1
|
Tian L, Zhou W, Wu X, Hu Z, Qiu L, Zhang H, Chen X, Zhang S, Lu Z. CTLs: Killers of intracellular bacteria. Front Cell Infect Microbiol 2022; 12:967679. [PMID: 36389159 PMCID: PMC9645434 DOI: 10.3389/fcimb.2022.967679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/12/2022] [Indexed: 09/10/2023] Open
Abstract
Many microbial pathogens have evolved a range of capabilities to evade host immune defense mechanisms and to survive and multiply in host cells. The presence of host intracellular bacteria makes it difficult for specific antibodies to function. After the intracellular bacteria escape the attack of the innate immune system, such as phagocytes, they survive in cells, and then adaptive immunity comes into play. Cytotoxic T lymphocytes (CTLs) play an important role in eliminating intracellular bacteria. The regulation of key transcription factors could promote CD4+/CD8+ T cells to acquire cytolytic ability. The TCR-CD3 complex transduces activation signals generated by TCR recognition of antigen and promotes CTLs to generate multiple pathways to kill intracellular bacteria. In this review, the mechanism of CD4/CD8 CTLs differentiation and how CD4/CD8 CTLs kill intracellular bacteria are introduced. In addition, their application and prospects in the treatment of bacterial infections are discussed.
Collapse
Affiliation(s)
- Li Tian
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhou
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianwei Wu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhuannan Hu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Qiu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyong Zhang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shaoyan Zhang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenhui Lu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022; 13:830497. [PMID: 35173740 PMCID: PMC8841753 DOI: 10.3389/fimmu.2022.830497] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate in 2020 is rising, making TB prevention and control more challenging. Vaccination has been considered the best approach to reduce the TB burden. Unfortunately, BCG, the only TB vaccine currently approved for use, offers some protection against childhood TB but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are more effective than BCG. Accumulating data indicated that peptides or epitopes play essential roles in bridging innate and adaptive immunity and triggering adaptive immunity. Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies, new materials, and transgenic animal models have put wings on the research of peptide-based vaccines for TB. Hence, this review seeks to give an overview of current tools that can be used to design a peptide-based vaccine, the research status of peptide-based vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for the peptide-based vaccines. These explorations will provide approaches and strategies for developing safer and more effective peptide-based vaccines and contribute to achieving the WHO's End TB Strategy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou City, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Identification of CTL Epitopes on Efflux Pumps of the ATP-Binding Cassette and the Major Facilitator Superfamily of Mycobacterium tuberculosis. J Immunol Res 2021; 2021:8899674. [PMID: 33490292 PMCID: PMC7803423 DOI: 10.1155/2021/8899674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/30/2020] [Accepted: 12/19/2020] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis is the world's most deadly infectious disease, with 10 million people falling ill and 1.5 million people dying from the disease every year. With the increasing number of drug-resistant Mycobacterium tuberculosis (MTB) strains and prevalence of coinfection of MTB with human immunodeficiency virus, many challenges remain in the prevention and treatment of tuberculosis. Therefore, the development of safe and effective tuberculosis vaccines is an urgent issue. In this study, we identified cytotoxic T lymphocyte epitopes on drug resistance-associated membrane protein efflux pumps of MTB, the ATP-binding cassette and the major facilitator superfamilies. First, three online software were used to predict HLA-A2-restricted epitopes. Then, the candidate epitopes were confirmed with the T2A2 cell binding affinity and peptide/MHC (pMHC) complex stability assays and in vitro immune activity experiments. Two drug-resistant T lymphocyte epitopes, designated Rv1218c-p24 and Rv2477c-p182, were selected, and their immunogenic activities studied in vivo in genetically engineered mice. The immune activities of these two epitopes were improved with the help of complete Freund's adjuvant (CFA). The epitopes identified here provide a foundation for the diagnosis and treatment of patients infected with drug resistant and the future development of a multiepitope vaccine.
Collapse
|
4
|
Liu J, Shi W, Zhang S, Hao X, Maslov DA, Shur KV, Bekker OB, Danilenko VN, Zhang Y. Mutations in Efflux Pump Rv1258c (Tap) Cause Resistance to Pyrazinamide, Isoniazid, and Streptomycin in M. tuberculosis. Front Microbiol 2019; 10:216. [PMID: 30837962 PMCID: PMC6389670 DOI: 10.3389/fmicb.2019.00216] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
Although drug resistance in Mycobacterium tuberculosis is mainly caused by mutations in drug activating enzymes or drug targets, there is increasing interest in the possible role of efflux in causing drug resistance. Previously, efflux genes have been shown to be upregulated upon drug exposure or implicated in drug resistance in overexpression studies, but the role of mutations in efflux pumps identified in clinical isolates in causing drug resistance is unknown. Here we investigated the role of mutations in efflux pump Rv1258c (Tap) from clinical isolates in causing drug resistance in M. tuberculosis. We constructed point mutations V219A and S292L in Rv1258c in the chromosome of M. tuberculosis and the point mutations were confirmed by DNA sequencing. The susceptibility of the constructed M. tuberculosis Rv1258c mutants to different tuberculosis drugs was assessed using conventional drug susceptibility testing in 7H11 agar in the presence and absence of efflux pump inhibitor piperine. A C14-labeled PZA uptake experiment was performed to demonstrate higher efflux activity in the M. tuberculosis Rv1258c mutants. Interestingly, the V219A and S292L point mutations caused clinically relevant drug resistance to pyrazinamide (PZA), isoniazid (INH), and streptomycin (SM), but not to other drugs in M. tuberculosis. While V219A point mutation conferred low-level drug resistance, the S292L mutation caused a higher level of resistance. Efflux inhibitor piperine inhibited INH and PZA resistance in the S292L mutant but not in the V219A mutant. The S292L mutant had higher efflux activity for pyrazinoic acid (the active form of PZA) than the parent strain. We conclude that point mutations in the efflux pump Rv1258c in clinical isolates can confer clinically relevant drug resistance, including PZA resistance, and could explain some previously unaccounted drug resistance in clinical strains. Future studies need to take efflux mutations into consideration for improved detection of drug resistance in M. tuberculosis and address their role in affecting treatment outcome in vivo.
Collapse
Affiliation(s)
- Jiayun Liu
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Wanliang Shi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Shuo Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Xiaoke Hao
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dmitry A Maslov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V Shur
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Olga B Bekker
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Valery N Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
5
|
Liu Y, Yao L, Cao W, Liu Y, Zhai W, Wu Y, Wang B, Gou S, Qin Y, Qi Y, Chen Z, Gao Y. Dendritic Cell Targeting Peptide-Based Nanovaccines for Enhanced Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2019; 2:1241-1254. [DOI: 10.1021/acsabm.8b00811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yating Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lintong Yao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenpeng Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yajing Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Binglin Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shanshan Gou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaping Qin
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative
Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative
Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan 450001, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative
Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan 450001, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
6
|
Bai X, Wang D, Liu Y, Xiao L, Liang Y, Yang Y, Zhang J, Lin M, Wu X. Novel epitopes identified from Mycobacterium tuberculosis antigen Rv2629induces cytotoxic T lymphocyte response. Immunol Lett 2018; 203:21-28. [PMID: 29908955 DOI: 10.1016/j.imlet.2018.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/11/2018] [Accepted: 06/13/2018] [Indexed: 02/08/2023]
Abstract
There is an urgent need for a more effective vaccine against tuberculosis (TB). Cytotoxic T lymphocytes (CTLs) play a critical role in combating Mycobacterium tuberculosis (M.tb). The identification of novel CTL epitopes is essential for the design of peptide-based vaccines. In this study, we predicted CTL epitope peptides of M.tb antigen Rv2629 restricted by HLA-A2, using bioinformatics methods. The affinity and stability of binding of these peptides with HLA-A2 molecules were detected by flow cytometry. Their ability to induce CTLs generation was determined in peripheral blood mononuclear cells (PBMCs) from healthy uninfected subjects, Latent tuberculosis infection (LTBI) subjects, and TB patients ex vivo. The cytotoxic activity induced by the epitope peptides was tested by lactate dehydrogenase (LDH) release assay. Finally, we found four novel CTL epitope peptides, Rv2629-p190-2L, Rv2629-p190-1Y2L, Rv2629-p274, and Rv2629-p315, which had high-affinity and stability of binding with T2 cells. Their ability of inducing CTLs was highest in PBMCs from TB patients (P < 0.05). In addition, these peptides could induce the CTLs to generate specific cytotoxic activity. They showed higher immunogenicity in TB patients and had the potential to become candidate vaccines for TB therapy.
Collapse
Affiliation(s)
- Xuejuan Bai
- Army Tuberculosis Prevention and Control Key Laboratory, Beijng Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, PR China
| | - Dongfang Wang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijng Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, PR China
| | - Yinping Liu
- Army Tuberculosis Prevention and Control Key Laboratory, Beijng Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, PR China
| | - Li Xiao
- Institute for Organ Transplantation, The 309th Hospital of Chinese PLA, Beijing 100091, PR China
| | - Yan Liang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijng Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, PR China
| | - Yourong Yang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijng Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, PR China
| | - Junxian Zhang
- Army Tuberculosis Prevention and Control Key Laboratory, Beijng Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, PR China
| | - Minggui Lin
- Army Tuberculosis Prevention and Control Key Laboratory, Beijng Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, PR China
| | - Xueqiong Wu
- Army Tuberculosis Prevention and Control Key Laboratory, Beijng Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, The 309th Hospital of Chinese PLA, Beijing 100091, PR China.
| |
Collapse
|
7
|
A novel peptide targeting Clec9a on dendritic cell for cancer immunotherapy. Oncotarget 2018; 7:40437-40450. [PMID: 27250027 PMCID: PMC5130018 DOI: 10.18632/oncotarget.9624] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/09/2016] [Indexed: 02/05/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells with antigen recognition molecules on the surface. Clec9a is selectively expressed on mouse CD8a+ DCs and CD103+ DCs subsets, which are functionally similar to human BDCA3+ DCs. It is reported that Clec9a is responsible for the antigen cross-presentation of these DC subsets. In the present study, by using phage display technique, we discovered a novel peptide WH, which can selectively bind to mouse Flt3L induced Clec9a+ DCs or Clec9a over-expressed HEK-293T cells. Furthermore, by using computer-aided docking model and mutation assay, we observed that Asp248 and Trp250 are two key residues for Clec9a to bind with peptide WH. When coupled with OVA257-264 epitope, peptide WH can significantly enhance the ability of Clec9a+ DCs to activate OVA-specific CD8+ T cells, which elicit strong ability to secret IFN-γ, express perforin and granzyme B mRNA. In B16-OVA lung metastasis mouse model, WH-OVA257-264 fusion peptide can also enhance the activation of CD8+ T cells and decrease the lung metastasis loci. All these results suggested that peptide WH could be considered as an antigen delivery carrier targeting Clec9a+ DCs for cancer immunotherapy.
Collapse
|
8
|
In Silico Analysis of Epitope-Based Vaccine Candidates against Hepatitis B Virus Polymerase Protein. Viruses 2017; 9:v9050112. [PMID: 28509875 PMCID: PMC5454424 DOI: 10.3390/v9050112] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/06/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) infection has persisted as a major public health problem due to the lack of an effective treatment for those chronically infected. Therapeutic vaccination holds promise, and targeting HBV polymerase is pivotal for viral eradication. In this research, a computational approach was employed to predict suitable HBV polymerase targeting multi-peptides for vaccine candidate selection. We then performed in-depth computational analysis to evaluate the predicted epitopes’ immunogenicity, conservation, population coverage, and toxicity. Lastly, molecular docking and MHC-peptide complex stabilization assay were utilized to determine the binding energy and affinity of epitopes to the HLA-A0201 molecule. Criteria-based analysis provided four predicted epitopes, RVTGGVFLV, VSIPWTHKV, YMDDVVLGA and HLYSHPIIL. Assay results indicated the lowest binding energy and high affinity to the HLA-A0201 molecule for epitopes VSIPWTHKV and YMDDVVLGA and epitopes RVTGGVFLV and VSIPWTHKV, respectively. Regions 307 to 320 and 377 to 387 were considered to have the highest probability to be involved in B cell epitopes. The T cell and B cell epitopes identified in this study are promising targets for an epitope-focused, peptide-based HBV vaccine, and provide insight into HBV-induced immune response.
Collapse
|
9
|
Zhai MX, Chen F, Zhao YY, Wu YH, Li GD, Gao YF, Qi YM. Novel epitopes identified from efflux pumps of Mycobacterium tuberculosis could induce cytotoxic T lymphocyte response. PeerJ 2015; 3:e1229. [PMID: 26417538 PMCID: PMC4582945 DOI: 10.7717/peerj.1229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/14/2015] [Indexed: 12/05/2022] Open
Abstract
Overcoming drug-resistance is one of the major challenges to control tuberculosis (TB). The up-regulation of efflux pumps is one common mechanism that leads to drug-resistance. Therefore, immunotherapy targeting these efflux pump antigens could be promising strategy to be combined with current chemotherapy. Considering that CD8+ cytotoxic T lymphocytes (CTLs) induced by antigenic peptides (epitopes) could elicit HLA-restricted anti-TB immune response, efflux pumps from classical ABC family (Mycobacterium tuberculosis, Mtb) were chosen as target antigens to identify CTL epitopes. HLA-A2 restricted candidate peptides from Rv2937, Rv2686c and Rv2687c of Mycobacterium tuberculosis were predicted, synthesized and tested. Five peptides could induce IFN-γ release and cytotoxic activity in PBMCs from HLA-A2+ PPD+ donors. Results from HLA-A2/Kb transgenic mice immunization assay suggested that four peptides Rv2937-p168, Rv2937-p266, Rv2686c-p151, and Rv2686c-p181 could induce significant CTL response in vivo. These results suggested that these novel epitopes could be used as immunotherapy candidates to TB drug-resistance.
Collapse
Affiliation(s)
- Ming-Xia Zhai
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Fei Chen
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Yuan-Yuan Zhao
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Ya-Hong Wu
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Guo-Dong Li
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Yan-Feng Gao
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| | - Yuan-Ming Qi
- School of Life Sciences, Zhengzhou University , Zhengzhou , China
| |
Collapse
|
10
|
Nayak K, Jing L, Russell RM, Davies DH, Hermanson G, Molina DM, Liang X, Sherman DR, Kwok WW, Yang J, Kenneth J, Ahamed SF, Chandele A, Murali-Krishna K, Koelle DM. Identification of novel Mycobacterium tuberculosis CD4 T-cell antigens via high throughput proteome screening. Tuberculosis (Edinb) 2015; 95:275-87. [PMID: 25857935 DOI: 10.1016/j.tube.2015.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/24/2015] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
Elicitation of CD4 IFN-gamma T cell responses to Mycobacterium tuberculosis (MTB) is a rational vaccine strategy to prevent clinical tuberculosis. Diagnosis of MTB infection is based on T-cell immune memory to MTB antigens. The MTB proteome contains over four thousand open reading frames (ORFs). We conducted a pilot antigen identification study using 164 MTB proteins and MTB-specific T-cells expanded in vitro from 12 persons with latent MTB infection. Enrichment of MTB-reactive T-cells from PBMC used cell sorting or an alternate system compatible with limited resources. MTB proteins were used as single antigens or combinatorial matrices in proliferation and cytokine secretion readouts. Overall, our study found that 44 MTB proteins were antigenic, including 27 not previously characterized as CD4 T-cell antigens. Antigen truncation, peptide, NTM homology, and HLA class II tetramer studies confirmed malate synthase G (encoded by gene Rv1837) as a CD4 T-cell antigen. This simple, scalable system has potential utility for the identification of candidate MTB vaccine and biomarker antigens.
Collapse
Affiliation(s)
- Kaustuv Nayak
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Lichen Jing
- Department of Medicine, Division of Infectious Diseases, University of Washington, Box 358061, Seattle, WA 98195, USA.
| | - Ronnie M Russell
- Department of Medicine, Division of Infectious Diseases, University of Washington, Box 358061, Seattle, WA 98195, USA.
| | - D Huw Davies
- Department of Medicine, Division of Infectious Diseases, University of California, Room 376D Med-Surg II, Irvine, CA 92697-4068, USA; Antigen Discovery, Inc., 1 Technology Drive Suite E309, Irvine, CA 92618, USA.
| | - Gary Hermanson
- Antigen Discovery, Inc., 1 Technology Drive Suite E309, Irvine, CA 92618, USA.
| | - Douglas M Molina
- Antigen Discovery, Inc., 1 Technology Drive Suite E309, Irvine, CA 92618, USA.
| | - Xiaowu Liang
- Antigen Discovery, Inc., 1 Technology Drive Suite E309, Irvine, CA 92618, USA.
| | - David R Sherman
- Seattle Biomedical Research Institute, 307 Westlake Ave. North, No. 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Box 359931, Seattle, WA 98195, USA.
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA, 98101, USA.
| | - Junbao Yang
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA, 98101, USA.
| | - John Kenneth
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Sarjapur Road, Koramangala 2 Block, Bangaluru, Karnataka 560034, India.
| | - Syed F Ahamed
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Sarjapur Road, Koramangala 2 Block, Bangaluru, Karnataka 560034, India.
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Emory Vaccine Center, 1510 Clifton Road, Atlanta, GA 30329, USA.
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Emory Vaccine Center, 1510 Clifton Road, Atlanta, GA 30329, USA; Department of Pediatrics, Emory University, 1760 Haygood Drive, Atlanta, GA 30322, USA.
| | - David M Koelle
- Department of Medicine, Division of Infectious Diseases, University of Washington, Box 358061, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Box 359931, Seattle, WA 98195, USA; Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA, 98101, USA; Department of Laboratory Medicine, University of Washington, Box 358070, Seattle, WA 98195, USA; Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Eastlake Ave. East, Seattle, WA 98109, USA.
| |
Collapse
|
11
|
Shi RR, Liu J, Zou Z, Qi YM, Zhai MX, Zhai WJ, Gao YF. The immunogenicity of a novel cytotoxic T lymphocyte epitope from tumor antigen PL2L60 could be enhanced by 4-chlorophenylalanine substitution at position 1. Cancer Immunol Immunother 2013; 62:1723-32. [PMID: 24077852 PMCID: PMC11029738 DOI: 10.1007/s00262-013-1478-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
PIWIL2, a member of PIWI/AGO family, is expressed in germline stem cells and precancerous stem cells, but not in adult somatic cells. PIWIL2 plays an important role in tumor development. It is considered as a cancer–testis antigen (CT80). It has been reported that the spliced fragment of PIWIL2, PL2L60, was widely expressed in cancer cell lines. In this study, HLA-A2-restricted epitopes from PL2L60 were predicted by online tools. To improve the activity of the native epitope, a candidate peptide P281 with potent binding affinity was chosen to investigate the modification strategy. A series of aromatic amino acids were introduced to substitute the first residue of P281. Then, we tested the binding affinity and stability of the peptide analogs and their ability to elicit specific immune responses both in vitro and in vivo. Our results indicated that the cytotoxic T lymphocytes (CTLs) induced by [4-Cl-Phe1]P281 could elicit more potent activities than that of P281 and other analogs. The CTLs induced by this analog could lyze target cells in HLA-A2-restricted and antigen-specific manners. [4-Cl-Phe1]P281 also showed the best resistance against degradation in human serum. In conclusion, the introduction of the unnatural amino acid, 4-Cl-Phe, into the first position could enhance the activity of the native epitope to induce cytotoxic T lymphocytes. It might be a good strategy to modify other promising native epitopes. The novel epitopes identified in this study could be used as novel candidates to the immunotherapy of HLA-A2 positive patients with tumors expressing PL2L60.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Argonaute Proteins/genetics
- Argonaute Proteins/immunology
- Argonaute Proteins/metabolism
- Blotting, Western
- Cell Line
- Cytotoxicity, Immunologic/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Gene Expression Regulation, Neoplastic
- HLA-A2 Antigen/immunology
- HT29 Cells
- Humans
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- MCF-7 Cells
- Mice
- Mice, Transgenic
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Peptides/genetics
- Peptides/immunology
- Peptides/metabolism
- Phenylalanine/genetics
- Phenylalanine/immunology
- Phenylalanine/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Ran-ran Shi
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 Henan Province People’s Republic of China
| | - Jing Liu
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 Henan Province People’s Republic of China
| | - Zhe Zou
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 Henan Province People’s Republic of China
| | - Yuan-ming Qi
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 Henan Province People’s Republic of China
| | - Ming-xia Zhai
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 Henan Province People’s Republic of China
| | - Wen-jie Zhai
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 Henan Province People’s Republic of China
| | - Yan-feng Gao
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 Henan Province People’s Republic of China
| |
Collapse
|
12
|
Targeting imperfect vaccines against drug-resistance determinants: a strategy for countering the rise of drug resistance. PLoS One 2013; 8:e68940. [PMID: 23935910 PMCID: PMC3723804 DOI: 10.1371/journal.pone.0068940] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/05/2013] [Indexed: 01/31/2023] Open
Abstract
The growing prevalence of antimicrobial resistance in major pathogens is outpacing discovery of new antimicrobial classes. Vaccines mitigate the effect of antimicrobial resistance by reducing the need for treatment, but vaccines for many drug-resistant pathogens remain undiscovered or have limited efficacy, in part because some vaccines selectively favor pathogen strains that escape vaccine-induced immunity. A strain with even a modest advantage in vaccinated hosts can have high fitness in a population with high vaccine coverage, which can offset a strong selection pressure such as antimicrobial use that occurs in a small fraction of hosts. We propose a strategy to target vaccines against drug-resistant pathogens, by using resistance-conferring proteins as antigens in multicomponent vaccines. Resistance determinants may be weakly immunogenic, offering only modest specific protection against resistant strains. Therefore, we assess here how varying the specific efficacy of the vaccine against resistant strains would affect the proportion of drug-resistant vs. -sensitive strains population-wide for three pathogens--Streptococcus pneumoniae, Staphylococcus aureus, and influenza virus--in which drug resistance is a problem. Notably, if such vaccines confer even slightly higher protection (additional efficacy between 1% and 8%) against resistant variants than sensitive ones, they may be an effective tool in controlling the rise of resistant strains, given current levels of use for many antimicrobial agents. We show that the population-wide impact of such vaccines depends on the additional effect on resistant strains and on the overall effect (against all strains). Resistance-conferring accessory gene products or resistant alleles of essential genes could be valuable as components of vaccines even if their specific protective effect is weak.
Collapse
|
13
|
Castelli M, Cappelletti F, Diotti RA, Sautto G, Criscuolo E, Dal Peraro M, Clementi N. Peptide-based vaccinology: experimental and computational approaches to target hypervariable viruses through the fine characterization of protective epitopes recognized by monoclonal antibodies and the identification of T-cell-activating peptides. Clin Dev Immunol 2013; 2013:521231. [PMID: 23878584 PMCID: PMC3710646 DOI: 10.1155/2013/521231] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/06/2013] [Indexed: 12/20/2022]
Abstract
Defining immunogenic domains of viral proteins capable of eliciting a protective immune response is crucial in the development of novel epitope-based prophylactic strategies. This is particularly important for the selective targeting of conserved regions shared among hypervariable viruses. Studying postinfection and postimmunization sera, as well as cloning and characterization of monoclonal antibodies (mAbs), still represents the best approach to identify protective epitopes. In particular, a protective mAb directed against conserved regions can play a key role in immunogen design and in human therapy as well. Experimental approaches aiming to characterize protective mAb epitopes or to identify T-cell-activating peptides are often burdened by technical limitations and can require long time to be correctly addressed. Thus, in the last decade many epitope predictive algorithms have been developed. These algorithms are continually evolving, and their use to address the empirical research is widely increasing. Here, we review several strategies based on experimental techniques alone or addressed by in silico analysis that are frequently used to predict immunogens to be included in novel epitope-based vaccine approaches. We will list the main strategies aiming to design a new vaccine preparation conferring the protection of a neutralizing mAb combined with an effective cell-mediated response.
Collapse
Affiliation(s)
- Matteo Castelli
- Microbiology and Virology Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesca Cappelletti
- Microbiology and Virology Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Roberta Antonia Diotti
- Microbiology and Virology Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giuseppe Sautto
- Microbiology and Virology Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Elena Criscuolo
- Microbiology and Virology Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioingeneering, School of Life Sciences, Ecole Polytechnique Fédérale, 1015 Lausanne, Switzerland
| | - Nicola Clementi
- Microbiology and Virology Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
14
|
Chen F, Zhai MX, Zhu YH, Qi YM, Zhai WJ, Gao YF. In vitro and in vivo identification of a novel cytotoxic T lymphocyte epitope from Rv3425 of Mycobacterium tuberculosis. Microbiol Immunol 2012; 56:548-53. [PMID: 22537173 PMCID: PMC7168511 DOI: 10.1111/j.1348-0421.2012.00470.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The identification of novel cytotoxic T lymphocyte (CTL) epitopes is important to analysis of the involvement of CD8+ T cells in Mycobacterium tuberculosis infection as well as to the development of peptide vaccines. In this study, a novel CTL epitope from region of difference 11 encoded antigen Rv3425 was identified. Epitopes were predicted by the reversal immunology approach. Rv3425‐p118 (LIASNVAGV) was identified as having relatively strong binding affinity and stability towards the HLA‐A*0201 molecule. Peripheral blood mononuclear cells pulsed by this peptide were able to release interferon‐γ in healthy donors (HLA‐A*02+ purified protein derivative+). In cytotoxicity assays in vitro and in vivo, Rv3425‐p118 induced CTLs to specifically lyse the target cells. Therefore, this epitope could provide a subunit component for designing vaccines against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Fei Chen
- Department of Bioengineering, Zhengzhou University, Zhengzhou 450001, China
| | | | | | | | | | | |
Collapse
|
15
|
Nakayasu ES, Sobreira TJP, Torres R, Ganiko L, Oliveira PSL, Marques AF, Almeida IC. Improved proteomic approach for the discovery of potential vaccine targets in Trypanosoma cruzi. J Proteome Res 2012; 11:237-46. [PMID: 22115061 PMCID: PMC3253764 DOI: 10.1021/pr200806s] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chagas disease, caused by Trypanosoma cruzi, is a devastating parasitic infection affecting millions of people. Although many efforts have been made for the development of immunotherapies, there is no available vaccine against this deadly infection. One major hurdle for the rational approach to develop a T. cruzi vaccine is the limited information about the proteins produced by different phylogenetic lineages, strains, and stages of the parasite. Here, we have adapted a 1D nanoHPLC system to perform online 2D LC-MS/MS, using the autosampler to inject the eluting salt solutions in the first dimension separation. The application of this methodology for the proteomic analysis of the infective trypomastigote stage of T. cruzi led to the identification of 1448 nonredundant proteins. Furthermore, about 14% of the identified sequences comprise surface proteins, most of them glycosylphosphatidylinositol (GPI)-anchored and related to parasite pathogenesis. Immunoinformatic analysis revealed thousands of potential peptides with predicted high-binding affinity for major histocompatibility complex (MHC) class I and II molecules. The high diversity of proteins expressed on the trypomastigote surface may have many implications for host-cell invasion and immunoevasion mechanisms triggered by the parasite. Finally, we performed a rational approach to filter potential T-cell epitopes that could be further tested and validated for development of a Chagas disease vaccine.
Collapse
Affiliation(s)
- Ernesto S. Nakayasu
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso TX, 79902, USA
| | - Tiago J. P. Sobreira
- National Laboratory for Biosciences (LNBio), National Center for Research in Energy and Materials, Campinas, SP 13083-970, Brazil
| | - Rafael Torres
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso TX, 79902, USA
| | - Luciane Ganiko
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso TX, 79902, USA
| | - Paulo S. L. Oliveira
- National Laboratory for Biosciences (LNBio), National Center for Research in Energy and Materials, Campinas, SP 13083-970, Brazil
| | - Alexandre F. Marques
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso TX, 79902, USA
| | - Igor C. Almeida
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso TX, 79902, USA
| |
Collapse
|