry, Paediatrics and Gynaecology-University of Verona , Verona , Italy
| | - Antonio Vella
- d Unit of Immunology-Azienda Ospedaliera Universitaria Integrata (AOUI) , Verona , Italy
| |
Collapse
|
30
|
The Evolution of Human Basophil Biology from Neglect towards Understanding of Their Immune Functions. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8232830. [PMID: 28078302 PMCID: PMC5204076 DOI: 10.1155/2016/8232830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/16/2016] [Indexed: 12/03/2022]
Abstract
Being discovered long ago basophils have been neglected for more than a century. During the past decade evidence emerged that basophils share features of innate and adaptive immunity. Nowadays, basophils are best known for their striking effector role in the allergic reaction. They hence have been used for establishing new diagnostic tests and therapeutic approaches and for characterizing natural and recombinant allergens as well as hypoallergens, which display lower or diminished IgE-binding activity. However, it was a long way from discovery in 1879 until identification of their function in hypersensitivity reactions, including adverse drug reactions. Starting with a historical background, this review highlights the modern view on basophil biology.
Collapse
|
31
|
Sainte-Laudy J, Touraine F, Cluzan D, Belle Moudourou F. Follow-Up of Venom Immunotherapy on Flow Cytometry and Definition of a Protective Index. Int Arch Allergy Immunol 2016; 170:243-250. [PMID: 27685197 DOI: 10.1159/000449162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 08/16/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A major problem of venom-specific immunotherapy (VIT) is the absence of reliable parameters for deciding treatment discontinuation. AIM OF THE STUDY Intracutaneous tests (ICTs), the basophil activation test (BAT), specific IgEs (sIgEs) and blocking factor (BF) activity were measured during VIT. We made an evaluation by means of a protective index (PI) including ICT, BAT and BF values. MATERIAL AND METHODS A population of 45 patients who had experienced a systemic reaction after an insect sting were tested before VIT (T0), at 1 week (T1w), at 10 weeks (T10w) and at 21 weeks (T21w), and, for a subgroup of 17 patients, at 3-5 years (T3-5y). Basophil activation (expressed in % CD63 and in the area under the curve) and BF activity were measured by flow cytometry using the CCR3/CD63 protocol. RESULTS The first 21 weeks of follow-up showed no significant variation in the ICT, sIgE and BAT measurements, except for BAT, by eliminating weak negative anti-IgE responses. In these conditions, the decrease in basophil activation was significant at T10w (p = 0.009) and T21w (p = 0.009). Increased BF activity was also significant at T10w (p = 0.008) and T21w (p = 0.002). The PI threshold calculated from the mean ± 3 standard errors (SE) was 64.8 (14.7 ± 16.7, n = 25) at T0. PI increase was significant at T3-5y (3,430 ± 6,282; p < 0.001). CONCLUSION VIT induced a significant decrease in ICT values and basophil activation, along with an increase in serum BF activity, significant after 10 weeks of VIT. Evaluated in a larger population, the PI could represent a new tool for the clinico-biological follow-up of VIT efficacy.
Collapse
|
32
|
Lundberg K, Rydnert F, Broos S, Andersson M, Greiff L, Lindstedt M. C-type Lectin Receptor Expression on Human Basophils and Effects of Allergen-Specific Immunotherapy. Scand J Immunol 2016; 84:150-7. [DOI: 10.1111/sji.12457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/20/2016] [Indexed: 01/01/2023]
Affiliation(s)
- K. Lundberg
- Department of Immunotechnology; Lund University; Lund Sweden
| | - F. Rydnert
- Department of Immunotechnology; Lund University; Lund Sweden
| | - S. Broos
- Department of Immunotechnology; Lund University; Lund Sweden
| | - M. Andersson
- Department of Otorhinolaryngology; Head & Neck Surgery; Skåne University Hospital; Lund Sweden
| | - L. Greiff
- Department of Otorhinolaryngology; Head & Neck Surgery; Skåne University Hospital; Lund Sweden
| | - M. Lindstedt
- Department of Immunotechnology; Lund University; Lund Sweden
| |
Collapse
|
33
|
James LK, Till SJ. Potential Mechanisms for IgG4 Inhibition of Immediate Hypersensitivity Reactions. Curr Allergy Asthma Rep 2016; 16:23. [PMID: 26892721 PMCID: PMC4759210 DOI: 10.1007/s11882-016-0600-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IgG4 is the least abundant IgG subclass in human serum, representing less than 5 % of all IgG. Increases in IgG4 occur following chronic exposure to antigen and are generally associated with states of immune tolerance. In line with this, IgG4 is regarded as an anti-inflammatory antibody with a limited ability to elicit effective immune responses. Furthermore, IgG4 attenuates allergic responses by inhibiting the activity of IgE. The mechanism by which IgG4 inhibits IgE-mediated hypersensitivity has been investigated using a variety of model systems leading to two proposed mechanisms. First by sequestering antigen, IgG4 can function as a blocking antibody, preventing cross-linking of receptor bound IgE. Second IgG4 has been proposed to co-stimulate the inhibitory IgG receptor FcγRIIb, which can negatively regulate FcεRI signaling and in turn inhibit effector cell activation. Recent advances in our understanding of the structural features of human IgG4 have shed light on the unique functional and immunologic properties of IgG4. The aim of this review is to evaluate our current understanding of IgG4 biology and reassess the mechanisms by which IgG4 functions to inhibit IgE-mediated allergic responses.
Collapse
Affiliation(s)
- Louisa K James
- Randall Division of Cell and Molecular Biophysics and MRC and Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, London, SE1 1UL, UK.
| | - Stephen J Till
- Division of Asthma, Allergy and Lung Biology, King's College London and Department of Allergy, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 9RT, UK.
| |
Collapse
|
34
|
Benign TH2 immunity in children: A fresh perspective on control of the allergic response. J Allergy Clin Immunol 2016; 137:388-9. [PMID: 26853130 DOI: 10.1016/j.jaci.2015.12.1153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023]
|
35
|
Blank U, Charles N, Benhamou M. The high-affinity immunoglobulin E receptor as pharmacological target. Eur J Pharmacol 2016; 778:24-32. [DOI: 10.1016/j.ejphar.2015.05.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/29/2015] [Accepted: 05/17/2015] [Indexed: 01/02/2023]
|
36
|
MacGlashan D, Hamilton RG. Parameters determining the efficacy of CD32 to inhibit activation of FcεRI in human basophils. J Allergy Clin Immunol 2016; 137:1256-1258.e11. [PMID: 26774660 DOI: 10.1016/j.jaci.2015.10.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/05/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Donald MacGlashan
- Department of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Md.
| | - Robert G Hamilton
- Department of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, Md
| |
Collapse
|
37
|
Holt PG, Strickland D, Bosco A, Belgrave D, Hales B, Simpson A, Hollams E, Holt B, Kusel M, Ahlstedt S, Sly PD, Custovic A. Distinguishing benign from pathologic TH2 immunity in atopic children. J Allergy Clin Immunol 2015; 137:379-87. [PMID: 26518094 DOI: 10.1016/j.jaci.2015.08.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Although most children with asthma and rhinitis are sensitized to aeroallergens, only a minority of sensitized children are symptomatic, implying the underlying operation of efficient anti-inflammatory control mechanisms. OBJECTIVE We sought to identify endogenous control mechanisms that attenuate expression of IgE-associated responsiveness to aeroallergens in sensitized children. METHODS In 3 independent population samples we analyzed relationships between aeroallergen-specific IgE and corresponding allergen-specific IgG (sIgG) and associated immunophenotypes in atopic children and susceptibility to asthma and rhinitis, focusing on responses to house dust mite and grass. RESULTS Among mite-sensitized children across all populations and at different ages, house dust mite-specific IgG/IgE ratios (but not IgG4/IgE ratios) were significantly lower in children with asthma compared with ratios in those without asthma and lowest among the most severely symptomatic. This finding was mirrored by relationships between rhinitis and antibody responses to grass. Depending on age/allergen specificity, 20% to 40% of children with allergen-specific IgE (sIgE) of 0.35 kU/L or greater had negative skin test responses, and these children also expressed the high sIgG/sIgE immunophenotype. sIgG1 from these children inhibited allergen-induced IgE-dependent basophil activation in a dose-dependent fashion. Profiling of aeroallergen-specific CD4(+) TH memory responses revealed positive associations between sIgG/sIgE ratios and IL-10-dependent gene signatures and significantly higher IL-10/TH2 cytokine (protein) ratios among nonsymptomatic children. CONCLUSION In addition to its role in blocking TH2 effector activation in the late-phase allergic response, IL-10 is a known IgG1 switch factor. We posit that its production during allergen-induced memory responses contributes significantly to attenuation of inflammation through promoting IgG1-mediated damping of the FcεRI-dependent acute-phase reaction. sIgG1/sIgE balance might represent a readily accessible therapeutic target for asthma/rhinitis control.
Collapse
Affiliation(s)
- Patrick G Holt
- Telethon Kids Institute, University of Western Australia, Perth, Australia; Queensland Children's Medical Research Institute, University of Queensland, Brisbane, Australia.
| | - Deborah Strickland
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Danielle Belgrave
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester, United Kingdom
| | - Belinda Hales
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Angela Simpson
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester, United Kingdom
| | - Elysia Hollams
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Barbara Holt
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Merci Kusel
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Staffan Ahlstedt
- Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
| | - Peter D Sly
- Queensland Children's Medical Research Institute, University of Queensland, Brisbane, Australia
| | - Adnan Custovic
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester, United Kingdom
| |
Collapse
|
38
|
Caaveiro JMM, Kiyoshi M, Tsumoto K. Structural analysis of Fc/FcγR complexes: a blueprint for antibody design. Immunol Rev 2015; 268:201-21. [DOI: 10.1111/imr.12365] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jose M. M. Caaveiro
- Department of Bioengineering; School of Engineering; The University of Tokyo; Tokyo Japan
| | - Masato Kiyoshi
- Department of Bioengineering; School of Engineering; The University of Tokyo; Tokyo Japan
- Division of Biological Chemistry and Biologicals; National Institute of Health Sciences; Tokyo Japan
| | - Kouhei Tsumoto
- Department of Bioengineering; School of Engineering; The University of Tokyo; Tokyo Japan
- Institute of Medical Science; The University of Tokyo; Tokyo Japan
| |
Collapse
|
39
|
van Hoffen E, van der Kleij HPM, den Hartog Jager CF, van Doorn WA, Knol EF, Opstelten DJ, Koppelman SJ, Knulst AC. Chemical modification of peanut conglutin reduces IgE reactivity but not T cell reactivity in peanut-allergic patients. Clin Exp Allergy 2015; 44:1558-66. [PMID: 24717146 DOI: 10.1111/cea.12319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 02/15/2014] [Accepted: 03/24/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Specific immunotherapy for peanut allergy is associated with significant side-effects. Chemically modified allergens may provide a safer alternative. OBJECTIVE This study aimed to analyse the immunogenicity and allergenicity of modified peanut conglutin. METHODS Native peanut conglutin and two modifications thereof were generated (RA and RAGA). Conglutin-specific T cell lines from 11 peanut-allergic patients were analysed for proliferation and cytokine production. Sera from 14 patients were analysed for IgE/IgG1/IgG4 binding by immunoblot and ELISA. IgE reactivity was analysed by direct and indirect basophil activation test (BAT), in presence and absence of patient plasma or CD32-blocking antibodies. RESULTS T cell proliferation to RA was unchanged, and proliferation to RAGA was reduced compared to native conglutin. Cytokine profiles remained unchanged. IgE, IgG1 and IgG4 binding to RA and RAGA was significantly reduced. In the direct BAT, the relative potency of modified conglutin was decreased in 67% and increased/similar in 33% of the patients. In the indirect BAT, RA and RAGA were 10-100 times less potent than native conglutin. Addition of plasma to the indirect BAT increased the relative potency of modified conglutin in patients with high peanut-specific IgG levels. This was mediated via blocking of the response to native conglutin, most likely by soluble IgG, and not via CD32. CONCLUSION AND CLINICAL RELEVANCE Chemical modification of peanut conglutin by RA retains immunogenicity and reduces allergenicity and may be a promising approach for development of a curative treatment for peanut allergy. In a subgroup of patients, where the reactivity of native conglutin is already partially blocked by IgG, the effect of the modification of conglutin is less pronounced.
Collapse
Affiliation(s)
- E van Hoffen
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Arman M, Krauel K. Human platelet IgG Fc receptor FcγRIIA in immunity and thrombosis. J Thromb Haemost 2015; 13:893-908. [PMID: 25900780 DOI: 10.1111/jth.12905] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/10/2015] [Indexed: 01/23/2023]
Abstract
Beyond their prominent role in hemostasis and thrombosis, platelets are increasingly recognized as having immunologic functions. Supporting this, human platelets express FcγRIIA (CD32a), a low-affinity Fc receptor (FcR) for the constant region of IgG that recognizes immune complexes (ICs) and IgG-opsonized cells with high avidity. In leukocytes, FcγRIIA engagement initiates strong effector functions that are key for immune and inflammatory responses, including cytokine release, antibody-dependent cell-mediated killing of pathogens, and internalization of ICs. However, the physiologic relevance of platelet-expressed FcγRIIA has received little attention in previous reviews on FcRs. This article summarizes and discusses the available information on human platelet FcγRIIA. The importance of this receptor in heparin-induced thrombocytopenia, a prothrombotic adverse drug effect, is well documented. However, studies demonstrating platelet activation by IgG-opsonized bacteria point to the physiologic relevance of platelet FcγRIIA in immunity. In this context, platelet activation and secretion may facilitate both a direct antimicrobial function of platelets and crosstalk with other immune cells. Additionally, a role for platelet FcγRIIA in IgG-independent hemostasis and physiologic thrombosis, by means of amplifying integrin αII b β3 outside-in signaling, has also been proposed. Nonetheless, the thrombotic complications found in some infective and autoimmune diseases may result from unbalanced FcγRIIA-mediated platelet aggregation. Moreover, FcγRIIA is not expressed in mice, and thrombocytopenia and/or thrombotic events found after drug administration can only be recapitulated by the use of human FcγRIIA-transgenic mice. Altogether, the available data support a functional role for platelet FcγRIIA in health and disease, and emphasize the need for further investigation of this receptor.
Collapse
Affiliation(s)
- M Arman
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - K Krauel
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
41
|
|
42
|
Macglashan D, Moore G, Muchhal U. Regulation of IgE-mediated signalling in human basophils by CD32b and its role in Syk down-regulation: basic mechanisms in allergic disease. Clin Exp Allergy 2014; 44:713-23. [PMID: 24734927 DOI: 10.1111/cea.12155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/27/2013] [Accepted: 06/06/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND CD32b has been previously demonstrated to modulate IgE-mediated secretion from human basophils. However, exploration of the implications of this regulation has been limited. One unstudied area is whether regulation of signalling by CD32 also alters some of the phenotypic changes induced by IgE-mediated activation. The reported character of CD32-mediated signal transduction is not clear for human basophils and the two primary mechanisms considered important in this reaction predict different long-term outcomes, notably predicting different outcomes for down-regulation of syk expression. OBJECTIVE Syk expression was considered a unique point of phenotypic control in human basophils and the role of CD32b in its regulation is explored in this study. However, initial pilot studies discovered that IL-3 could markedly up-regulate CD32 expression and first describing the consequences of this up-regulation became an additional focus of this study. METHODS Human basophils were examined for the changes in IgE-mediated signalling during simultaneous engagement of CD32b. RESULTS Preliminary experiments noted that CD32b could be up-regulated by IL-3 (3- to 12-fold). Both natural variation and induced up-regulation of CD32b modulated the efficacy of this receptor to inhibit IgE-mediated release. Signalling induced by engagement of CD32b (lyn, syk, SHP-1, or SHIP1 phosphorylation) was more consistent with a mode of action involving SHIP1 rather than SHP-1. IgE-mediated down-regulation of syk expression was not altered by co-engagement of CD32b, a result also consistent with a SHIP1-dependent mechanism of inhibition. CONCLUSIONS Taken together these results suggest that the combined action of IgE and IgG could generate a natural mechanism, whereby the significant variation in syk expression in allergic subjects occurs without necessarily also inducing mediator release.
Collapse
Affiliation(s)
- D Macglashan
- Johns Hopkins Asthma and Allergy Center, Baltimore, MD, USA
| | | | | |
Collapse
|
43
|
Molecular targets on mast cells and basophils for novel therapies. J Allergy Clin Immunol 2014; 134:530-44. [DOI: 10.1016/j.jaci.2014.03.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/24/2014] [Accepted: 03/07/2014] [Indexed: 01/14/2023]
|
44
|
Roger A, Depreux N, Jurgens Y, Heath MD, Garcia G, Skinner MA. A novel and well tolerated mite allergoid subcutaneous immunotherapy: evidence of clinical and immunologic efficacy. Immun Inflamm Dis 2014; 2:92-8. [PMID: 25400929 PMCID: PMC4217550 DOI: 10.1002/iid3.23] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/17/2014] [Accepted: 04/20/2014] [Indexed: 01/25/2023] Open
Abstract
Allergy to house dust mite is one of the most common causes of allergic rhinitis. A novel tyrosine-adsorbed, modified allergen product, Acarovac Plus, developed for the treatment of perennial mite allergy seeks to address the underlying cause of allergic rhinitis in this instance. One of two dosing regimens may be used, either the Conventional Regimen or the Cluster Regimen. We sought to compare the efficacy and safety of a specific immunotherapy, developed for the treatment of perennial mite allergy, administered under a Conventional and Clustered dosing schedule in patients with persistent allergic rhinitis. Thirty adult patients, between 18 and 65 years old, with allergic rhinitis and/or asthma secondary to hypersensitivity to Dermatophagoides pteronyssinus were administered with either conventional or cluster initial regime, with a final visit one week after the last dose administration. The efficacy to the Conventional and Cluster regimens was measured using a Nasal Challenge Test monitoring clinical symptoms and peak nasal inspiratory flow. Total IgE, serum-specific inmunoglobulins (IgE and IgG4) to Dermatophagoides pteronyssinus and relevant cytokines (IFN-γ, IL-4, IL-5, IL-10 and IL-13) were assessed. A Satisfaction Questionnaire (TSQM) was completed after each patient's final visit. The tolerability of the vaccine was assessed monitoring adverse reactions. No adverse events were recorded in either conventional or cluster regime. The specific Nasal Challenge Test led to a decrease in symptom scores and a significant decrease in mean nasal peak inspiratory flow drop was recorded in both dosing regimen groups. A significant increase in IgG4-specific antibody titres was assessed. No significant changes were observed in concentrations of total IgE, specific IgE or cytokines (IFN-γ, IL-4, IL-5, IL-10 and IL-13). Patients declared themselves most satisfied in relation to "Secondary effects", with high overall satisfaction in both groups. Cluster and conventional specific immunotherapy resulted in no adverse reaction(s) and led to similar improvements in immunological parameters, clinical efficacy (Nasal Challenge Test) and high overall satisfaction.
Collapse
Affiliation(s)
- Albert Roger
- Hospital Universitari Germans Trias Pujol, Unitat d'Al.lèrgia Barcelona, Catalonia, Spain
| | - Nathalie Depreux
- Hospital Universitari Germans Trias Pujol, Unitat d'Al.lèrgia Barcelona, Catalonia, Spain
| | - Yani Jurgens
- Hospital Universitari Germans Trias Pujol, Unitat d'Al.lèrgia Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
45
|
Sellge G, Barkowsky M, Kramer S, Gebhardt T, Sander LE, Lorentz A, Bischoff SC. Interferon-γ regulates growth and controls Fcγ receptor expression and activation in human intestinal mast cells. BMC Immunol 2014; 15:27. [PMID: 24996251 PMCID: PMC4227132 DOI: 10.1186/1471-2172-15-27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/20/2014] [Indexed: 01/05/2023] Open
Abstract
Background Development and function of tissue resident mast cells (MCs) is tightly controlled by various cytokines, most of which belong to the typical T helper (Th) 2-type cytokines such as IL-3 and IL-4. The effects of the Th1-type cytokine IFN-γ on human MCs is less clear. Results Here, we analyzed the effects of IFN-γ on tissue-derived, mature human MCs. We found that INF-γ decreases proliferation, without affecting apoptosis in human intestinal MCs cultured in the presence of optimal concentrations of stem cell factor (SCF) or SCF and IL-4. However, in the absence of growth factors or at suboptimal concentrations of SCF, INF-γ promotes survival through inhibition of MC apoptosis. Interestingly, we found that INF-γ has no effect on FcϵRI expression and FcϵRI-mediated release of histamine and leukotriene (LT)C4, while it has profound effects on FcγR expression and activation. We show that intestinal MCs express FcγRI, FcγRIIa, and FcγRIIc, whereas FcγRIIb expression was found in only 40% of the isolates and FcγRIII was never detectable. INF-γ strongly increases FcγRI and decreases FcγRIIa expression. INF-γ-naïve MCs produce LTC4 but fail to degranulate upon crosslinking of surface-bound monomeric IgG. In contrast, INF-γ-treated MCs rapidly release granule-stored histamine in addition to de novo-synthesized LTC4. Conclusion In summary, we identify INF-γ as an important regulator of tissue-resident human MCs. IFN-γ displays a dual function by blocking extensive MC proliferation, while decreasing apoptosis in starving MCs and enhancing FcγRI expression and activation. These results emphasize the involvement of mucosal MCs in Th1-mediated disorders.
Collapse
Affiliation(s)
- Gernot Sellge
- Department of Internal Medicine III, University Hospital Aachen, RWTH University, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Pinot de Moira A, Fitzsimmons CM, Jones FM, Wilson S, Cahen P, Tukahebwa E, Mpairwe H, Mwatha JK, Bethony JM, Skov PS, Kabatereine NB, Dunne DW. Suppression of basophil histamine release and other IgE-dependent responses in childhood Schistosoma mansoni/hookworm coinfection. J Infect Dis 2014; 210:1198-206. [PMID: 24782451 PMCID: PMC4176447 DOI: 10.1093/infdis/jiu234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The poor correlation between allergen-specific immunoglobulin E (asIgE) and clinical signs of allergy in helminth infected populations suggests that helminth infections could protect against allergy by uncoupling asIgE from its effector mechanisms. We investigated this hypothesis in Ugandan schoolchildren coinfected with Schistosoma mansoni and hookworm. METHODS Skin prick test (SPT) sensitivity to house dust mite allergen (HDM) and current wheeze were assessed pre-anthelmintic treatment. Nonspecific (anti-IgE), helminth-specific, and HDM-allergen-specific basophil histamine release (HR), plus helminth- and HDM-specific IgE and IgG4 responses were measured pre- and post-treatment. RESULTS Nonspecific- and helminth-specific-HR, and associations between helminth-specific IgE and helminth-specific HR increased post-treatment. Hookworm infection appeared to modify the relationship between circulating levels of HDM-IgE and HR: a significant positive association was observed among children without detectable hookworm infection, but no association was observed among infected children. In addition, hookworm infection was associated with a significantly reduced risk of wheeze, and IgG4 to somatic adult hookworm antigen with a reduced risk of HDM-SPT sensitivity. There was no evidence for S. mansoni infection having a similar suppressive effect on HDM-HR or symptoms of allergy. CONCLUSIONS Basophil responsiveness appears suppressed during chronic helminth infection; at least in hookworm infection, this suppression may protect against allergy.
Collapse
Affiliation(s)
| | | | - Frances M Jones
- Department of Pathology, University of Cambridge, United Kingdom
| | - Shona Wilson
- Department of Pathology, University of Cambridge, United Kingdom
| | - Pierre Cahen
- Department of Pathology, University of Cambridge, United Kingdom
| | | | | | - Joseph K Mwatha
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi
| | - Jeffrey M Bethony
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, DC
| | | | | | - David W Dunne
- Department of Pathology, University of Cambridge, United Kingdom
| |
Collapse
|
47
|
Popescu FD. Molecular biomarkers for grass pollen immunotherapy. World J Methodol 2014; 4:26-45. [PMID: 25237628 PMCID: PMC4145574 DOI: 10.5662/wjm.v4.i1.26] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/05/2014] [Accepted: 02/18/2014] [Indexed: 02/06/2023] Open
Abstract
Grass pollen allergy represents a significant cause of allergic morbidity worldwide. Component-resolved diagnosis biomarkers are increasingly used in allergy practice in order to evaluate the sensitization to grass pollen allergens, allowing the clinician to confirm genuine sensitization to the corresponding allergen plant sources and supporting an accurate prescription of allergy immunotherapy (AIT), an important approach in many regions of the world with great plant biodiversity and/or where pollen seasons may overlap. The search for candidate predictive biomarkers for grass pollen immunotherapy (tolerogenic dendritic cells and regulatory T cells biomarkers, serum blocking antibodies biomarkers, especially functional ones, immune activation and immune tolerance soluble biomarkers and apoptosis biomarkers) opens new opportunities for the early detection of clinical responders for AIT, for the follow-up of these patients and for the development of new allergy vaccines.
Collapse
|
48
|
Abstract
The prevalence of allergic rhinitis (AR) is on the increase and this condition is frequently associated with asthma, thus leading to the concept that these two conditions are different aspects of the same disease. There is now accumulating evidence that AR often precedes the onset of asthmatic symptoms. This notion has important implications, not only for the diagnosis and management of these common allergic conditions but also for the potential progression of disease. Very little is known about the risk factors responsible for the progression of AR to asthma; current treatment options can control symptoms but do not prevent or cure the disease. However, there are recent data supporting the notion that it is possible to prevent new asthma cases by modifying the immune response and clinical outcome with allergen immunotherapy. This review article evaluates the impact of AR on the development of asthma, examines putative predictors for the progression of AR to asthma, and reviews recent, promising literature suggesting that early treatment of allergic individuals with immunotherapy may aid in asthma prevention.
Collapse
|
49
|
The FcγR of humans and non-human primates and their interaction with IgG: implications for induction of inflammation, resistance to infection and the use of therapeutic monoclonal antibodies. Curr Top Microbiol Immunol 2014; 382:321-52. [PMID: 25116107 DOI: 10.1007/978-3-319-07911-0_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Considerable effort has focused on the roles of the individual members of the FcγR receptor (FcγR) family in inflammatory diseases and humoral immunity. Recent work has revealed major roles in infection and in particular HIV pathogenesis and immunity. In addition, FcγR functions underpin the action of many of the successful therapeutic monoclonal antibodies. This emphasises the need for a greater understanding of FcγR function in humans and in the NHP which provides a key model for human immunity and preclinical testing of antibodies. We discuss recent key aspects of the human FcγR receptor biology and structure to define differences and similarities in activity between the human and macaque Fc receptors. These differences and similarities nuance the interpretation of infection and vaccine studies in the macaque. Indeed passive IgG antibody protection in lentivirus infection models in the macaque provided early evidence for the role of Fc receptors in anti-HIV immunity that have subsequently gained support from human vaccine trials. None-the-less the diverse functions and cellular contexts of FcγR receptor expression ensure there is much still to understand of the protective and deleterious effects of FcγRs in HIV infection. Careful comparative studies of human and non-human primate FcγRs will facilitate our appreciation of what attributes of HIV specific IgG antibodies, either acquired naturally or via vaccination, are most important for protection.
Collapse
|
50
|
Abstract
Basophils have emerged in recent years as a small but potent subpopulation of leukocytes capable of bridging innate and adaptive immunity. They can be activated through IgE-dependent and IgE-independent mechanisms to release preformed mediators and to produce Th2 cytokines. In addition to their role in protective immunity to helminths, basophils are major participants in allergic reactions as diverse as anaphylaxis and immediate hypersensitivity reactions, late-phase hypersensitivity reactions, and delayed hypersensitivity reactions. Additionally, basophils have been implicated in the pathophysiology of autoimmune diseases such as lupus nephritis and rheumatoid arthritis, and the modulation of immune responses to bacterial infections, as well as being a feature of myelogenous leukemias. Distinct signals for activation, degranulation, transendothelial migration, and immune regulation are being defined, and demonstrate the important role of basophils in promoting a Th2 microenvironment. These mechanistic insights are driving innovative approaches for diagnostic testing and therapeutic targeting of basophils.
Collapse
Affiliation(s)
- Jessica L Cromheecke
- Departments of Microbial Pathogenesis & Immunology and Medicine, Texas A&M College of Medicine, 2121 West Holcombe Boulevard, Houston, TX, 77030, USA
| | | | | |
Collapse
|