1
|
Brázda V, Šislerová L, Cucchiarini A, Mergny JL. G-quadruplex propensity in H. neanderthalensis, H. sapiens and Denisovans mitochondrial genomes. NAR Genom Bioinform 2024; 6:lqae060. [PMID: 38817800 PMCID: PMC11137754 DOI: 10.1093/nargab/lqae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Current methods of processing archaeological samples combined with advances in sequencing methods lead to disclosure of a large part of H. neanderthalensis and Denisovans genetic information. It is hardly surprising that the genome variability between modern humans, Denisovans and H. neanderthalensis is relatively limited. Genomic studies may provide insight on the metabolism of extinct human species or lineages. Detailed analysis of G-quadruplex sequences in H. neanderthalensis and Denisovans mitochondrial DNA showed us interesting features. Relatively similar patterns in mitochondrial DNA are found compared to modern humans, with one notable exception for H. neanderthalensis. An interesting difference between H. neanderthalensis and H. sapiens corresponds to a motif found in the D-loop region of mtDNA, which is responsible for mitochondrial DNA replication. This area is directly responsible for the number of mitochondria and consequently for the efficient energy metabolism of cell. H. neanderthalensis harbor a long uninterrupted run of guanines in this region, which may cause problems for replication, in contrast with H. sapiens, for which this run is generally shorter and interrupted. One may propose that the predominant H. sapiens motif provided a selective advantage for modern humans regarding mtDNA replication and function.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Anne Cucchiarini
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
2
|
Folate in maternal rheumatoid arthritis-filial autism spectrum disorder continuum. Reprod Toxicol 2023; 115:29-35. [PMID: 36402436 DOI: 10.1016/j.reprotox.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Rheumatoid Arthritis (RA) is an inflammatory autoimmune disease that affects women three times more than men. Epidemiological studies found that the incidence of Autism Spectrum Disorder (ASD), a neurological and developmental disorder, in children born to mothers suffering from RA is higher compared with the control population. Considering that the pathogenesis of ASD could be traced back to pregnancy and in uterine conditions, and the evidence of reduced folate levels in the brain of ASD-affected children, we aimed to study the role of folate, as an important nutritional factor during pregnancy, in associating maternal RA to ASD development in the offspring. Folate balance during RA could be influenced twice, initially during the immune activation associated with disease onset, and later during the treatment with anti-folate drugs, with a potential consequence of folate deficiency. Maternal folate deficiency during pregnancy could increase homocysteine levels, oxidative stress, and global DNA hypomethylation, all known risk factors in ASD pathogenesis. These effects could be intensified by genetic polymorphisms in the folate system, which were also found as genetic risk factors for both RA and ASD. The available evidence suggests that folate level as an important factor during RA, pregnancy and ASD could have pathological and therapeutical significance and should be carefully monitored and investigated in the RA-pregnancy-ASD axis.
Collapse
|
3
|
Gerussi A, Soskic B, Asselta R, Invernizzi P, Gershwin ME. GWAS and autoimmunity: What have we learned and what next. J Autoimmun 2022; 133:102922. [PMID: 36209690 DOI: 10.1016/j.jaut.2022.102922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/07/2022]
Abstract
Autoimmune diseases are common conditions characterized by loss of tolerance, female predominance and a remarkable heterogeneity among different populations. Most often they are polygenic and several genetic loci have been linked with the risk of developing autoimmune diseases. However, causal inference is difficult. When the genomic revolution began there were high hopes of translating fast genetic analyses to the bedside but this has proven to be challenging. Nonetheless, over the last decade, fine-mapping strategies have greatly improved; one of the most significant research lines focuses on the in vivo and ex vivo definition of the effect of genetic variants within the target tissues and within specific subpopulations of immune cells that are involved in the disease pathogenesis. This strategy also includes the longitudinal tracking of a large number of immunophenotypes in many individuals to build a large reference atlas for variant characterization. In this review, we discuss the results obtained by GWAS in autoimmune diseases and review recent advances in fine mapping strategies. More importantly, we discuss gaps and future directions.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy.
| | - Blagoje Soskic
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Rosanna Asselta
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Merrill E Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
4
|
Chen Z, Shang Y, Yuan Y, He Y, Wasti B, Duan W, Ouyang R, Jia J, Xiao B, Zhang D, Zhang X, Li J, Chen B, Liu Y, Zeng Q, Ji X, Ma L, Liu S, Xiang X. MBD2 mediates Th17 cell differentiation by regulating MINK1 in Th17-dominant asthma. Front Genet 2022; 13:959059. [PMID: 36303542 PMCID: PMC9592806 DOI: 10.3389/fgene.2022.959059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: .Asthma is a highly heterogeneous disease, and T-helper cell type 17 (Th17) cells play a pathogenic role in the development of non-T2 severe asthma. Misshapen like kinase 1 (MINK1) is involved in the regulation of Th17 cell differentiation, but its effect on severe asthma remains unclear. Our previous studies showed that methyl-CpG binding domain protein 2 (MBD2) expression was significantly increased in patients with Th17 severe asthma and could regulate Th17 cell differentiation. The aim of this study was to investigate how MBD2 interacts with MINK1 to regulate Th17 cell differentiation in Th17-dominant asthma.Materials and methods: Female C57BL/6 mice and bronchial epithelial cells (BECs) were used to establish mouse and cell models of Th17-dominant asthma, respectively. Flow cytometry was used to detect Th17 cell differentiation, and the level of IL-17 was detected by enzyme-linked immunosorbent assay (ELISA). Western blot and quantitative real-time PCR (qRT-PCR) were used to detect MBD2 and MINK1 expression. To investigate the role of MBD2 and MINK1 in Th17 cell differentiation in Th17-dominant asthma, the MBD2 and MINK1 genes were silenced or overexpressed by small interfering RNA and plasmid transfection.Results: Mouse and BEC models of Th17-dominant asthma were established successfully. The main manifestations were increased neutrophils in BALF, airway hyperresponsiveness (AHR), activated Th17 cell differentiation, and high IL-17 levels. The expression of MBD2 in lung tissues and BECs from the Th17-dominant asthma group was significantly increased, while the corresponding expression of MINK1 was significantly impaired. Through overexpression or silencing of MBD2 and MINK1 genes, we have concluded that MBD2 and MINK1 regulate Th17 cell differentiation and IL-17 release. Interestingly, MBD2 was also found to negatively regulate the expression of MINK1.Conclusion: Our findings have revealed new roles for MBD2 and MINK1, and provide new insights into epigenetic regulation of Th17-dominant asthma, which is dominated by neutrophils and Th17 cells. This study could lead to new therapeutic targets for patients with Th17-dominant asthma.
Collapse
Affiliation(s)
- Zhifeng Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yulin Shang
- Ophthalmology and Otorhinolaryngology, Zigui County Traditional Chinese Medicine Hospital, Zigui, Hubei, China
| | - Yu Yuan
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi He
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Binaya Wasti
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wentao Duan
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingsi Jia
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bing Xiao
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dongshan Zhang
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiufeng Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jianmin Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Bolin Chen
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Yi Liu
- Department of Respiratory Medicine, Zhuzhou City Central Hospital, Zhuzhou, Hunan, China
| | - Qingping Zeng
- Department of Respiratory and Critical Care Medicine, Longshan County People’s Hospital, Longshan, Hunan, China
| | - Xiaoying Ji
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- *Correspondence: Libing Ma, ; Shaokun Liu, ; Xudong Xiang,
| | - Shaokun Liu
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Libing Ma, ; Shaokun Liu, ; Xudong Xiang,
| | - Xudong Xiang
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Libing Ma, ; Shaokun Liu, ; Xudong Xiang,
| |
Collapse
|
5
|
-Omic Approaches and Treatment Response in Rheumatoid Arthritis. Pharmaceutics 2022; 14:pharmaceutics14081648. [PMID: 36015273 PMCID: PMC9412998 DOI: 10.3390/pharmaceutics14081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disorder characterized by an aberrant activation of innate and adaptive immune cells. There are different drugs used for the management of RA, including disease-modifying antirheumatic drugs (DMARDs). However, a significant percentage of RA patients do not initially respond to DMARDs. This interindividual variation in drug response is caused by a combination of environmental, genetic and epigenetic factors. In this sense, recent -omic studies have evidenced different molecular signatures involved in this lack of response. The aim of this review is to provide an updated overview of the potential role of -omic approaches, specifically genomics, epigenomics, transcriptomics, and proteomics, to identify molecular biomarkers to predict the clinical efficacy of therapies currently used in this disorder. Despite the great effort carried out in recent years, to date, there are still no validated biomarkers of response to the drugs currently used in RA. -Omic studies have evidenced significant differences in the molecular profiles associated with treatment response for the different drugs used in RA as well as for different cell types. Therefore, global and cell type-specific -omic studies analyzing response to the complete therapeutical arsenal used in RA, including less studied therapies, such as sarilumab and JAK inhibitors, are greatly needed.
Collapse
|
6
|
Puncevičienė E, Gaiževska J, Sabaliauskaitė R, Šnipaitienė K, Vencevičienė L, Vitkus D, Jarmalaitė S, Butrimienė I. Analysis of Epigenetic Changes in Vitamin D Pathway Genes in Rheumatoid Arthritis Patients. Acta Med Litu 2022; 29:78-90. [PMID: 36061943 PMCID: PMC9428646 DOI: 10.15388/amed.2021.29.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is an autoimmune inflammatory disease with complex etiopathogenesis launched by multiple risk factors, including epigenetic alterations. RA is possibly linked to vitamin D that is epigenetically active and may alter DNA methylation of certain genes. Therefore, the study aimed to evaluate the relationship between DNA methylation status of vitamin D signaling pathway genes (VDR, CYP24A1, CYP2R1), vitamin D level and associations with RA.Materials and Methods: Totally 76 participants (35 RA patients and 41 healthy controls) were enrolled from a case-control vitamin D and VDR gene polymorphisms study regarding age and vitamin D concentration. CpG islands in promoter regions of the VDR, CYP24A1, CYP2R1 genes were chosen for DNA methylation analysis by means of pyrosequencing. Chemiluminescent microplate immunoassay was used to assess 25(OH)D serum levels. RA clinical data, i.e. the disease activity score C-reactive protein 28 (DAS28 – CRP) as well as patient-reported outcome questionnaires were recorded.Results: The study showed similar methylation pattern in the promoter regions of vitamin D pathway genes in RA and control group with p>0.05 (VDR gene 2.39% vs. 2.48%, CYP24A1 gene 16.02% vs. 15.17% and CYP2R1 2.53% vs. 2.41%). CYP24A1 methylation intensity was significantly higher in compare to methylation intensity of VDR and CYP2R1 genes in both groups (p<0.0001). A tendency of higher vitamin D concentration in cases having methylated VDR (57.57±28.93 vs. 47.40±29.88 nmol/l), CYP24A1 (53.23±26.22 vs. 48.23±34.41 nmol/l) and CYP2R1 (60.41±30.73 vs. 44.54±27.63 nmol/l) genes and a positive correlation between VDR, CYP2R1 methylation intensity and vitamin D level in RA affected participants was revealed (p>0.05). A significantly higher CYP24A1 methylation intensity (p=0.0104) was detected in blood cells of vitamin D deficient (<50 nmol/l) RA patients vs. vitamin D deficient controls.Conclusions: Our data suggests some indirect associations between DNA methylation status of vitamin D pathway genes and vitamin D level in RA.
Collapse
|
7
|
Zou Y, Li JJ, Xue W, Kong X, Duan H, Li Y, Wei L. Epigenetic Modifications and Therapy in Uveitis. Front Cell Dev Biol 2021; 9:758240. [PMID: 34869347 PMCID: PMC8636745 DOI: 10.3389/fcell.2021.758240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Uveitis is a sight-threatening intraocular inflammation, and the exact pathogenesis of uveitis is not yet clear. Recent studies, including multiple genome-wide association studies (GWASs), have identified genetic variations associated with the onset and progression of different types of uveitis, such as Vogt–Koyanagi–Harada (VKH) disease and Behcet’s disease (BD). However, epigenetic regulation has been shown to play key roles in the immunoregulation of uveitis, and epigenetic therapies are promising treatments for intraocular inflammation. In this review, we summarize recent advances in identifying epigenetic programs that cooperate with the physiology of intraocular immune responses and the pathology of intraocular inflammation. These attempts to understand the epigenetic mechanisms of uveitis may provide hope for the future development of epigenetic therapies for these devastating intraocular inflammatory conditions.
Collapse
Affiliation(s)
- Yanli Zou
- Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China.,State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Wei Xue
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Xiangbin Kong
- Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Hucheng Duan
- Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Yiqun Li
- Department of Orthopaedics, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Contribution of Dysregulated DNA Methylation to Autoimmunity. Int J Mol Sci 2021; 22:ijms222111892. [PMID: 34769338 PMCID: PMC8584328 DOI: 10.3390/ijms222111892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs are known regulators of gene expression and genomic stability in cell growth, development, and differentiation. Because epigenetic mechanisms can regulate several immune system elements, epigenetic alterations have been found in several autoimmune diseases. The purpose of this review is to discuss the epigenetic modifications, mainly DNA methylation, involved in autoimmune diseases in which T cells play a significant role. For example, Rheumatoid Arthritis and Systemic Lupus Erythematosus display differential gene methylation, mostly hypomethylated 5′-C-phosphate-G-3′ (CpG) sites that may associate with disease activity. However, a clear association between DNA methylation, gene expression, and disease pathogenesis must be demonstrated. A better understanding of the impact of epigenetic modifications on the onset of autoimmunity will contribute to the design of novel therapeutic approaches for these diseases.
Collapse
|
9
|
Fang TJ, Lin CH, Lin YZ, Chiu MHS, Li RN, Chan HC, Yeh YT, Yen JH. Lower HDAC6 mRNA expression and promoter hypomethylation are associated with RA susceptibility. J Formos Med Assoc 2021; 121:1431-1441. [PMID: 34732304 DOI: 10.1016/j.jfma.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/PURPOSE Recent studies showed that Histone deacetylases 6 (HDAC6) inhibitors could improve arthritis in rheumatoid arthritis (RA) rodent models, whereas lower HDAC6 expression was observed in RA patients' synovial fibroblasts, raising the concerns to use HDAC6 inhibitors to treat RA patients. In the present study, we investigated the involvement of HDAC6 mRNA expression and promoter methylation in RA. METHODS The DNA and RNAs were extracted from the peripheral blood mononuclear cells (PBMCs) from 138 RA patients and 102 healthy controls. The pyrosequencing technique was used for promoter methylation analysis. The quantitative real-time polymerase chain reaction was used to determine the HDAC6 mRNA expression. The patients' clinical characteristics and disease biomarkers were recorded when blood sampling. RESULTS The HDAC6 mRNA expression was lower in the RA patients than controls (p = 0.001). The RA patients had significant hypomethylation of the HDAC6 promoter (p < 0.001). The HDAC6 promoter was hypo-methylated in the -229, -225, -144, and -142 CpG sites in RA patients (p < 0.05). Unexpectedly, promoter methylation and mRNA expression of the HDAC6 gene were positively associated (p < 0.001). The HDAC6 mRNA expression and promoter methylation status were associated with the risk of RA (p = 0.006 and 0.002, respectively). The inflammatory cytokines, TNF-α and IL-6, were significantly increased after HDAC6 knockdown in PMA-stimulated THP1 cells and SW982 cells (p < 0.05). CONCLUSION The HDAC6 mRNA expression and promoter methylation were lower in RA patients. Both HDAC6 mRNA expression level and promoter hypomethylation were associated the susceptibility of RA. HDAC6 inhibitors seem not proper for RA patients' treatment.
Collapse
Affiliation(s)
- Tzu-Jung Fang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Taiwan; Division of Geriatrics and Gerontology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Chia-Hui Lin
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Yuan-Zhao Lin
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Min-HSi Chiu
- Aging and Disease Prevention Research Center, Fooyin University, Taiwan; Biomedical Analysis Center, Fooyin University Hospital, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Taiwan
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medical Laboratory Science and Biotechnology, School of Medical and Health Sciences, Fooyin University, Kaohsiung, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Taiwan; Biomedical Analysis Center, Fooyin University Hospital, Taiwan
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Taiwan; Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan; College of Biological Science and Technology, National Yang Ming Chiao Tung University, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Xie Z, Wang Q, Hu S. Coordination of PRKCA/PRKCA-AS1 interplay facilitates DNA methyltransferase 1 recruitment on DNA methylation to affect protein kinase C alpha transcription in mitral valve of rheumatic heart disease. Bioengineered 2021; 12:5904-5915. [PMID: 34482802 PMCID: PMC8806685 DOI: 10.1080/21655979.2021.1971482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In the present study, mitral valve tissues from three mitral stenosis patients with RHD by valve replacement and two healthy donors were harvested and conducted DNA methylation signature on PRKCA by MeDIP-qPCR. The presence of hypomethylated CpG islands at promoter and 5' terminal of PRKCA was observed in RHD accompanied with highly expressed PRKCA and down-regulated antisense long non-coding RNA (lncRNA) PRKCA-AS1 compared to health control. Furthermore, the enrichments of DNMT1/3A/3B on PRKCA were detected by ChIP-qPCR assay in vivo and in human cardiomyocyte AC16 and RL-14 cells exposed to TNF-α in vitro, and both demonstrated that DNMT1 substantially contributed to DNA methylation. Additionally, PRKCA-AS1 was further determined to bind with promoter of PRKCA via 5' terminal and interact with DNMT1 via 3' terminal. Taken together, our results illuminated a novel regulatory mechanism of DNA methylation on regulating PRKCA transcription through lncRNA PRKCA-AS1, and shed light on the molecular pathogenesis of RHD occurrence.
Collapse
Affiliation(s)
- Zan Xie
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, China
| | - Qianli Wang
- Cardiovascular Surgery Intensive Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, China
| | - Shaojuan Hu
- Cardiovascular Surgery Intensive Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, China
| |
Collapse
|
11
|
Barik RR, Bhatt LK. Emerging epigenetic targets in rheumatoid arthritis. Rheumatol Int 2021; 41:2047-2067. [PMID: 34309725 DOI: 10.1007/s00296-021-04951-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023]
Abstract
Rheumatoid arthritis is a complex disorder that is characterized by irreversible and progressive destructions of joints, but its exact etiology remains mainly unknown. The occurrence and the progression of the disease entirely depend on environmental and genetic factors. In recent years, various epigenetic changes involving DNA methylation, histone modification, miRNA, X-chromosome inactivation, bromodomain, sirtuin, and many others were identified that were found to be linked to the activation and the aggressive phenotype in rheumatoid arthritis. Epigenetics is found to be one of the root causes, which brings changes in the heritable phenotype and is not determined by changes in the DNA sequences and understanding these epigenetic mechanisms and the pathogenesis of the disease can help in understanding the disease and various other possible ways for its control and/or prevention. The various epigenetic modification occurring are reversible and can be modulated by drugs, diet, and environmental factors. This article focuses on various epigenetic factors involved in the pathogenesis of rheumatoid arthritis. Further, various epigenetic therapies that might be successful in inhibiting these epigenetic modifications are summarized. Several therapeutic agents alter the epigenetic modifications occurring in various diseases and many of the epigenetic therapies are under pre-clinical and clinical trial. However, exploring these epigenetic prognostic biomarkers would give a broader perspective and provide more ideas and knowledge regarding the process and pathways through which the diseases occur, and also combining various therapeutic agents would show more beneficial and synergistic effects.
Collapse
Affiliation(s)
- Reema R Barik
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
12
|
Nair N, Barton A, Wilson AG. Cell-specific epigenetic drivers of pathogenesis in rheumatoid arthritis. Epigenomics 2021; 13:549-560. [PMID: 33820439 DOI: 10.2217/epi-2020-0380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis is a complex, inflammatory autoimmune disease, which is characterized by pain, swelling and joint damage driven by the altered behavior of a number of different cell types such as synovial fibroblasts macrophages and lymphocytes. The mechanism underlying pathogenesis is unclear but increasing evidence points to altered epigenetic regulation within these cell types which promotes the activated destructive behavior that underlies disease pathogenesis. This review summarizes the key epigenetic modifications in the most important cells types in rheumatoid arthritis, which are associated with disease activity. We also discuss emerging avenues of research focusing on readers of epigenetic markers which may serve to be potential therapeutic targets.
Collapse
Affiliation(s)
- Nisha Nair
- Centre for Genetics & Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Anne Barton
- Centre for Genetics & Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PT, UK.,NIHR Manchester Musculoskeletal BRU, Central Manchester Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK
| | - Anthony G Wilson
- University College Dublin School of Medicine & Medical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
13
|
Wardowska A. m6A RNA Methylation in Systemic Autoimmune Diseases-A New Target for Epigenetic-Based Therapy? Pharmaceuticals (Basel) 2021; 14:ph14030218. [PMID: 33807762 PMCID: PMC8001529 DOI: 10.3390/ph14030218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
The general background of autoimmune diseases is a combination of genetic, epigenetic and environmental factors, that lead to defective immune reactions. This erroneous immune cell activation results in an excessive production of autoantibodies and prolonged inflammation. During recent years epigenetic mechanisms have been extensively studied as potential culprits of autoreactivity. Alike DNA and proteins, also RNA molecules are subjected to an extensive repertoire of chemical modifications. N6-methyladenosine is the most prevalent form of internal mRNA modification in eukaryotic cells and attracts increasing attention due to its contribution to human health and disease. Even though m6A is confirmed as an essential player in immune response, little is known about its role in autoimmunity. Only few data have been published up to date in the field of RNA methylome. Moreover, only selected autoimmune diseases have been studied in respect of m6A role in their pathogenesis. In this review, I attempt to present all available research data regarding m6A alterations in autoimmune disorders and appraise its role as a potential target for epigenetic-based therapies.
Collapse
Affiliation(s)
- Anna Wardowska
- Department of Embryology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
14
|
Ibáñez-Cabellos JS, Seco-Cervera M, Osca-Verdegal R, Pallardó FV, García-Giménez JL. Epigenetic Regulation in the Pathogenesis of Sjögren Syndrome and Rheumatoid Arthritis. Front Genet 2019; 10:1104. [PMID: 31798626 PMCID: PMC6863924 DOI: 10.3389/fgene.2019.01104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023] Open
Abstract
Autoimmune rheumatic diseases, such as Sjögren syndrome (SS) and rheumatoid arthritis (RA), are characterized by chronic inflammation and autoimmunity, which cause joint tissue damage and destruction by triggering reduced mobility and debilitation in patients with these diseases. Initiation and maintenance of chronic inflammatory stages account for several mechanisms that involve immune cells as key players and the interaction of the immune cells with other tissues. Indeed, the overlapping of certain clinical and serologic manifestations between SS and RA may indicate that numerous immunologic-related mechanisms are involved in the physiopathology of both these diseases. It is widely accepted that epigenetic pathways play an essential role in the development and function of the immune system. Although many published studies have attempted to elucidate the relation between epigenetic modifications (e.g. DNA methylation, histone post-translational modifications, miRNAs) and autoimmune disorders, the contribution of epigenetic regulation to the pathogenesis of SS and RA is at present poorly understood. This review attempts to shed light from a critical point of view on the identification of the most relevant epigenetic mechanisms related to RA and SS by explaining intricate regulatory processes and phenotypic features of both autoimmune diseases. Moreover, we point out some epigenetic markers which can be used to monitor the inflammation status and the dysregulated immunity in SS and RA. Finally, we discuss the inconvenience of using epigenetic data obtained from bulk immune cell populations instead specific immune cell subpopulations.
Collapse
Affiliation(s)
- José Santiago Ibáñez-Cabellos
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Marta Seco-Cervera
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Rebeca Osca-Verdegal
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
15
|
Brandt B, Rashidiani S, Bán Á, Rauch TA. DNA Methylation-Governed Gene Expression in Autoimmune Arthritis. Int J Mol Sci 2019; 20:E5646. [PMID: 31718084 PMCID: PMC6888626 DOI: 10.3390/ijms20225646] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease hallmarked by progressive and irreversible joint destruction. RA pathogenesis is a T cell-regulated and B cell-mediated process in which activated lymphocyte-produced chemokines and cytokines promote leukocyte infiltration that ultimately leads to destruction of the joints. There is an obvious need to discover new drugs for RA treatment that have different biological targets or modes of action than the currently employed therapeutics. Environmental factors such as cigarette smoke, certain diet components, and oral pathogens can significantly affect gene regulation via epigenetic factors. Epigenetics opened a new field for pharmacology, and DNA methylation and histone modification-implicated factors are feasible targets for RA therapy. Exploring RA pathogenesis involved epigenetic factors and mechanisms is crucial for developing more efficient RA therapies. Here we review epigenetic alterations associated with RA pathogenesis including DNA methylation and interacting factors. Additionally, we will summarize the literature revealing the involved molecular structures and interactions. Finally, potential epigenetic factor-based therapies will be discussed that may help in better management of RA in the future.
Collapse
Affiliation(s)
- Barbara Brandt
- Department of Medical Biology, Medical School, University of Pécs, Pécs 7624, Hungary; (B.B.); (S.R.)
| | - Shima Rashidiani
- Department of Medical Biology, Medical School, University of Pécs, Pécs 7624, Hungary; (B.B.); (S.R.)
| | - Ágnes Bán
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, Pécs 7621, Hungary;
| | - Tibor A. Rauch
- Department of Medical Biology, Medical School, University of Pécs, Pécs 7624, Hungary; (B.B.); (S.R.)
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs 7624, Hungary
| |
Collapse
|
16
|
Ciechomska M, Roszkowski L, Maslinski W. DNA Methylation as a Future Therapeutic and Diagnostic Target in Rheumatoid Arthritis. Cells 2019; 8:E953. [PMID: 31443448 PMCID: PMC6770174 DOI: 10.3390/cells8090953] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is a long-term autoimmune disease of unknown etiology that leads to progressive joint destruction and ultimately to disability. RA affects as much as 1% of the population worldwide. To date, RA is not a curable disease, and the mechanisms responsible for RA development have not yet been well understood. The development of more effective treatments and improvements in the early diagnosis of RA is direly needed to increase patients' functional capacity and their quality of life. As opposed to genetic mutation, epigenetic changes, such as DNA methylation, are reversible, making them good therapeutic candidates, modulating the immune response or aggressive synovial fibroblasts (FLS-fibroblast-like synoviocytes) activity when it is necessary. It has been suggested that DNA methylation might contribute to RA development, however, with insufficient and conflicting results. Besides, recent studies have shown that circulating cell-free methylated DNA (ccfDNA) in blood offers a very convenient, non-invasive, and repeatable "liquid biopsy", thus providing a reliable template for assessing molecular markers of various diseases, including RA. Thus, epigenetic therapies controlling autoimmunity and systemic inflammation may find wider implications for the diagnosis and management of RA. In this review, we highlight current challenges associated with the treatment of RA and other autoimmune diseases and discuss how targeting DNA methylation may improve diagnostic, prognostic, and therapeutic approaches.
Collapse
Affiliation(s)
- Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-635 Warsaw, Poland.
| | - Leszek Roszkowski
- Department of Rheumatology, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-635 Warsaw, Poland
| | - Wlodzimierz Maslinski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-635 Warsaw, Poland
| |
Collapse
|
17
|
Karagianni P, Tzioufas AG. Epigenetic perspectives on systemic autoimmune disease. J Autoimmun 2019; 104:102315. [PMID: 31421964 DOI: 10.1016/j.jaut.2019.102315] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases are characterized by increased reactivity of the immune system towards self-antigens, causing tissue damage. Although their etiology remains largely unknown, genetic, microbial, environmental and psychological factors are recognized as contributing elements. Epigenetic changes, including covalent modifications of the DNA and histones, are critical signaling mediators between the genome and the environment, and thus potent regulators of cellular functions. The most extensively studied epigenetic modifications are Cytosine DNA methylation and histone acetylation and methylation on various residues. These are thought to affect chromatin structure and binding of specific effectors that regulate transcription, replication, and other processes. Recent studies have uncovered significant epigenetic alterations in cells or tissues derived from autoimmune disease patients compared to samples from healthy individuals and have linked them with disease phenotypes. Epigenetic changes in specific genes correlate with upregulated or downregulated transcription. For instance, in many systems, reduced DNA methylation and increased histone acetylation of interferon-inducible genes correlate with their increased expression in autoimmune disease patients. Also, reduced DNA methylation of retroelements has been proposed as an activating mechanism and has been linked with increased immune reactivity, while epigenetic differences on the X chromosome could indicate incomplete dosage compensation and explain to some extent the increased susceptibility of females over males towards the development of most autoimmune diseases. Besides changes in epigenetic modifications, differences in the levels of many enzymes catalyzing the addition or removal of these marks as well as proteins that recognize them and function as effector molecules have also been detected in autoimmune patients. Although the existing knowledge cannot fully explain whether epigenetic alterations cause or follow the increased immune activation, their characterization is very useful for understanding the pathogenetic mechanisms and complements genetic and clinical studies. Furthermore, specific epigenetic marks have the potential to serve as biomarkers for disease status, prognosis, and response to treatment. Finally, epigenetic factors are currently being examined as candidate therapeutic targets.
Collapse
Affiliation(s)
- Panagiota Karagianni
- Department of Pathophysiology, School of Medicine, University of Athens, Mikras Asias Str 75, 115 27, Athens, Greece
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, University of Athens, Mikras Asias Str 75, 115 27, Athens, Greece.
| |
Collapse
|
18
|
Rheumatoid arthritis-relevant DNA methylation changes identified in ACPA-positive asymptomatic individuals using methylome capture sequencing. Clin Epigenetics 2019; 11:110. [PMID: 31366403 PMCID: PMC6668183 DOI: 10.1186/s13148-019-0699-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Abstract
Objective To compare DNA methylation in subjects positive vs negative for anti-citrullinated protein antibodies (ACPA), a key serological marker of rheumatoid arthritis (RA) risk. Methods With banked serum from a random subset (N = 3600) of a large general population cohort, we identified ACPA-positive samples and compared them to age- and sex-matched ACPA-negative controls. We used a custom-designed methylome panel to conduct targeted bisulfite sequencing of 5 million CpGs located in regulatory or hypomethylated regions of DNA from whole blood (red blood cell lysed). Using binomial regression models, we investigated the differentially methylated regions (DMRs) between ACPA-positive vs ACPA-negative subjects. An independent set of T cells from RA patients was used to “validate” the differentially methylated sites. Results We measured DNA methylation in 137 subjects, of whom 63 were ACPA-positive, 66 were ACPA-negative, and 8 had self-reported RA. We identified 1303 DMRs of relevance, of which one third (402) had underlying genetic effects. These DMRs were enriched in intergenic CpG islands (CGI) and CGI shore regions. Furthermore, the genes associated with these DMRs were enriched in pathways related to Epstein-Barr virus infection and immune response. In addition, 80 (38%) of 208 RA-specific DMRs were replicated in T cells from RA samples. Conclusions Sequencing-based high-resolution methylome mapping revealed biologically relevant DNA methylation changes in asymptomatic individuals positive for ACPA that overlap with those seen in RA. Pathway analyses suggested roles for viral infections, which may represent the effect of environmental triggers upstream of disease onset. Electronic supplementary material The online version of this article (10.1186/s13148-019-0699-9) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Teerawattanapong N, Udomsinprasert W, Ngarmukos S, Tanavalee A, Honsawek S. Blood leukocyte LINE-1 hypomethylation and oxidative stress in knee osteoarthritis. Heliyon 2019; 5:e01774. [PMID: 31193532 PMCID: PMC6536726 DOI: 10.1016/j.heliyon.2019.e01774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/15/2019] [Accepted: 05/16/2019] [Indexed: 02/01/2023] Open
Abstract
Aim Joints inflammation is one of the most pathologic processes leading to the development of osteoarthritis (OA), possibly leading to genomic instability. LINE-1 is transposable elements, and alterations in LINE-1 methylation induced by 8-hydroxy-2′-deoxyguanosine (8-OHdG) can cause genomic instability contributing to OA development. Herein, the present study examined associations between LINE-1 methylation, 8-OHdG, and knee OA severity. Methods LINE-1 methylation levels were measured in 104 knee OA patients and 96 healthy controls by quantitative combined bisulfite restriction analysis. 8–OHdG was investigated by ELISA. The knee OA severity was appraised by questionnaires (VAS, WOMAC, KOOS, and lequesne index) and radiological severity based on the grading of Kellgren and Lawrence (KL) standard criteria. Key findings Blood leukocyte LINE-1 methylation levels were significantly lower in knee OA patients than in healthy controls. Interestingly, individuals with LINE-1 hypomethylation were significantly associated with an elevated risk of knee OA. Linear regression analysis revealed that LINE-1 methylation was independently associated with KL grading of knee OA. Furthermore, plasma 8–OHdG levels in OA cases were not significantly different from those in healthy volunteers, whereas synovial fluid 8–OHdG values were considerably higher than in paired plasma specimens of the OA subjects. Significance This study demonstrated that LINE-1 hypomethylation in blood leukocytes was associated with increased risk and radiographic severity of knee OA, and increased synovial fluid 8–OHdG levels were observed in knee OA patients. Collectively, LINE-1 hypomethylation and elevated 8–OHdG could emerge as biomarkers indicating the severity of knee OA and may take a possible part in the pathological process of knee OA.
Collapse
Affiliation(s)
- Nipaporn Teerawattanapong
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | | | - Srihatach Ngarmukos
- Department of Orthopaedics, Vinai Parkpian Orthopaedic Research Center, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Aree Tanavalee
- Department of Orthopaedics, Vinai Parkpian Orthopaedic Research Center, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.,Department of Orthopaedics, Vinai Parkpian Orthopaedic Research Center, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
20
|
Trained Innate Immunity Not Always Amicable. Int J Mol Sci 2019; 20:ijms20102565. [PMID: 31137759 PMCID: PMC6567865 DOI: 10.3390/ijms20102565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
The concept of „trained innate immunity" is understood as the ability of innate immune cells to remember invading agents and to respond nonspecifically to reinfection with increased strength. Trained immunity is orchestrated by epigenetic modifications leading to changes in gene expression and cell physiology. Although this phenomenon was originally seen mainly as a beneficial effect, since it confers broad immunological protection, enhanced immune response of reprogrammed innate immune cells might result in the development or persistence of chronic metabolic, autoimmune or neuroinfalmmatory disorders. This paper overviews several examples where the induction of trained immunity may be essential in the development of diseases characterized by flawed innate immune response.
Collapse
|
21
|
Khosravi M, Bidmeshkipour A, Moravej A, Hojjat-Assari S, Naserian S, Karimi MH. Induction of CD4 +CD25 +Foxp3 + regulatory T cells by mesenchymal stem cells is associated with RUNX complex factors. Immunol Res 2019; 66:207-218. [PMID: 29143918 DOI: 10.1007/s12026-017-8973-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among the particular immunomodulation properties of mesenchymal stem cells (MSCs), one relies on their capacity to regulatory T cell (Treg) induction from effector T cells. Stable expression of Foxp3 has a dominant role in suppressive phenotype and stability of induced regulatory T cells (iTregs). How MSCs induce stable Foxp3 expression in iTregs remains unknown. We previously showed MSCs could enhance demethylation of Treg-specific demethylated region (TSDR) in iTregs in cell-cell contact manner (unpublished data). Here, we evaluated the possible effect of MSCs on the mRNA expression of Runx complex genes (Runx1, Runx3, and CBFB) that perch on TSDR in iTregs and play the main role in suppressive properties of Tregs, a regulatory pathway that has not yet been explored by MSCs. Also, we investigated the mRNA expression of MBD2 that promotes TSDR demethylation in Tregs. We first showed that in vitro MSC-iTreg induction was associated with strong mRNA modifications of genes involved in Runx complex. We next injected high doses of MSCs in a murine model of C57BL/6 into Balb/C allogeneic skin transplantation to prolong allograft survival. When splenocytes of grafted mice were analyzed, we realized that the Foxp3 expression was increased at day 5 and 10 post-graft merely in MSC-treated mice. Furthermore, Foxp3 mRNA expression was associated with modified Runx complex mRNA expression comparable to what was shown in in vitro studies. Hence, our data identify a possible mechanism in which MSCs convert conventional T cells to iTreg through strong modifications of mRNA of genes that are involved in Runx complex of Foxp3.
Collapse
Affiliation(s)
- Maryam Khosravi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.,Institut Français de Recherche et d'Enseignement Supérieur à l'International (IFRES-INT), Paris, France
| | - Ali Bidmeshkipour
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Ali Moravej
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Suzzan Hojjat-Assari
- Institut Français de Recherche et d'Enseignement Supérieur à l'International (IFRES-INT), Paris, France
| | - Sina Naserian
- Inserm, U1197, Hôpital Paul Brousse, 94807, Villejuif, France
| | | |
Collapse
|
22
|
Dynamic DNA Methylation Changes of Tbx21 and Rorc during Experimental Autoimmune Uveitis in Mice. Mediators Inflamm 2018; 2018:9129163. [PMID: 30254507 PMCID: PMC6142759 DOI: 10.1155/2018/9129163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022] Open
Abstract
The key transcription factors of T helper cell subpopulations, including T-bet, GATA3, RORγt, and Foxp3 are involved in various autoimmune diseases. Whether methylation of these master transcription factors is associated with the development of experimental autoimmune uveitis (EAU) and the possible epigenetic regulatory mechanisms involved has however not yet been addressed. In our study, significant methylation changes in both Tbx21 and Rorc were observed in one CpG site in the retinas of EAU mice. Two CpG sites of Tbx21 and one CpG site of Rorc showed significant dynamic methylation changes in the RPE-choroid complex during EAU. The mRNA expressions of Tbx21 and Rorc in both the retinas and RPE-choroid complexes correlated with the methylation changes at the various time points during EAU development. The methylation changes were associated with the production of the Th1/Th17 cells' signature cytokines, IFN-γ and IL-17. Dynamic changes in mRNA expression of DNA methyltransferases (DNMT1) were also noted, which may be related to the observed methylation changes of these genes. The present study provides evidence that DNA methylation of Tbx21 and Rorc may be associated with the development of EAU. DNMT1 activation may have an important effect on regulating DNA methylation dynamics.
Collapse
|
23
|
Guo Q, Wu D, Yu H, Bao J, Peng S, Shan Z, Guan H, Teng W. Alterations of Global DNA Methylation and DNA Methyltransferase Expression in T and B Lymphocytes from Patients with Newly Diagnosed Autoimmune Thyroid Diseases After Treatment: A Follow-Up Study. Thyroid 2018; 28:377-385. [PMID: 29336230 DOI: 10.1089/thy.2017.0301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dysregulated DNA methylation in lymphocytes has been linked to autoimmune disorders. The aims of this study were to identify global DNA methylation patterns in patients with autoimmune thyroid diseases and to observe methylation changes after treatment for these conditions. METHODS A cross-sectional study was conducted, including the following patients: 51 with newly diagnosed Graves' disease (GD), 28 with autoimmune hypothyroidism (AIT), 29 with positive thyroid autoantibodies, and 39 matched healthy volunteers. Forty GD patients treated with radioiodine or antithyroid drugs and 28 AIT patients treated with L-thyroxine were followed for three months. Serum free triiodothyronine, free thyroxine, thyrotropin, thyroid peroxidase antibodies, thyroglobulin antibodies, and thyrotropin receptor antibodies were assayed using electrochemiluminescent immunoassays. CD3+ T and CD19+ B cells were separated by flow cytometry for total DNA and RNA extraction. Global DNA methylation levels were determined by absorptiometry using a methylation quantification kit. DNA methyltransferase (DNMT) expression levels were detected by real-time polymerase chain reaction. RESULTS Hypomethylation and down-regulated DNMT1 expression in T and B lymphocytes were observed in the newly diagnosed GD patients. Neither the AIT patients nor the positive thyroid autoantibodies patients exhibited differences in their global DNA methylation status or DNMT mRNA levels compared with healthy controls. Antithyroid drugs restored global methylation and DNMT1 expression in both T and B lymphocytes, whereas radioiodine therapy affected only T cells. L-thyroxine replacement did not alter the methylation or DNMT expression levels in lymphocytes. The global methylation levels of B cells were negatively correlated with the serum thyroid peroxidase antibodies in patients with autoimmune thyroid diseases. CONCLUSIONS Hyperthyroid patients with newly diagnosed GD had global hypomethylation and lower DNMT1 expression in T and B lymphocytes. The results provide the first demonstration that antithyroid drugs or radioiodine treatment restore global DNA methylation and DNMT1 expression with concurrent relief of hyperthyroidism.
Collapse
Affiliation(s)
- Qingling Guo
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University , Shenyang, Liaoning, P.R. China
| | - Dan Wu
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University , Shenyang, Liaoning, P.R. China
- 2 Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Shenyang Medical College (Shenyang 242 Hospital) , Shenyang, P.R. China
| | - Huixin Yu
- 3 Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine , Wuxi, P.R. China
| | - Jiandong Bao
- 3 Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine , Wuxi, P.R. China
| | - Shiqiao Peng
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University , Shenyang, Liaoning, P.R. China
| | - Zhongyan Shan
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University , Shenyang, Liaoning, P.R. China
| | - Haixia Guan
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University , Shenyang, Liaoning, P.R. China
| | - Weiping Teng
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University , Shenyang, Liaoning, P.R. China
| |
Collapse
|
24
|
Liang J, Yang F, Zhao L, Bi C, Cai B. Physiological and pathological implications of 5-hydroxymethylcytosine in diseases. Oncotarget 2018; 7:48813-48831. [PMID: 27183914 PMCID: PMC5217052 DOI: 10.18632/oncotarget.9281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/19/2016] [Indexed: 12/11/2022] Open
Abstract
Gene expression is the prerequisite of proteins. Diverse stimuli result in alteration of gene expression profile by base substitution for quite a long time. However, during the past decades, accumulating studies proved that bases modification is involved in this process. CpG islands (CGIs) are DNA fragments enriched in CpG repeats which mostly locate in promoters. They are frequently modified, methylated in most conditions, thereby suggesting a role of methylation in profiling gene expression. DNA methylation occurs in many conditions, such as cancer, embryogenesis, nervous system diseases etc. Recently, 5-hydroxymethylcytosine (5hmC), the product of 5-methylcytosine (5mC) demethylation, is emerging as a novel demethylation marker in many disorders. Consistently, conversion of 5mC to 5hmC has been proved in many studies. Here, we reviewed recent studies concerning demethylation via 5hmC conversion in several conditions and progress of therapeutics-associated with it in clinic. We aimed to unveil its physiological and pathological significance in diseases and to provide insight into its clinical application potential.
Collapse
Affiliation(s)
- Jing Liang
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Fan Yang
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Liang Zhao
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Chongwei Bi
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Benzhi Cai
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China.,Institute of Clinical Pharmacy and Medicine, Academics of Medical Sciences of Heilongjiang Province, Harbin, China
| |
Collapse
|
25
|
Tsou PS, Coit P, Kilian NC, Sawalha AH. EZH2 Modulates the DNA Methylome and Controls T Cell Adhesion Through Junctional Adhesion Molecule A in Lupus Patients. Arthritis Rheumatol 2017; 70:98-108. [PMID: 28973837 DOI: 10.1002/art.40338] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE EZH2 is an epigenetic regulator that mediates H3K27 trimethylation (H3K27me3) and modulates DNA methylation. The aim of this study was to characterize the role of EZH2 in CD4+ T cells in the pathogenesis of systemic lupus erythematosus. METHODS EZH2 expression levels were determined in CD4+ T cells isolated from lupus patients and healthy controls. The epigenetic effects of EZH2 overexpression in CD4+ T cells were evaluated using a genome-wide DNA methylation approach. Gene expression profiles and microRNAs (miRNAs) were assessed by quantitative polymerase chain reaction, while protein expression was examined by Western blotting. A cell adhesion assay was used to assess adhesion of CD4+ T cells to human microvascular endothelial cells. RESULTS EZH2 and H3K27me3 levels were increased in CD4+ T cells from lupus patients compared to healthy controls. T cell production of EZH2 was down-regulated in the presence of miR-26a and miR-101, and levels of both miRNAs were reduced in lupus CD4+ T cells. Overexpression of EZH2 induced in CD4+ T cells resulted in significant DNA methylation changes. Genes involved in leukocyte adhesion and migration, including F11R (which encodes junctional adhesion molecule A [JAM-A]), became hypomethylated in CD4+ T cells when EZH2 was overexpressed. Overexpression of EZH2 resulted in increases in JAM-A expression and CD4+ T cell adhesion. Preincubation of EZH2-transfected CD4+ T cells with neutralizing antibodies against JAM-A significantly blunted cell adhesion. Similarly, CD4+ T cells from lupus patients overexpressed JAM-A and adhered significantly more to endothelial cells than to T cells from healthy controls. Blocking JAM-A or EZH2 significantly reduced the capacity of lupus CD4+ T cells to adhere to endothelial cells. CONCLUSION The results of this study identify a novel role of EZH2 in T cell adhesion mediated by epigenetic remodeling and up-regulation of JAM-A. Blockade of EZH2 or JAM-A might have therapeutic potential by acting to reduce T cell adhesion, migration, and extravasation in patients with lupus.
Collapse
|
26
|
Czaja AJ. Review article: next-generation transformative advances in the pathogenesis and management of autoimmune hepatitis. Aliment Pharmacol Ther 2017; 46:920-937. [PMID: 28901565 DOI: 10.1111/apt.14324] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/01/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Advances in autoimmune hepatitis that transform current concepts of pathogenesis and management can be anticipated as products of ongoing investigations driven by unmet clinical needs and an evolving biotechnology. AIM To describe the advances that are likely to become transformative in autoimmune hepatitis, based on the direction of current investigations. METHODS Pertinent abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and a secondary bibliography was developed. The discovery process was repeated, and a tertiary bibliography was identified. The number of abstracts reviewed was 2830, and the number of full-length articles reviewed exceeded 150. RESULTS Risk-laden allelic variants outside the major histocompatibility complex (rs3184504, r36000782) are being identified by genome-wide association studies, and their gene products are potential therapeutic targets. Epigenetic changes associated with environmental cues can enhance the transcriptional activity of genes, and chromatin re-structuring and antagonists of noncoding molecules of ribonucleic acid are feasible interventions. The intestinal microbiome is a discovery field for microbial products and activated immune cells that may translocate to the periphery and respond to manipulation. Epidemiological studies and controlled interview-based surveys may implicate environmental and xenobiotic factors that warrant evidence-based changes in lifestyle, and site-directed molecular and cellular interventions promise to change the paradigm of treatment from one of blanket immunosuppression. CONCLUSIONS Advances in genetics, epigenetics, pathophysiology, epidemiology, and site-directed molecular and cellular interventions constitute the next generation of transformative advances in autoimmune hepatitis.
Collapse
Affiliation(s)
- A J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
27
|
Nair N, Wilson AG, Barton A. DNA methylation as a marker of response in rheumatoid arthritis. Pharmacogenomics 2017; 18:1323-1332. [PMID: 28836487 DOI: 10.2217/pgs-2016-0195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a complex disease affecting approximately 0.5-1% of the population. While there are effective biologic therapies, in up to 40% of patients, disease activity remains inadequately controlled. Therefore, identifying factors that predict, prior to the initiation of therapy, which patients are likely to respond best to which treatment is a research priority and DNA methylation is increasingly being explored as a potential theranostic biomarker. DNA methylation is thought to play a role in RA disease pathogenesis and in mediating the relationship between genetic variants and patient outcomes. The role of DNA methylation has been most extensively explored in cancer medicine, where it has been shown to be predictive of treatment response. Studies in RA, however, are in their infancy and, while showing promise, further investigation in well-powered studies is warranted.
Collapse
Affiliation(s)
- Nisha Nair
- Arthritis Research UK Centre for Genetics & Genomics, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| | - Anthony G Wilson
- University College Dublin School of Medicine & Medical Science & Conway Institute, Dublin, Ireland
| | - Anne Barton
- Arthritis Research UK Centre for Genetics & Genomics, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK.,NIHR Manchester Musculoskeletal BRU, Central Manchester Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
28
|
Rhead B, Holingue C, Cole M, Shao X, Quach HL, Quach D, Shah K, Sinclair E, Graf J, Link T, Harrison R, Rahmani E, Halperin E, Wang W, Firestein GS, Barcellos LF, Criswell LA. Rheumatoid Arthritis Naive T Cells Share Hypermethylation Sites With Synoviocytes. Arthritis Rheumatol 2017; 69:550-559. [PMID: 27723282 PMCID: PMC5328845 DOI: 10.1002/art.39952] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/05/2016] [Indexed: 01/03/2023]
Abstract
Objective To determine whether differentially methylated CpGs in synovium‐derived fibroblast‐like synoviocytes (FLS) of patients with rheumatoid arthritis (RA) were also differentially methylated in RA peripheral blood (PB) samples. Methods For this study, 371 genome‐wide DNA methylation profiles were measured using Illumina HumanMethylation450 BeadChips in PB samples from 63 patients with RA and 31 unaffected control subjects, specifically in the cell subsets of CD14+ monocytes, CD19+ B cells, CD4+ memory T cells, and CD4+ naive T cells. Results Of 5,532 hypermethylated FLS candidate CpGs, 1,056 were hypermethylated in CD4+ naive T cells from RA PB compared to control PB. In analyses of a second set of CpG candidates based on single‐nucleotide polymorphisms from a genome‐wide association study of RA, 1 significantly hypermethylated CpG in CD4+ memory T cells and 18 significant CpGs (6 hypomethylated, 12 hypermethylated) in CD4+ naive T cells were found. A prediction score based on the hypermethylated FLS candidates had an area under the curve of 0.73 for association with RA case status, which compared favorably to the association of RA with the HLA–DRB1 shared epitope risk allele and with a validated RA genetic risk score. Conclusion FLS‐representative DNA methylation signatures derived from the PB may prove to be valuable biomarkers for the risk of RA or for disease status.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John Graf
- University of California, San Francisco
| | | | | | | | - Eran Halperin
- Tel Aviv University, Tel Aviv, Israel, and The International Computer Science Institute, Berkeley, California
| | - Wei Wang
- University of California at San Diego, La Jolla
| | | | | | | |
Collapse
|
29
|
Ahmadi M, Gharibi T, Dolati S, Rostamzadeh D, Aslani S, Baradaran B, Younesi V, Yousefi M. Epigenetic modifications and epigenetic based medication implementations of autoimmune diseases. Biomed Pharmacother 2017; 87:596-608. [DOI: 10.1016/j.biopha.2016.12.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
|
30
|
Liu C, Cao Y, Zhou S, Khoso PA, Li S. Avermectin induced global DNA hypomethylation and over-expression of heat shock proteins in cardiac tissues of pigeon. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 135:52-58. [PMID: 28043331 DOI: 10.1016/j.pestbp.2016.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Despite increasing evidences pointing to residues of avermectin (AVM) pose toxic effects on non-target organisms in environment, but the data in pigeon is insufficient. The alteration of global DNA methylation and response of heat shock proteins (Hsps) are important for assessing the AVM toxicity in cardiac tissues of pigeon (Columba livia). To investigate the effects of AVM exposure in cardiac tissues of pigeon, we detected the expression levels of DNA methyltransferases (Dnmts), methylated DNA-binding domain protein 2 (MBD2), and Hsp 60, 70 and 90. Pigeons were exposed to feed containing AVM (0, 20, 40 and 60mg/kg diet) for 30, 60, 90days respectively, and cardiac tissues were collected and analyzed. We found the transcriptional levels of Dnmt1, Dnmt3a and Dnmt3b mRNA were down-regulated, but the transcriptional levels of MBD2 mRNA were up-regulated by AVM exposure in cardiac tissues of pigeon. Necrocytosis, hemorrhage, infiltration of inflammatory cells and abundant vacuoles appeared in cardiac tissues after AVM exposure. Accompanying this phenotype, the mRNA transcriptional and/or protein levels of Hsp30, Hsp60, Hsp70 and Hsp90 increased. In conclusion, these results underscored AVM exposure caused DNA methylation machinery malfunctions, and induced over-expression of Hsps to improve the protective function against cardiac injury.
Collapse
Affiliation(s)
- Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ye Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shuo Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Pervez Ahmed Khoso
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
31
|
Svendsen AJ, Gervin K, Lyle R, Christiansen L, Kyvik K, Junker P, Nielsen C, Houen G, Tan Q. Differentially Methylated DNA Regions in Monozygotic Twin Pairs Discordant for Rheumatoid Arthritis: An Epigenome-Wide Study. Front Immunol 2016; 7:510. [PMID: 27909437 PMCID: PMC5112246 DOI: 10.3389/fimmu.2016.00510] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/02/2016] [Indexed: 12/29/2022] Open
Abstract
Objectives In an explorative epigenome-wide association study (EWAS) to search for gene independent, differentially methylated DNA positions and regions (DMRs) associated with rheumatoid arthritis (RA) by studying monozygotic (MZ) twin pairs discordant for RA. Methods Genomic DNA was isolated from whole blood samples from 28 MZ twin pairs discordant for RA. DNA methylation was measured using the HumanMethylation450 BeadChips. Smoking, anti-cyclic citrullinated peptide antibodies, and immunosuppressive treatment were included as covariates. Pathway analysis was performed using GREAT. Results Smoking was significantly associated with hypomethylation of a DMR overlapping the promoter region of the RNF5 and the AGPAT1, which are implicated in inflammation and autoimmunity, whereas DMARD treatment induced hypermethylation of the same region. Additionally, the promotor region of both S100A6 and EFCAB4B were hypomethylated, and both genes have previously been associated with RA. We replicated several candidate genes identified in a previous EWAS in treatment-naïve RA singletons. Gene-set analysis indicated the involvement of immunologic signatures and cancer-related pathways in RA. Conclusion We identified several differentially methylated regions associated with RA, which may represent environmental effects or consequences of the disease and plausible biological pathways pertinent to the pathogenesis of RA.
Collapse
Affiliation(s)
- Anders J Svendsen
- The Danish Twin Registry, Epidemiology, Institute of Public Health, University of Southern Denmark , Odense , Denmark
| | - Kristina Gervin
- Department of Medical Genetics, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Lene Christiansen
- The Danish Twin Registry, Epidemiology, Institute of Public Health, University of Southern Denmark , Odense , Denmark
| | - Kirsten Kyvik
- Denmark and Odense Patient data Explorative Network (OPEN), Institute of Clinical Research, Odense University Hospital, University of Southern Denmark , Odense , Denmark
| | - Peter Junker
- Department of Rheumatology, Odense University Hospital, University of Southern Denmark , Odense , Denmark
| | - Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital , Odense , Denmark
| | - Gunnar Houen
- Department of Clinical Biochemistry and Immunology, Statens Serum Institute , Copenhagen , Denmark
| | - Qihua Tan
- The Danish Twin Registry, Epidemiology, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
32
|
Epipolymorphisms associated with the clinical outcome of autoimmune arthritis affect CD4+ T cell activation pathways. Proc Natl Acad Sci U S A 2016; 113:13845-13850. [PMID: 27849614 DOI: 10.1073/pnas.1524056113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Multifactorial diseases, including autoimmune juvenile idiopathic arthritis (JIA), result from a complex interplay between genetics and environment. Epigenetic mechanisms are believed to integrate such gene-environment interactions, fine-tuning gene expression, and possibly contributing to immune system dysregulation. Although anti-TNF therapy has strongly increased JIA remission rates, it is not curative and up to 80% of patients flare upon treatment withdrawal. Thus, a crucial unmet medical and scientific need is to understand the immunological mechanisms associated with remission or flare to inform clinical decisions. Here, we explored the CD4+ T-cell DNA methylome of 68 poly-articular and extended oligo-articular JIA patients, before and after anti-TNF therapy withdrawal, to identify features associated with maintenance of inactive disease. Individual CpG sites were clustered in coherent modules without a priori knowledge of their function through network analysis. The methylation level of several CpG modules, specifically those enriched in CpG sites belonging to genes that mediate T-cell activation, uniquely correlated with clinical activity. Differences in DNA methylation were already detectable at the time of therapy discontinuation, suggesting epigenetic predisposition. RNA profiling also detected differences in T-cell activation markers (including HLA-DR) but, overall, its sensitivity was lower than epigenetic profiling. Changes to the T-cell activation signature at the protein level were detectable by flow cytometry, confirming the biological relevance of the observed alterations in methylation. Our work proposes epigenetic discrimination between clinical activity states, and reveals T-cell-related biological functions tied to, and possibly predicting or causing, clinical outcome.
Collapse
|
33
|
|
34
|
Epigenetic Modulation as a Therapeutic Prospect for Treatment of Autoimmune Rheumatic Diseases. Mediators Inflamm 2016; 2016:9607946. [PMID: 27594771 PMCID: PMC4995328 DOI: 10.1155/2016/9607946] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Systemic inflammatory rheumatic diseases are considered as autoimmune diseases, meaning that the balance between recognition of pathogens and avoidance of self-attack is impaired and the immune system attacks and destroys its own healthy tissue. Treatment with conventional Disease Modifying Antirheumatic Drugs (DMARDs) and/or Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) is often associated with various adverse reactions due to unspecific and toxic properties of those drugs. Although biologic drugs have largely improved the outcome in many patients, such drugs still pose significant problems and fail to provide a solution to all patients. Therefore, development of more effective treatments and improvements in early diagnosis of rheumatic diseases are badly needed in order to increase patient's functioning and quality of life. The reversible nature of epigenetic mechanisms offers a new class of drugs that modulate the immune system and inflammation. In fact, epigenetic drugs are already in use in some types of cancer or cardiovascular diseases. Therefore, epigenetic-based therapeutics that control autoimmunity and chronic inflammatory process have broad implications for the pathogenesis, diagnosis, and management of rheumatic diseases. This review summarises the latest information about potential therapeutic application of epigenetic modification in targeting immune abnormalities and inflammation of rheumatic diseases.
Collapse
|
35
|
Cai TT, Zhang J, Wang X, Song RH, Qin Q, Muhali FS, Zhou JZ, Xu J, Zhang JA. Gene-gene and gene-sex epistatic interactions of DNMT1, DNMT3A and DNMT3B in autoimmune thyroid disease. Endocr J 2016; 63:643-53. [PMID: 27237591 DOI: 10.1507/endocrj.ej15-0596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to investigate the associations of DNA methyltransferases (DNMTs) polymorphisms with susceptibility to autoimmune thyroid diseases (AITDs) and to test gene-gene/gene-sex epistasis interactions. Eight single-nucleotide polymorphisms (SNPs) in DNMT1, DNMT3A and DNMT3B were selected and genotyped by multiplex polymerase chain reaction combined with ligase detection reaction method (PCR-LDR). A total of 685 Graves' disease (GD) patients, 353 Hashimoto's thyroiditis (HT) patients and 909 healthy controls were included in the final analysis. Epistasis was tested by additive model, multiplicative model and general multifactor dimensionality reduction (general MDR). Rs2424913 (DNMT3B) and rs2228611 (DNMT1) were associated with susceptibility to AITD and GD in the dominant and overdominant model, respectively (rs2424913: P=0.009 for AITD, P=0.0041 for GD; rs2228611: P=0.035 for AITD, P=0.043 for GD). Multiplicative and multiple high dimensional gene-gene or gene-sex interactions were also observed in this study. We have found evidence for a potential role of rs2424913 (DNMT3B) and rs2228611 (DNMT1) in AITD susceptibility and identified novel gene-gene/gene-sex interactions in AITD. Our study may highlight sex and genes of DNMTs family as contributors to the pathogenesis of AITD.
Collapse
Affiliation(s)
- Tian-Tian Cai
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mahmoudi M, Aslani S, Nicknam MH, Karami J, Jamshidi AR. New insights toward the pathogenesis of ankylosing spondylitis; genetic variations and epigenetic modifications. Mod Rheumatol 2016; 27:198-209. [PMID: 27425039 DOI: 10.1080/14397595.2016.1206174] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease, characterized by typically an axial arthritis. AS is the prototype of a group of disorders called spondyloarthropathies, which is believed to have common clinical manifestations and genetic predisposition. To date, the exact etiology of AS remains unclear. Over the past few years, however, the role of genetic susceptibility and epigenetic modifications caused through environmental factors have been extensively surveyed with respect to the pathogenesis of AS, resulted in important advances. This review article focuses on the recent advances in the field of AS research, including HLA and non-HLA susceptibility genes identified in genome-wide association studies (GWAS), and aberrant epigenetic modifications of gene loci associated with AS. HLA genes most significantly linked with AS susceptibility include HLA-B27 and its subtypes. Numerous non-HLA genes such as those in ubiquitination, aminopeptidases and MHC class I presentation molecules like ERAP-1 were also reported. Moreover, epigenetic modifications occurred in AS has been summarized. Taken together, the findings presented in this review attempt to explain the circumstance by which both genetic variations and epigenetic modifications are involved in triggering and development of AS. Nonetheless, several unanswered dark sides continue to clog our exhaustive understanding of AS. Future researches in the field of epigenetics should be carried out to extend our vision of AS etiopathogenesis.
Collapse
Affiliation(s)
- Mahdi Mahmoudi
- a Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| | - Saeed Aslani
- a Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| | | | - Jafar Karami
- a Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| | - Ahmad Reza Jamshidi
- a Rheumatology Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| |
Collapse
|
37
|
Long H, Yin H, Wang L, Gershwin ME, Lu Q. The critical role of epigenetics in systemic lupus erythematosus and autoimmunity. J Autoimmun 2016; 74:118-138. [PMID: 27396525 DOI: 10.1016/j.jaut.2016.06.020] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 02/09/2023]
Abstract
One of the major disappointments in human autoimmunity has been the relative failure on genome-wide association studies to provide "smoking genetic guns" that would explain the critical role of genetic susceptibility to loss of tolerance. It is well known that autoimmunity refers to the abnormal state that the dysregulated immune system attacks the healthy cells and tissues due to the loss of immunological tolerance to self-antigens. Its clinical outcomes are generally characterized by the presence of autoreactive immune cells and (or) the development of autoantibodies, leading to various types of autoimmune disorders. The etiology and pathogenesis of autoimmune diseases are highly complex. Both genetic predisposition and environmental factors such as nutrition, infection, and chemicals are implicated in the pathogenic process of autoimmunity, however, how much and by what mechanisms each of these factors contribute to the development of autoimmunity remain unclear. Epigenetics, which refers to potentially heritable changes in gene expression and function that do not involve alterations of the DNA sequence, has provided us with a brand new key to answer these questions. In the recent decades, increasing evidence have demonstrated the roles of epigenetic dysregulation, including DNA methylation, histone modification, and noncoding RNA, in the pathogenesis of autoimmune diseases, especially systemic lupus erythematosus (SLE), which have shed light on a new era for autoimmunity research. Notably, DNA hypomethylation and reactivation of the inactive X chromosome are two epigenetic hallmarks of SLE. We will herein discuss briefly how genetic studies fail to completely elucidate the pathogenesis of autoimmune diseases and present a comprehensive review on landmark epigenetic findings in autoimmune diseases, taking SLE as an extensively studied example. The epigenetics of other autoimmune diseases such as rheumatic arthritis, systemic sclerosis and primary biliary cirrhosis will also be summarized. Importantly we emphasize that the stochastic processes that lead to DNA modification may be the lynch pins that drive the initial break in tolerance.
Collapse
Affiliation(s)
- Hai Long
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Heng Yin
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Ling Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.
| |
Collapse
|
38
|
Effects of Wutou Decoction on DNA Methylation and Histone Modifications in Rats with Collagen-Induced Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5836879. [PMID: 27042192 PMCID: PMC4799822 DOI: 10.1155/2016/5836879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/11/2016] [Indexed: 01/12/2023]
Abstract
Background. Wutou decoction (WTD) has been wildly applied in the treatment of rheumatoid arthritis and experimental arthritis in rats for many years. Epigenetic deregulation is associated with the aetiology of rheumatoid arthritis; however, the effects of WTD on epigenetic changes are unclear. This study is set to explore the effects of WTD on DNA methylation and histone modifications in rats with collagen-induced arthritis (CIA). Methods. The CIA model was established by the stimulation of collagen and adjuvant. The knee synovium was stained with hematoxylin and eosin. The DNA methyltransferase 1 (DNMT1) and methylated CpG binding domain 2 (MBD2) expression of peripheral blood mononuclear cells (PBMCs) were determined by Real-Time PCR. The global DNA histone H3-K4/H3-K27 methylation and total histones H3 and H4 acetylation of PBMCs were detected. Results. Our data demonstrated that the DNMT1 mRNA expression was significantly lowered in group WTD compared to that in group CIA (P < 0.05). The DNA methylation level was significantly reduced in group WTD compared to that in group CIA (P < 0.05). Moreover, H3 acetylation of PBMCs was overexpressed in WTD compared with CIA (P < 0.05). Conclusions. WTD may modulate DNA methylation and histone modifications, functioning as anti-inflammatory potential.
Collapse
|
39
|
Cribbs A, Feldmann M, Oppermann U. Towards an understanding of the role of DNA methylation in rheumatoid arthritis: therapeutic and diagnostic implications. Ther Adv Musculoskelet Dis 2015; 7:206-19. [PMID: 26425149 DOI: 10.1177/1759720x15598307] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The term 'epigenetics' loosely describes DNA-templated processes leading to heritable changes in gene activity and expression, which are independent of the underlying DNA sequence. Epigenetic mechanisms comprise of post-translational modifications of chromatin, methylation of DNA, nucleosome positioning as well as expression of noncoding RNAs. Major advances in understanding the role of DNA methylation in regulating chromatin functions have been made over the past decade, and point to a role of this epigenetic mechanism in human disease. Rheumatoid arthritis (RA) is an autoimmune disorder where altered DNA methylation patterns have been identified in a number of different disease-relevant cell types. However, the contribution of DNA methylation changes to RA disease pathogenesis is at present poorly understood and in need of further investigation. Here we review the current knowledge regarding the role of DNA methylation in rheumatoid arthritis and indicate its potential therapeutic implications.
Collapse
Affiliation(s)
- Adam Cribbs
- Kennedy Institute of Rheumatology, Oxford, and Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | | | - Udo Oppermann
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, and Structural Genomics Consortium, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Epigenetic dynamics in immunity and autoimmunity. Int J Biochem Cell Biol 2015; 67:65-74. [DOI: 10.1016/j.biocel.2015.05.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 02/01/2023]
|
41
|
Liang L, Lutz BM, Bekker A, Tao YX. Epigenetic regulation of chronic pain. Epigenomics 2015; 7:235-45. [PMID: 25942533 DOI: 10.2217/epi.14.75] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chronic pain arising from peripheral inflammation and tissue or nerve injury is a common clinical symptom. Although intensive research on the neurobiological mechanisms of chronic pain has been carried out during previous decades, this disorder is still poorly managed by current drugs such as opioids and nonsteroidal anti-inflammatory drugs. Inflammation, tissue injury and/or nerve injury-induced changes in gene expression in sensory neurons of the dorsal root ganglion, spinal cord dorsal horn and pain-associated brain regions are thought to participate in chronic pain genesis; however, how these changes occur is still elusive. Epigenetic modifications including DNA methylation and covalent histone modifications control gene expression. Recent studies have shown that peripheral noxious stimulation changes DNA methylation and histone modifications and that these changes may be related to the induction of pain hypersensitivity under chronic pain conditions. This review summarizes the current knowledge and progress in epigenetic research in chronic pain and discusses the potential role of epigenetic modifications as therapeutic antinociceptive targets in this disorder.
Collapse
Affiliation(s)
- Lingli Liang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Avenue, MSB F-548, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Rheumatoid arthritis (RA) is an immune-mediated disease of unknown cause that primarily affects the joints and ultimately leads to joint destruction. In recent years, the potential role of DNA methylation in the development of RA is raising great expectations among clinicians and researchers. DNA methylation influences diverse aspects of the disease and regulates epigenetic silencing of genes and behavior of several cell types, especially fibroblast-like synoviocytes (FLS), the most resident cells in joints. The activation of FLS is generally regarded as a key process in the development of RA that actively results in the promotion of ongoing inflammation and joint damage. It has also been shown that aberrant DNA methylation occurs in the pathogenesis of RA and contributes to the development of the disease. Recently, there has been an impressive increase in studies involving DNA methylation in RA. In this paper, we consider the role of DNA methylation in the development of RA.
Collapse
Affiliation(s)
- Feng-Lai Yuan
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, Jiangsu, China
| | | | | | | | | |
Collapse
|
43
|
de Andres MC, Perez-Pampin E, Calaza M, Santaclara FJ, Ortea I, Gomez-Reino JJ, Gonzalez A. Assessment of global DNA methylation in peripheral blood cell subpopulations of early rheumatoid arthritis before and after methotrexate. Arthritis Res Ther 2015; 17:233. [PMID: 26330155 PMCID: PMC4556005 DOI: 10.1186/s13075-015-0748-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 08/10/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION DNA methylation is an epigenetic mechanism regulating gene expression that has been insufficiently studied in the blood of rheumatoid arthritis (RA) patients, as only T cells and total peripheral blood mononuclear cells (PBMCs) from patients with established RA have been studied and with conflicting results. METHOD Five major blood cell subpopulations: T, B and NK cells, monocytes, and polymorphonuclear leukocytes, were isolated from 19 early RA patients and 17 healthy controls. Patient samples were taken before and 1 month after the start of treatment with methotrexate (MTX). Analysis included DNA methylation with high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry-selected reaction monitoring (HPLC-ESI-MS/MS-SRM) and expression levels of seven methylation-specific enzymes by quantitative polymerase chain reaction (qPCR). RESULTS Disease-modifying anti-rheumatic drug (DMARD)-naïve early RA patients showed global DNA hypomethylation in T cells and monocytes, together with a lower expression of DNA methyltrasnferase 1 (DNMT1), the maintenance DNA methyltransferase, which was also decreased in B cells. Furthermore, significantly increased expression of ten-eleven translocation1 (TET1), TET2 and TET3, enzymes involved in demethylation, was found in monocytes and of TET2 in T cells. There was also modest decreased expression of DNMT3A in B cells and of growth arrest and DNA-damage-inducible protein 45A (GADD45A) in T and B cells. Treatment with MTX reverted hypomethylation in T cells and monocytes, which were no longer different from controls, and increased global methylation in B cells. In addition, DNMT1 and DNMT3A showed a trend to reversion of their decreased expression. CONCLUSIONS Our results confirm global DNA hypomethylation in patients with RA with specificity for some blood cell subpopulations and their reversal with methotrexate treatment. These changes are accompanied by parallel changes in the levels of enzymes involved in methylation, suggesting the possibility of regulation at this level.
Collapse
Affiliation(s)
- María C de Andres
- Laboratorio de Investigacion 10 and Rheumatology Unit, Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Travesia de Choupana, s/n, 15706, Santiago de Compostela, Spain.
| | - Eva Perez-Pampin
- Laboratorio de Investigacion 10 and Rheumatology Unit, Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Travesia de Choupana, s/n, 15706, Santiago de Compostela, Spain.
| | - Manuel Calaza
- Laboratorio de Investigacion 10 and Rheumatology Unit, Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Travesia de Choupana, s/n, 15706, Santiago de Compostela, Spain.
| | - Francisco J Santaclara
- Laboratorio de Investigacion 10 and Rheumatology Unit, Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Travesia de Choupana, s/n, 15706, Santiago de Compostela, Spain.
| | - Ignacio Ortea
- Laboratorio de Investigacion 10 and Rheumatology Unit, Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Travesia de Choupana, s/n, 15706, Santiago de Compostela, Spain.
| | - Juan J Gomez-Reino
- Laboratorio de Investigacion 10 and Rheumatology Unit, Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Travesia de Choupana, s/n, 15706, Santiago de Compostela, Spain.
- Department of Medicine, University of Santiago de Compostela, Rúa de San Francisco, s/n, 15782, Santiago de Compostela, Spain.
| | - Antonio Gonzalez
- Laboratorio de Investigacion 10 and Rheumatology Unit, Instituto de Investigación Sanitaria-Hospital Clínico Universitario de Santiago, Travesia de Choupana, s/n, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW To give an overview of recently published articles addressing the role of epigenetic modifications in rheumatoid arthritis (RA). Here we focused on DNA methylation and posttranslational histone modifications. RECENT FINDINGS Recent studies attempted to link epigenetic modifications with genetic or environmental risk factors for RA. There is evidence that histone deacetylases confer effects of environmental triggers such as smoking, diet or therapy on expression levels of target genes. Additionally, disturbed methylation patterns and cell-type specific histone methylation marks were identified as potential mediators of genetic risk in RA. Altered methylome signatures were found in several cell types in RA, first of all RA synovial fibroblasts, and contribute to the intrinsic fibroblast activation. The reversal of DNA hypomethylation by inhibiting the polyamine recycling pathway was suggested as new epigenetic therapy in RA. Moreover, targeting epigenetic reader proteins, such as bromodomain proteins, emerged as a new field in drug development and the first studies underscored the potential of these drugs not only in malignant and inflammatory conditions but also in autoimmune diseases. SUMMARY Epigenetic factors represent a promising area to link genetics, regulation of gene expression and environmental risk factors.
Collapse
|
45
|
Jeffries MA, Sawalha AH. Autoimmune disease in the epigenetic era: how has epigenetics changed our understanding of disease and how can we expect the field to evolve? Expert Rev Clin Immunol 2015; 11:45-58. [PMID: 25534978 DOI: 10.1586/1744666x.2015.994507] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autoimmune diseases are complex and enigmatic, and have presented particular challenges to researchers seeking to define their etiology and explain progression. Previous studies have implicated epigenetic influences in the development of autoimmunity. Epigenetics describes changes in gene expression related to environmental influences without alterations in the underlying genomic sequence, generally classified into three main groups: cytosine genomic DNA methylation, modification of various sidechain positions of histone proteins and noncoding RNAs feedback. The purpose of this article is to review the most relevant literature describing alterations of epigenetic marks in the development and progression of four common autoimmune diseases: systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis and Sjögren's syndrome. The contribution of DNA methylation, histone modification and noncoding RNA for each of these disorders is discussed, including examples both of candidate gene studies and larger epigenomics surveys, and in various tissue types important for the pathogenesis of each. The future of the field is speculated briefly, as is the possibility of therapeutic interventions targeting the epigenome.
Collapse
Affiliation(s)
- Matlock A Jeffries
- Department of Internal Medicine, Division of Rheumatology, Immunology and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | |
Collapse
|
46
|
Fang TJ, Lin CH, Lin YZ, Li RN, Ou TT, Wu CC, Tsai WC, Yen JH. F11R mRNA expression and promoter polymorphisms in patients with rheumatoid arthritis. Int J Rheum Dis 2015; 19:127-33. [PMID: 26230081 DOI: 10.1111/1756-185x.12663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM Although F11 receptor (F11R), also named junctional adhesion molecular A (JAM-A), participates in leukocyte migration, its role in autoimmune diseases has not been specifically disclosed. In this study, we examined the association of F11R expression with the development and clinical manifestations of rheumatoid arthritis (RA). METHOD RNA from peripheral blood mononuclear cells (PBMCs) and DNA from the peripheral blood in RA patients and a healthy control group were extracted. F11R messenger RNA (mRNA) expression was determined by quantitative real-time polymerase chain reaction. The F11R polymorphisms were determined by the TaqMan genotyping assay. RESULTS There was more F11R mRNA expression in the PBMCs of RA patients than those of the control group (P = 0.018). In F11R promoter -688 A > C, C carriers have lower titers of the anticyclic citrullinated peptide (anti-CCP) antibodies (P = 0.002) and fewer positive rates of Schirmer's tests (P = 0.009). The effect is independent of the existence of HLA-DR4. Different genotypes in F11R promoter -688 A > C and -436 A > G do not lead to changes of the gene expression in RA patients. CONCLUSION RA patients have higher mRNA expression of F11R. In RA patients, F11R -688 C may be a protective factor for the development of anti-CCP antibodies and positive rates of Schirmer's tests.
Collapse
Affiliation(s)
- Tzu-Jung Fang
- Division of Geriatrics and Gerontology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hui Lin
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yuan-Zhao Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jeng-Hsien Yen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
47
|
Cribbs AP, Kennedy A, Penn H, Amjadi P, Green P, Read JE, Brennan F, Gregory B, Williams RO. Methotrexate Restores Regulatory T Cell Function Through Demethylation of the FoxP3 Upstream Enhancer in Patients With Rheumatoid Arthritis. Arthritis Rheumatol 2015; 67:1182-92. [PMID: 25604080 DOI: 10.1002/art.39031] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/08/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE We have previously shown, in a cohort of untreated rheumatoid arthritis (RA) patients, that the suppressive function of Treg cells is defective. However, other studies in cohorts of patients with established RA have shown that Treg cell function is normal. We hypothesized that treatment may restore Treg cell function and lead to reduced disease activity. The aim of this study was to investigate whether treatment with methotrexate (MTX) can result in epigenetic changes that lead to restoration of the Treg cell suppressive function in RA. METHODS Peripheral blood samples from RA patients were assessed using (3) H-thymidine incorporation to measure Treg cell suppression of T cell proliferation, and by enzyme-linked immunosorbent assay to determine Treg cell suppression of interferon-γ production. CTLA-4 and FoxP3 expression was measured by flow cytometry and quantitative polymerase chain reaction (qPCR) in Treg cells from healthy individuals and RA patients. CD4+ T cells isolated from healthy individuals were cultured with interleukin-2 (IL-2), IL-6, and tumor necrosis factor α in the presence or absence of MTX, and FoxP3 expression was determined using qPCR and flow cytometry. Methylation of the FOXP3 upstream enhancer was analyzed by bisulfite sequencing PCR. RESULTS Defective Treg cell function was observed only in RA patients who had not been treated with MTX, whereas Treg cells from MTX-exposed RA patients had restored suppressive function. This restored suppression was associated with increased expression of FoxP3 and CTLA-4 in Treg cells. Bisulfite sequencing PCR of Treg cells cultured in MTX revealed a significant reduction in methylation of the FOXP3 upstream enhancer. CONCLUSION This study identifies a novel mechanism of action of MTX, in which treatment of RA patients with MTX restores defective Treg cell function through demethylation of the FOXP3 locus, leading to a subsequent increase in FoxP3 and CTLA-4 expression.
Collapse
Affiliation(s)
- Adam P Cribbs
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cai TT, Muhali FS, Song RH, Qin Q, Wang X, Shi LF, Jiang WJ, Xiao L, Li DF, Zhang JA. Genome-wide DNA methylation analysis in Graves' disease. Genomics 2015; 105:204-10. [PMID: 25617714 DOI: 10.1016/j.ygeno.2015.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 11/25/2014] [Accepted: 01/15/2015] [Indexed: 12/23/2022]
|
49
|
Roberts SB, Wootton E, De Ferrari L, Albagha OM, Salter DM. Epigenetics of osteoarticular diseases: recent developments. Rheumatol Int 2015; 35:1293-305. [PMID: 25812537 DOI: 10.1007/s00296-015-3260-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/20/2015] [Indexed: 01/08/2023]
Abstract
A variety of osteoarticular conditions possess an underlying genetic aetiology. Large-scale genome-wide association studies have identified several genetic loci associated with osteoarticular conditions, but were unable to fully account for their estimated heritability. Epigenetic modifications including DNA methylation, histone modification, nucleosome positioning, and microRNA expression may help account for this incomplete heritability. This articles reviews insights from epigenetic studies in osteoarticular diseases, focusing on osteoarthritis, but also examines recent advances in rheumatoid arthritis, osteoporosis, systemic lupus erythematosus (SLE), ankylosing spondylitis, and sarcoma. Genome-wide methylation studies are permitting identification of novel candidate genes and molecular pathways, and the pathogenic mechanisms with altered methylation status are beginning to be elucidated. These findings are gradually translating into improved understanding of disease pathogenesis and clinical applications. Functional studies in osteoarthritis, rheumatoid arthritis, and SLE are now identifying downstream molecular alterations that may confer disease susceptibility. Epigenetic markers are being validated as prognostic and therapeutic disease biomarkers in sarcoma, and clinical trials of hypomethylating agents as treatments for sarcoma are being conducted. In concert with advances in throughput and cost-efficiency of available technologies, future epigenetic research will enable greater characterisation and treatment for both common and rare osteoarticular diseases.
Collapse
Affiliation(s)
- S B Roberts
- Bone Research Group, Centre for Genomics and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK,
| | | | | | | | | |
Collapse
|
50
|
Epigenetic control of autoimmune diseases: From bench to bedside. Clin Immunol 2015; 157:1-15. [DOI: 10.1016/j.clim.2014.12.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/17/2014] [Accepted: 12/18/2014] [Indexed: 01/10/2023]
|