1
|
Schrezenmeier E, Dörner T, Halleck F, Budde K. Cellular Immunobiology and Molecular Mechanisms in Alloimmunity-Pathways of Immunosuppression. Transplantation 2024; 108:148-160. [PMID: 37309030 DOI: 10.1097/tp.0000000000004646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current maintenance immunosuppression commonly comprises a synergistic combination of tacrolimus as calcineurin inhibitor (CNI), mycophenolic acid, and glucocorticoids. Therapy is often individualized by steroid withdrawal or addition of belatacept or inhibitors of the mechanistic target of rapamycin. This review provides a comprehensive overview of their mode of action, focusing on the cellular immune system. The main pharmacological action of CNIs is suppression of the interleukin-2 pathway that leads to inhibition of T cell activation. Mycophenolic acid inhibits the purine pathway and subsequently diminishes T and B cell proliferation but also exerts a variety of effects on almost all immune cells, including inhibition of plasma cell activity. Glucocorticoids exert complex regulation via genomic and nongenomic mechanisms, acting mainly by downregulating proinflammatory cytokine signatures and cell signaling. Belatacept is potent in inhibiting B/T cell interaction, preventing formation of antibodies; however, it lacks the potency of CNIs in preventing T cell-mediated rejections. Mechanistic target of rapamycin inhibitors have strong antiproliferative activity on all cell types interfering with multiple metabolic pathways, partly explaining poor tolerability, whereas their superior effector T cell function might explain their benefits in the case of viral infections. Over the past decades, clinical and experimental studies provided a good overview on the underlying mechanisms of immunosuppressants. However, more data are needed to delineate the interaction between innate and adaptive immunity to better achieve tolerance and control of rejection. A better and more comprehensive understanding of the mechanistic reasons for failure of immunosuppressants, including individual risk/benefit assessments, may permit improved patient stratification.
Collapse
Affiliation(s)
- Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Azim S, Zubair H, Rousselle T, McDaniels JM, Shetty AC, Kuscu C, Kuscu C, Talwar M, Eason JD, Maluf DG, Mas VR. Single-cell RNA sequencing reveals peripheral blood mononuclear immune cell landscape associated with operational tolerance in a kidney transplant recipient. Am J Transplant 2023; 23:1434-1445. [PMID: 37201755 PMCID: PMC10527369 DOI: 10.1016/j.ajt.2023.04.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/29/2023] [Accepted: 04/15/2023] [Indexed: 05/20/2023]
Abstract
Operational tolerance (OT) after kidney transplantation is defined as stable graft acceptance without the need for immunosuppression therapy. However, it is not clear which cellular and molecular pathways are driving tolerance in these patients. In this first-of-its-kind pilot study, we assessed the immune landscape associated with OT using single-cell analyses. Peripheral mononuclear cells from a kidney transplant recipient with OT (Tol), 2 healthy individuals (HC), and a kidney transplant recipient with normal kidney function on standard-of-care immunosuppression (SOC) were evaluated. The immune landscape of the Tol was drastically different from that of SOC and emerged closer to the profile of HC. TCL1A+ naive B cells and LSGAL1+ regulatory T cells (Tregs) were in higher proportions in Tol. We were unable to identify the Treg subcluster in SOC. The ligand-receptor analysis in HC and Tol identified interactions between B cells, and Tregs that enhance the proliferation and suppressive function of Tregs. SOC reported the highest proportion of activated B cells with more cells in the G2M phase. Our single-cell RNA sequencing study identified the mediators of tolerance; however, it emphasizes the requirement of similar investigations on a larger cohort to reaffirm the role of immune cells in tolerance.
Collapse
Affiliation(s)
- Shafquat Azim
- Surgical Sciences Division, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Haseeb Zubair
- Surgical Sciences Division, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Thomas Rousselle
- Surgical Sciences Division, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jennifer M McDaniels
- Surgical Sciences Division, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cem Kuscu
- Department of Surgery, Transplant Research Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Canan Kuscu
- Department of Surgery, Transplant Research Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Manish Talwar
- James D. Eason Transplant Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - James D Eason
- James D. Eason Transplant Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Daniel G Maluf
- Program in Transplantation, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Valeria R Mas
- Surgical Sciences Division, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
3
|
Maenaka A, Kinoshita K, Hara H, Cooper DKC. The case for the therapeutic use of mechanistic/mammalian target of rapamycin (mTOR) inhibitors in xenotransplantation. Xenotransplantation 2023; 30:e12802. [PMID: 37029499 PMCID: PMC11286223 DOI: 10.1111/xen.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is one of the systems that are necessary to maintain cell homeostasis, such as survival, proliferation, and differentiation. mTOR inhibitors (mTOR-Is) are utilized as immunosuppressants and anti-cancer drugs. In organ allotransplantation, current regimens infrequently include an mTOR-I, which are positioned more commonly as alternative immunosuppressants. In clinical allotransplantation, long-term efficacy has been established, but there is a significant incidence of adverse events, for example, inhibition of wound healing, buccal ulceration, anemia, hyperglycemia, dyslipidemia, and thrombocytopenia, some of which are dose-dependent. mTOR-Is have properties that may be especially beneficial in xenotransplantation. These include suppression of T cell proliferation, increases in the number of T regulatory cells, inhibition of pig graft growth, and anti-inflammatory, anti-viral, and anti-cancer effects. We here review the potential benefits and risks of mTOR-Is in xenotransplantation and suggest that the benefits exceed the adverse effects.
Collapse
Affiliation(s)
- Akihiro Maenaka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Kohei Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - David K. C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Franz T, Negele J, Bruno P, Böttcher M, Mitchell-Flack M, Reemts L, Krone A, Mougiakakos D, Müller AJ, Zautner AE, Kahlfuss S. Pleiotropic effects of antibiotics on T cell metabolism and T cell-mediated immunity. Front Microbiol 2022; 13:975436. [DOI: 10.3389/fmicb.2022.975436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
T cells orchestrate adaptive and innate immune responses against pathogens and transformed cells. However, T cells are also the main adaptive effector cells that mediate allergic and autoimmune reactions. Within the last few years, it has become abundantly clear that activation, differentiation, effector function, and environmental adaptation of T cells is closely linked to their energy metabolism. Beyond the provision of energy equivalents, metabolic pathways in T cells generate building blocks required for clonal expansion. Furthermore, metabolic intermediates directly serve as a source for epigenetic gene regulation by histone and DNA modification mechanisms. To date, several antibiotics were demonstrated to modulate the metabolism of T cells especially by altering mitochondrial function. Here, we set out to systematically review current evidence about how beta-lactam antibiotics, macrolides, fluoroquinolones, tetracyclines, oxazolidinones, nitroimidazoles, and amphenicols alter the metabolism and effector functions of CD4+ T helper cell populations and CD8+ T cells in vitro and in vivo. Based on this evidence, we have developed an overview on how the use of these antibiotics may be beneficial or detrimental in T cell-mediated physiological and pathogenic immune responses, such as allergic and autoimmune diseases, by altering the metabolism of different T cell populations.
Collapse
|
5
|
Moldenhauer LM, Hull ML, Foyle KL, McCormack CD, Robertson SA. Immune–Metabolic Interactions and T Cell Tolerance in Pregnancy. THE JOURNAL OF IMMUNOLOGY 2022; 209:1426-1436. [DOI: 10.4049/jimmunol.2200362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Pregnancy depends on a state of maternal immune tolerance mediated by CD4+ regulatory T (Treg) cells. Uterine Treg cells release anti-inflammatory factors, inhibit effector immunity, and support adaptation of the uterine vasculature to facilitate placental development. Insufficient Treg cells or inadequate functional competence is implicated in infertility and recurrent miscarriage, as well as pregnancy complications preeclampsia, fetal growth restriction, and preterm birth, which stem from placental insufficiency. In this review we address an emerging area of interest in pregnancy immunology–the significance of metabolic status in regulating the Treg cell expansion required for maternal–fetal tolerance. We describe how hyperglycemia and insulin resistance affect T cell responses to suppress generation of Treg cells, summarize data that implicate a role for altered glucose metabolism in impaired maternal–fetal tolerance, and explore the prospect of targeting dysregulated metabolism to rebalance the adaptive immune response in women experiencing reproductive disorders.
Collapse
Affiliation(s)
- Lachlan M. Moldenhauer
- *Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia; and
| | - M. Louise Hull
- *Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia; and
| | - Kerrie L. Foyle
- *Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia; and
| | - Catherine D. McCormack
- *Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia; and
- †Women’s and Children’s Hospital, North Adelaide, Adelaide, South Australia, Australia
| | - Sarah A. Robertson
- *Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia; and
| |
Collapse
|
6
|
Chen Q, Guo C, Zhou X, Su Y, Guo H, Cao M, Li J, Zhang Y, Zhao W, Gao X, Mi S, Chen D. N-acetylneuraminic acid and chondroitin sulfate modified nanomicelles with ROS-sensitive H 2S donor via targeting E-selectin receptor and CD44 receptor for the efficient therapy of atherosclerosis. Int J Biol Macromol 2022; 211:259-270. [PMID: 35513096 DOI: 10.1016/j.ijbiomac.2022.04.180] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/10/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
Abstract
Currently, very limited therapeutic approaches are available for the drug treatment of atherosclerosis(AS). H2S-donor is becoming a common trend in much life-threatening research. Several studies have documented that H2S-lyase is predominantly present in endothelial cells. N-Acetylneuraminic acid (SA), natural carbohydrate, binds specifically to the E-selectin receptor of endothelial cells. Meanwhile, recent studies related to Chondroitin sulfate have excellent target binding ability with CD44 receptor. We conjecture that the N-Acetylneuraminic acid and Chondroitin sulfate modified nanomicelles not only enhances the accumulation of the drug but also cleaves the H2S donor in the lesion, thus one stone two birds. Given these findings, we synthesized two kinds of nanoparticles, Carrier I (SCCF) and Carrier II (SCTM), for atherosclerosis to validate our guesses. Initially, S-allyl-L-cysteine and 4-methoxyphenylthiourea were used as H2S donors for SCCF and SCTM, respectively. After the introduction of ROS-sensitive groups. Then, micelles with N-Acetylneuraminic acid and Chondroitin sulfate were prepared to load rapamycin(RAP). Further, in atherosclerosis Oil Red O staining (ORO) results confirmed remarkable treatment effect with SCCF@RAP and SCTM@RAP. Thus, we conclude that the effect of dual-targeting nanomicelles with ROS-sensitive H2S donor based on N-Acetylneuraminic acid and Chondroitin sulfate will have a better role in atherosclerosis.
Collapse
Affiliation(s)
- Qiang Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Chunjing Guo
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China; College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xiudi Zhou
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Yanguo Su
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Huimin Guo
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Min Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Jing Li
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Yue Zhang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Weiyi Zhao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Xin Gao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Shuqi Mi
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China; College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
7
|
Eskandari SK, Allos H, Al Dulaijan BS, Melhem G, Sulkaj I, Alhaddad JB, Saad AJ, Deban C, Chu P, Choi JY, Kollar B, Pomahac B, Riella LV, Berger SP, Sanders JSF, Lieberman J, Li L, Azzi JR. mTORC1 Inhibition Protects Human Regulatory T Cells From Granzyme-B-Induced Apoptosis. Front Immunol 2022; 13:899975. [PMID: 35757726 PMCID: PMC9229986 DOI: 10.3389/fimmu.2022.899975] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/05/2022] [Indexed: 01/17/2023] Open
Abstract
Regulatory T cells (Tregs) have shown great promise as a means of cellular therapy in a multitude of allo- and auto-immune diseases—due in part to their immunosuppressive potency. Nevertheless, the clinical efficacy of human Tregs in patients has been limited by their poor in vivo homeostasis. To avert apoptosis, Tregs require stable antigenic (CD3ζ/T-cell-receptor-mediated), co-stimulatory (CD28-driven), and cytokine (IL-2-dependent) signaling. Notably, this sequence of signals supports an activated Treg phenotype that includes a high expression of granzymes, particularly granzyme B (GrB). Previously, we have shown that aside from the functional effects of GrB in lysing target cells to modulate allo-immunity, GrB can leak out of the intracellular lysosomal granules of host Tregs, initiating pro-apoptotic pathways. Here, we assessed the role of inhibiting mechanistic target of rapamycin complex 1 (mTORC1), a recently favored drug target in the transplant field, in regulating human Treg apoptosis via GrB. Using ex vivo models of human Treg culture and a humanized mouse model of human skin allotransplantation, we found that by inhibiting mTORC1 using rapamycin, intracytoplasmic expression and functionality of GrB diminished in host Tregs; lowering human Treg apoptosis by in part decreasing the phosphorylation of S6K and c-Jun. These findings support the already clinically validated effects of mTORC1 inhibition in patients, most notably their stabilization of Treg bioactivity and in vivo homeostasis.
Collapse
Affiliation(s)
- Siawosh K Eskandari
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hazim Allos
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Basmah S Al Dulaijan
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Gandolina Melhem
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ina Sulkaj
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Juliano B Alhaddad
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Anis J Saad
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Christa Deban
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Philip Chu
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - John Y Choi
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Branislav Kollar
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Bohdan Pomahac
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Division of Plastic and Reconstructive Surgery, Smilow Cancer Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Leonardo V Riella
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Center of Transplantation Sciences, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Stefan P Berger
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan S F Sanders
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Li Li
- Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jamil R Azzi
- Transplantation Research Center, Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Division of Nephrology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Lee Y, Kamada N, Moon JJ. Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome. Adv Drug Deliv Rev 2021; 179:114021. [PMID: 34710529 PMCID: PMC8665886 DOI: 10.1016/j.addr.2021.114021] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract (GIT) affects not only local diseases in the GIT but also various systemic diseases. Factors that can affect the health and disease of both GIT and the human body include 1) the mucosal immune system composed of the gut-associated lymphoid tissues and the lamina propria, 2) the intestinal barrier composed of mucus and intestinal epithelium, and 3) the gut microbiota. Selective delivery of drugs, including antigens, immune-modulators, intestinal barrier enhancers, and gut-microbiome manipulators, has shown promising results for oral vaccines, immune tolerance, treatment of inflammatory bowel diseases, and other systemic diseases, including cancer. However, physicochemical and biological barriers of the GIT present significant challenges for successful translation. With the advances of novel nanomaterials, oral nanomedicine has emerged as an attractive option to not only overcome these barriers but also to selectively deliver drugs to the target sites in GIT. In this review, we discuss the GIT factors and physicochemical and biological barriers in the GIT. Furthermore, we present the recent progress of oral nanomedicine for oral vaccines, immune tolerance, and anti-inflammation therapies. We also discuss recent advances in oral nanomedicine designed to fortify the intestinal barrier functions and modulate the gut microbiota and microbial metabolites. Finally, we opine about the future directions of oral nano-immunotherapy.
Collapse
Affiliation(s)
- Yonghyun Lee
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA.
| |
Collapse
|
9
|
Schoeman D, Fielding BC. Human Coronaviruses: Counteracting the Damage by Storm. Viruses 2021; 13:1457. [PMID: 34452323 PMCID: PMC8402835 DOI: 10.3390/v13081457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Over the past 18 years, three highly pathogenic human (h) coronaviruses (CoVs) have caused severe outbreaks, the most recent causative agent, SARS-CoV-2, being the first to cause a pandemic. Although much progress has been made since the COVID-19 pandemic started, much about SARS-CoV-2 and its disease, COVID-19, is still poorly understood. The highly pathogenic hCoVs differ in some respects, but also share some similarities in clinical presentation, the risk factors associated with severe disease, and the characteristic immunopathology associated with the progression to severe disease. This review aims to highlight these overlapping aspects of the highly pathogenic hCoVs-SARS-CoV, MERS-CoV, and SARS-CoV-2-briefly discussing the importance of an appropriately regulated immune response; how the immune response to these highly pathogenic hCoVs might be dysregulated through interferon (IFN) inhibition, antibody-dependent enhancement (ADE), and long non-coding RNA (lncRNA); and how these could link to the ensuing cytokine storm. The treatment approaches to highly pathogenic hCoV infections are discussed and it is suggested that a greater focus be placed on T-cell vaccines that elicit a cell-mediated immune response, using rapamycin as a potential agent to improve vaccine responses in the elderly and obese, and the potential of stapled peptides as antiviral agents.
Collapse
Affiliation(s)
| | - Burtram C. Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town 7535, South Africa;
| |
Collapse
|
10
|
Kim J, Hope CM, Perkins GB, Stead SO, Scaffidi JC, Kette FD, Carroll RP, Barry SC, Coates PT. Rapamycin and abundant TCR stimulation are required for the generation of stable human induced regulatory T cells. Clin Transl Immunology 2020; 9:e1223. [PMID: 33425354 PMCID: PMC7780108 DOI: 10.1002/cti2.1223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 07/07/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Regulatory T cells (Tregs) are a vital sub-population of CD4+ T cells with major roles in immune tolerance and homeostasis. Given such properties, the use of regulatory T cells for immunotherapies has been extensively investigated, with a focus on adoptive transfer of ex vivo expanded natural Tregs (nTregs). For immunotherapies, induced Tregs (iTregs), generated in vitro from naïve CD4+ T cells, provide an attractive alternative, given the ease of generating cell numbers required for clinical dosage. While the combination of TGF-β, ATRA and rapamycin has been shown to generate highly suppressive iTregs, the challenge for therapeutic iTreg generation has been their instability. Here, we investigate the impact of rapamycin concentrations and α-CD3/CD28 bead ratios on human iTreg stability. METHODS We assess iTregs generated with various concentrations of rapamycin and differing ratios of α-CD3/CD28 beads for their differentiation, stability, expression of Treg signature molecules and T helper effector cytokines, and Treg-specific demethylation region (TSDR) status. RESULTS iTregs generated in the presence of TGF-β, ATRA, rapamycin and a higher ratio of α-CD3/CD28 beads were highly suppressive and stable upon in vitro re-stimulation. These iTregs exhibited a similar expression profile of Treg signature molecules and T helper effector cytokines to nTregs, in the absence of TSDR demethylation. CONCLUSION This work establishes a method to generate human iTregs which maintain stable phenotype and function upon in vitro re-stimulation. Further validation in pre-clinical models will be needed to ensure its suitability for applications in adoptive transfer.
Collapse
Affiliation(s)
- Juewan Kim
- The Department of Molecular & Biomedical ScienceThe School of Biological SciencesThe Faculty of SciencesThe University of AdelaideAdelaideSAAustralia
| | - Christopher M Hope
- Department of GastroenterologyWomen’s and Children’s HospitalAdelaideSAAustralia
- Molecular Immunology GroupRobinson Research InstituteSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Griffith B Perkins
- The Department of Molecular & Biomedical ScienceThe School of Biological SciencesThe Faculty of SciencesThe University of AdelaideAdelaideSAAustralia
| | - Sebastian O Stead
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- College of Medicine and Public HealthDiscipline of MedicineFlinders UniversityBedford ParkSAAustralia
| | - Jacqueline C Scaffidi
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Francis D Kette
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- College of Medicine and Public HealthDiscipline of MedicineFlinders UniversityBedford ParkSAAustralia
| | - Robert P Carroll
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS)The Royal Adelaide HospitalAdelaideSAAustralia
- Division of Medical SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Simon C Barry
- Department of GastroenterologyWomen’s and Children’s HospitalAdelaideSAAustralia
- Molecular Immunology GroupRobinson Research InstituteSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Patrick Toby Coates
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS)The Royal Adelaide HospitalAdelaideSAAustralia
| |
Collapse
|
11
|
Bassin EJ, Buckley AR, Piganelli JD, Little SR. TRI microparticles prevent inflammatory arthritis in a collagen-induced arthritis model. PLoS One 2020; 15:e0239396. [PMID: 32966314 PMCID: PMC7510963 DOI: 10.1371/journal.pone.0239396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/06/2020] [Indexed: 12/28/2022] Open
Abstract
Despite recent progress in the treatment of rheumatoid arthritis (RA), many patients still fail to achieve remission or low disease activity. An imbalance between auto-reactive effector T cells (Teff) and regulatory T cells (Treg) may contribute to joint inflammation and damage in RA. Therefore, restoring this balance is a promising approach for the treatment of inflammatory arthritis. Accordingly, our group has previously shown that the combination of TGF-β-releasing microparticles (MP), rapamycin-releasing MP, and IL-2-releasing MP (TRI MP) can effectively increase the ratio of Tregs to Teff in vivo and provide disease protection in several preclinical models. In this study TRI MP was evaluated in the collagen-induced arthritis (CIA) model. Although this formulation has been tested previously in models of destructive inflammation and transplantation, this is the first model of autoimmunity for which this therapy has been applied. In this context, TRI MP effectively reduced arthritis incidence, the severity of arthritis scores, and bone erosion. The proposed mechanism of action includes not only reducing CD4+ T cell proliferation, but also expanding a regulatory population in the periphery soon after TRI MP administration. These changes were reflected in the CD4+ T cell population that infiltrated the paws at the onset of arthritis and were associated with a reduction of immune infiltrate and inflammatory myeloid cells in the paws. TRI MP administration also reduced the titer of collagen antibodies, however the contribution of this reduced titer to disease protection remains uncertain since there was no correlation between collagen antibody titer and arthritis score.
Collapse
Affiliation(s)
- Ethan J. Bassin
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Abigail R. Buckley
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jon D. Piganelli
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Steven R. Little
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmaceutical Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
12
|
The advantage of Sirolimus in amplifying regulatory B cells and regulatory T cells in liver transplant patients. Eur J Pharmacol 2019; 869:172872. [PMID: 31846626 DOI: 10.1016/j.ejphar.2019.172872] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Sirolimus has been shown to ameliorate steroid-resistant rejection and induce long-term immune tolerance among liver transplant patients. However, the detailed mechanism of how Sirolimus achieve these advantages is still lacking. This study attempts to reveal some possible mechanisms by investigating regulatory B cells (Bregs), regulatory T cells (Tregs) and some cytokines in liver transplant recipients whose Tacrolimus was partially converted to Sirolimus. The results showed that CD19+CD24+CD38+Bregs and CD4+CD25+FoxP3+Tregs increased significantly during the first month after drug conversion (P < 0.01 and P < 0.05). The percentages of IL-10+Bregs and TGF-β1+Bregs were also elevated (P < 0.05 and P < 0.01), and the same trend was observed in the levels of IL-10 and TGF-β1 (P < 0.01 and P < 0.01). However, in the observation period, these investigated lymphocyte subsets and cytokines didn't change significantly in patients without Sirolimus usage. The incidence of biliary stenosis in the conversion group were significantly lower than that in the control group (P < 0.05). At the same time, in vitro experiments showed that Sirolimus could significantly amplify Bregs and Tregs (P < 0.01 and P < 0.01) while Tacrolimus did not show the amplifications effects. Sirolimus' function of amplifying Bregs was weakened, and its function of amplifying Tregs even disappeared after IL-10 and TGF-β1 were neutralized. In conclusion, Sirolimus could amplify Bregs and Tregs among liver transplant recipient, which might be benefit to mitigate the immune response, decrease chances of rejection and alleviate biliary complication. IL-10 and TGF-β1 may play important roles during this process.
Collapse
|
13
|
Ye S, Liu H, Chen Y, Qiu F, Liang CL, Zhang Q, Huang H, Wang S, Zhang ZD, Lu W, Dai Z. A Novel Immunosuppressant, Luteolin, Modulates Alloimmunity and Suppresses Murine Allograft Rejection. THE JOURNAL OF IMMUNOLOGY 2019; 203:3436-3446. [PMID: 31732527 DOI: 10.4049/jimmunol.1900612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
Abstract
An allograft is rejected in the absence of any immunosuppressive treatment because of vigorous alloimmunity and thus requires extensive immunosuppression for its survival. Although there are many conventional immunosuppressants for clinical use, it is necessary to seek alternatives to existing drugs, especially in case of transplant patients with complicated conditions. Luteolin, a natural ingredient, exists in many plants. It exhibits multiple biological and pharmacological effects, including anti-inflammatory properties. In particular, luteolin has been shown to upregulate CD4+CD25+ regulatory T cells (Tregs) in the context of airway inflammation. However, it remains unknown whether luteolin regulates alloimmune responses. In this study, we demonstrated that luteolin significantly prolonged murine skin allograft survival, ameliorated cellular infiltration, and downregulated proinflammatory cytokine gene expression in skin allografts. Furthermore, luteolin increased the percentage of CD4+Foxp3+ Tregs while reducing frequency of mature dendritic cells and CD44highCD62Llow effector CD4+/CD8+ T cells posttransplantation. It also suppressed the proliferation of T cells and their production of cytokines IFN-γ and IL-17A in vitro while increasing IL-10 level in the supernatant. Moreover, luteolin promoted CD4+Foxp3+ Treg generation from CD4+CD25- T cells in vitro. Depleting Tregs largely, although not totally, reversed luteolin-mediated extension of allograft survival. More importantly, luteolin inhibited AKT/mTOR signaling in T cells. Thus, for the first time, to our knowledge, we found that luteolin is an emerging immunosuppressant as an mTOR inhibitor in allotransplantation. This finding could be important for the suppression of human allograft rejection, although it remains to be determined whether luteolin has an advantage over other conventional immunosuppressants in suppression of allograft rejection.
Collapse
Affiliation(s)
- Shulin Ye
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Huazhen Liu
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Yuchao Chen
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Feifei Qiu
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Chun-Ling Liang
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Qunfang Zhang
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Haiding Huang
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Sumei Wang
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Zhong-De Zhang
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Weihui Lu
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Zhenhua Dai
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| |
Collapse
|
14
|
Ochando J, Ordikhani F, Jordan S, Boros P, Thomson AW. Tolerogenic dendritic cells in organ transplantation. Transpl Int 2019; 33:113-127. [PMID: 31472079 DOI: 10.1111/tri.13504] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Accepted: 08/25/2019] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are specialized cells of the innate immune system that are characterized by their ability to take up, process and present antigens (Ag) to effector T cells. They are derived from DC precursors produced in the bone marrow. Different DC subsets have been described according to lineage-specific transcription factors required for their development and function. Functionally, DCs are responsible for inducing Ag-specific immune responses that mediate organ transplant rejection. Consequently, to prevent anti-donor immune responses, therapeutic strategies have been directed toward the inhibition of DC activation. In addition however, an extensive body of preclinical research, using transplant models in rodents and nonhuman primates, has established a central role of DCs in the negative regulation of alloimmune responses. As a result, DCs have been employed as cell-based immunotherapy in early phase I/II clinical trials in organ transplantation. Together with in vivo targeting through use of myeloid cell-specific nanobiologics, DC manipulation represents a promising approach for the induction of transplantation tolerance. In this review, we summarize fundamental characteristics of DCs and their roles in promotion of central and peripheral tolerance. We also discuss their clinical application to promote improved long-term outcomes in organ transplantation.
Collapse
Affiliation(s)
- Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunología de Trasplantes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Farideh Ordikhani
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefan Jordan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Boros
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angus W Thomson
- Department of Surgery and Department of Immunology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Jamali S, Sarafnejad A, Ahmadpoor P, Nafar M, Karimi M, Eteghadi A, Yekaninejad MS, Amirzargar AA. Sirolimus vs mycophenolate moftile in Tacrolimus based therapy following induction with Antithymocyte globulin promotes regulatory T cell expansion and inhibits RORγt and T-bet expression in kidney transplantation. Hum Immunol 2019; 80:739-747. [DOI: 10.1016/j.humimm.2018.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/05/2018] [Accepted: 12/28/2018] [Indexed: 11/30/2022]
|
16
|
Achita P, Dervovic D, Ly D, Lee JB, Haug T, Joe B, Hirano N, Zhang L. Infusion of ex-vivo expanded human TCR-αβ + double-negative regulatory T cells delays onset of xenogeneic graft-versus-host disease. Clin Exp Immunol 2018; 193:386-399. [PMID: 30066399 DOI: 10.1111/cei.13145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2018] [Indexed: 12/25/2022] Open
Abstract
Despite the demonstration of potent immunosuppressive function of T cell receptor (TCR)-αβ+ double-negative regulatory T cells (DN Tregs ), scarce numbers and lack of effective expansion method limit their clinical applications. Here we describe an approach that allows for ∼3500-fold ex-vivo expansion of human DN Tregs within 3 weeks with > 97% purity. Ex-vivo-expanded DN Tregs suppress proliferation of polyclonally stimulated autologous T and B cells in vitro through direct cell-to-cell contact. In vivo, we demonstrate for the first time that infusion of human DN Tregs delayed an onset of xenogeneic graft-versus-host disease (GVHD) significantly in a humanized mouse model. Furthermore, preincubation of ex-vivo-expanded DN Tregs with a mechanistic target of rapamycin (mTOR) inhibitor rapamycin enhanced their immune regulatory function further. Taken together, this study demonstrates that human DN Tregs can be expanded ex vivo to therapeutic numbers. The expanded DN Tregs can suppress proliferation of T and B cells and attenuate GVHD, highlighting the potential clinical use of DN Tregs to mitigate GVHD.
Collapse
Affiliation(s)
- P Achita
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, Toronto, ON, Canada
| | - D Dervovic
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - D Ly
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - J B Lee
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - T Haug
- Department of Internal Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - B Joe
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - N Hirano
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - L Zhang
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Time-resolved transcriptome and proteome landscape of human regulatory T cell (Treg) differentiation reveals novel regulators of FOXP3. BMC Biol 2018; 16:47. [PMID: 29730990 PMCID: PMC5937035 DOI: 10.1186/s12915-018-0518-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 02/08/2023] Open
Abstract
Background Regulatory T cells (Tregs) expressing the transcription factor FOXP3 are crucial mediators of self-tolerance, preventing autoimmune diseases but possibly hampering tumor rejection. Clinical manipulation of Tregs is of great interest, and first-in-man trials of Treg transfer have achieved promising outcomes. Yet, the mechanisms governing induced Treg (iTreg) differentiation and the regulation of FOXP3 are incompletely understood. Results To gain a comprehensive and unbiased molecular understanding of FOXP3 induction, we performed time-series RNA sequencing (RNA-Seq) and proteomics profiling on the same samples during human iTreg differentiation. To enable the broad analysis of universal FOXP3-inducing pathways, we used five differentiation protocols in parallel. Integrative analysis of the transcriptome and proteome confirmed involvement of specific molecular processes, as well as overlap of a novel iTreg subnetwork with known Treg regulators and autoimmunity-associated genes. Importantly, we propose 37 novel molecules putatively involved in iTreg differentiation. Their relevance was validated by a targeted shRNA screen confirming a functional role in FOXP3 induction, discriminant analyses classifying iTregs accordingly, and comparable expression in an independent novel iTreg RNA-Seq dataset. Conclusion The data generated by this novel approach facilitates understanding of the molecular mechanisms underlying iTreg generation as well as of the concomitant changes in the transcriptome and proteome. Our results provide a reference map exploitable for future discovery of markers and drug candidates governing control of Tregs, which has important implications for the treatment of cancer, autoimmune, and inflammatory diseases. Electronic supplementary material The online version of this article (10.1186/s12915-018-0518-3) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Casiraghi F, Perico N, Remuzzi G. Mesenchymal stromal cells for tolerance induction in organ transplantation. Hum Immunol 2017; 79:304-313. [PMID: 29288697 DOI: 10.1016/j.humimm.2017.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Abstract
The primary challenge in organ transplantation continues to be the need to suppress the host immune system long-term to ensure prolonged allograft survival. Long-term non-specific immunosuppression can, however, result in life-threatening complications. Thus, efforts have been pursued to explore novel strategies that would allow minimization of maintenance immunosuppression, eventually leading to transplant tolerance. In this scenario, bone marrow-derived mesenchymal stromal cells (MSC), given their unique immunomodulatory properties to skew the balance between regulatory and memory T cells, have emerged as potential candidates for cell-based therapy to promote immune tolerance. Here, we review our initial clinical experience with bone marrow-derived MSC in living-donor kidney transplant recipients and provide an overview of the available results of other clinical programs with MSC in kidney and liver transplantation, highlighting hurdles and success of this innovative cell-based therapy.
Collapse
Affiliation(s)
| | - Norberto Perico
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy; Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale (ASST), Papa Giovanni XXIII, Bergamo, Italy; L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
19
|
Fernández-Ramos AA, Marchetti-Laurent C, Poindessous V, Antonio S, Petitgas C, Ceballos-Picot I, Laurent-Puig P, Bortoli S, Loriot MA, Pallet N. A comprehensive characterization of the impact of mycophenolic acid on the metabolism of Jurkat T cells. Sci Rep 2017; 7:10550. [PMID: 28874730 PMCID: PMC5585210 DOI: 10.1038/s41598-017-10338-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/02/2017] [Indexed: 12/23/2022] Open
Abstract
Metabolic reprogramming is critical for T cell fate and polarization and is regulated by metabolic checkpoints, including Myc, HIF-1α, AMPK and mTORC1. Our objective was to determine the impact of mycophenolic acid (MPA) in comparison with rapamycin (Rapa), an inhibitor of mTORC1, on the metabolism of Jurkat T cells. We identified a drug-specific transcriptome signature consisting of the key enzymes and transporters involved in glycolysis, glutaminolysis or nucleotide synthesis. MPA produced an early and transient drop in the intracellular ATP content related to the inhibition of de novo synthesis of purines, leading to the activation of the energy sensor AMPK. MPA decreases glycolytic flux, consistent with a reduction in glucose uptake, but also in the oxidation of glutamine. Additionally, both drugs reduce aerobic glycolysis. The expression of HIF-1α and Myc, promoting the activation of glycolysis and glutaminolysis, was inhibited by MPA and Rapa. In conclusion, we report that MPA profoundly impacts the cellular metabolism of Jurkat T cells by generating an energetic distress, decreasing the glycolytic and glutaminolytic fluxes and by targeting HIF-1α and Myc. These findings open interesting perspectives for novel combinatorial therapeutic strategies targeting metabolic checkpoints to block the proliferation of T cells.
Collapse
Affiliation(s)
- Ana A Fernández-Ramos
- INSERM UMR-S 1147, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France
| | - Catherine Marchetti-Laurent
- INSERM UMR-S 1147, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France
| | - Virginie Poindessous
- INSERM UMR-S 1147, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France
| | - Samantha Antonio
- Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France.,INSERM UMR-S 1124, 45 rue des Saints-Pères, 75006, Paris, France
| | - Céline Petitgas
- Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Biochimie métabolomique et protéomique, 149 rue de Sèvres, 75015, Paris, France
| | - Irène Ceballos-Picot
- Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Biochimie métabolomique et protéomique, 149 rue de Sèvres, 75015, Paris, France
| | - Pierre Laurent-Puig
- INSERM UMR-S 1147, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Biochimie, 20 rue Leblanc, 75015, Paris, France
| | - Sylvie Bortoli
- Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France.,INSERM UMR-S 1124, 45 rue des Saints-Pères, 75006, Paris, France
| | - Marie-Anne Loriot
- INSERM UMR-S 1147, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Biochimie, 20 rue Leblanc, 75015, Paris, France
| | - Nicolas Pallet
- INSERM UMR-S 1147, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75006, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France. .,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Biochimie, 20 rue Leblanc, 75015, Paris, France.
| |
Collapse
|
20
|
Song JY, Du GS, Xiao L, Chen W, Suo LL, Gao Y, Feng LK, Shi BY. Individualized Immunosuppressive Protocol of Liver Transplant Recipient Should be Made Based on Splenic Function Status. Chin Med J (Engl) 2017; 129:1340-6. [PMID: 27231173 PMCID: PMC4894046 DOI: 10.4103/0366-6999.182828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lymphocyte subsets play important roles in rejection in liver transplant recipients, and the effect of splenic function on these roles remains unknown. The aim of this study was to explore the feasibility to adjust immunosuppressive agents based on splenic function status through detecting the lymphocyte subsets in liver transplantBeijing recipients. METHODS The lymphocyte subsets of 49 liver transplant recipients were assessed in the 309th Hospital of Chinese People's Liberation Army between June 2014 and August 2015. The patients were divided into splenectomy group (n = 9), normal splenic function group (n = 24), and hypersplenism group (n = 16). The percentages and counts of CD4+ T, CD8+ T, natural killer (NK) cell, B-cell, regulatory B-cell (Breg), and regulatory T-cell (Treg) were detected by flow cytometer. In addition, the immunosuppressive agents, histories of rejection and infection, and postoperative time of the patients were compared among the three groups. RESULTS There was no significant difference of clinical characteristics among the three groups. The percentage of CD19+CD24+CD38+ Breg was significantly higher in hypersplenism group than normal splenic function group and splenectomy group (3.29 ± 0.97% vs. 2.12 ± 1.08% and 1.90 ± 0.99%, P = 0.001). The same result was found in CD4+CD25+FoxP3+ Treg percentage (0.97 ± 0.39% vs. 0.54 ± 0.31% and 0.56 ± 0.28%, P = 0.001). The counts of CD8+ T-cell, CD4+ T-cell, and NK cell were significantly lower in hypersplenism group than normal splenic function group (254.25 ± 149.08 vs. 476.96 ± 225.52, P= 0.002; 301.69 ± 154.39 vs. 532.50 ± 194.42, P= 0.000; and 88.56 ± 63.15 vs. 188.33 ± 134.51, P = 0.048). Moreover, the counts of CD4+ T-cell and NK cell were significantly lower in hypersplenism group than splenectomy group (301.69 ± 154.39 vs. 491.89 ± 132.31, P= 0.033; and 88.56 ± 63.15 vs. 226.00 ± 168.85, P = 0.032). CONCLUSION Splenic function status might affect the immunity of liver transplant recipients, that should be considered when we make immunosuppressive protocols.
Collapse
Affiliation(s)
- Ji-Yong Song
- Department of Education, Chinese People's Liberation Army Medical School, Beijing 100853, China
| | - Guo-Sheng Du
- Department of Hepatobiliary, Organ Transplant Institute, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, China
| | - Li Xiao
- Department of Hepatobiliary, Organ Transplant Institute, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, China
| | - Wen Chen
- Department of Hepatobiliary, Organ Transplant Institute, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, China
| | - Long-Long Suo
- Department of Hepatobiliary, Organ Transplant Institute, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, China
| | - Yu Gao
- Department of Hepatobiliary, Organ Transplant Institute, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, China
| | - Li-Kui Feng
- Department of Hepatobiliary, Organ Transplant Institute, The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, China
| | - Bing-Yi Shi
- Department of Education, Chinese People's Liberation Army Medical School, Beijing 100853, China
| |
Collapse
|
21
|
The effect of immunosuppressive molecules on T-cell metabolic reprogramming. Biochimie 2016; 127:23-36. [DOI: 10.1016/j.biochi.2016.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/22/2016] [Indexed: 12/22/2022]
|
22
|
Liebman HA. Immune modulation for autoimmune disorders: evolution of therapeutics. Semin Hematol 2016; 53 Suppl 1:S23-6. [DOI: 10.1053/j.seminhematol.2016.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Arsenic Trioxide Induces T Cell Apoptosis and Prolongs Islet Allograft Survival in Mice. Transplantation 2015; 99:1796-806. [PMID: 25919768 DOI: 10.1097/tp.0000000000000735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND T cell-mediated immune rejection is a key barrier to islet transplantation. Preliminary studies have shown that arsenic trioxide (As2O3) can inhibit T cell responses and prolong heart allograft survival. Here, we sought to investigate the possibility of using As2O3 to prolong islet allograft survival in an acute rejection model of Balb/c to C57B/6 mice. METHODS Recipient mice were treated with As2O3 and/or rapamycin after islet allograft transplantation. At day 10 after transplantation, the graft, spleen, lymph nodes, and blood of the recipient mice were recovered for analysis. In vitro, to further examine the mechanism underlying As2O3 protection of islet allografts against T cell-mediated rejection, mixed lymphocyte reaction and apoptosis analyses of T cells were performed. The phosphorylation levels of IκBα and p38 were also evaluated to confirm the proliferation and apoptosis of As2O3-treated T cells. RESULTS We found that As2O3 prolonged islet allograft survival by reducing inflammatory reactions, influencing cytokine synthesis and secretion and T-cell subset proportions, and inhibiting T-cell responses. Furthermore, As2O3 and rapamycin showed a synergistic effect in suppressing islet allotransplant rejection. CONCLUSIONS Arsenic trioxide may prevent allograft rejection by inhibiting T-cell proliferation and inducing T-cell apoptosis.
Collapse
|
24
|
Zhang D, Tu E, Kasagi S, Zanvit P, Chen Q, Chen W. Manipulating regulatory T cells: a promising strategy to treat autoimmunity. Immunotherapy 2015; 7:1201-11. [PMID: 26568117 DOI: 10.2217/imt.15.79] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CD4(+)CD25(+)Foxp3(+)regulatory T cells (Treg cells) are extremely important in maintaining immune tolerance. Manipulation of Treg cells, especially autoantigen-specific Treg cells is a promising approach for treatments of autoimmune disease since Treg cells may provide the advantage of antigen specificity without overall immune suppression. However, the clinical application of Treg cells has long been limited due to low numbers of Treg cells and the difficulty in identifying their antigen specificity. In this review, we summarize studies that demonstrate regression of autoimmune diseases using Treg cells as therapeutics. We also discuss approaches to generate polyclonal and autoantigen-specific Treg cells in vitro and in vivo. We also discuss our recent study that describes a novel approach of generating autoantigen-specific Treg cells in vivo and restoring immune tolerance by two steps apoptosis-antigen therapy.
Collapse
Affiliation(s)
- Dunfang Zhang
- Mucosal Immunology Section, OPCB, National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Eric Tu
- Mucosal Immunology Section, OPCB, National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Shimpei Kasagi
- Mucosal Immunology Section, OPCB, National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Peter Zanvit
- Mucosal Immunology Section, OPCB, National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - WanJun Chen
- Mucosal Immunology Section, OPCB, National Institute of Dental & Craniofacial Research, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Cellular and molecular targeting for nanotherapeutics in transplantation tolerance. Clin Immunol 2015; 160:14-23. [PMID: 25805659 DOI: 10.1016/j.clim.2015.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 11/21/2022]
Abstract
The induction of donor-specific tolerance to transplanted cells and organs, while preserving immune function as a whole, remains a highly sought after and elusive strategy for overcoming transplant rejection. Tolerance necessitates modulating a diverse array of cell types that recognize and respond to alloantigens, including antigen presenting cells and T lymphocytes. Nanotherapeutic strategies that employ cellular and biomaterial engineering represent an emerging technology geared towards the goal of inducing transplant tolerance. Nanocarriers offer a platform for delivering antigens of interest to specific cell types in order to achieve tolerogenic antigen presentation. Furthermore, the technologies also provide an opportunity for local immunomodulation at the graft site. Nanocarriers delivering a combination of antigens and immunomodulating agents, such as rapamycin, provide a unique technology platform with the potential to enhance outcomes for the induction of transplant tolerance.
Collapse
|
26
|
Lochner M, Berod L, Sparwasser T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol 2015; 36:81-91. [PMID: 25592731 DOI: 10.1016/j.it.2014.12.005] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 12/25/2022]
Abstract
The specific regulation of cellular metabolic processes is of major importance for directing immune cell differentiation and function. We review recent evidence indicating that changes in basic cellular lipid metabolism have critical effects on T cell proliferation and cell fate decisions. While induction of de novo fatty acid (FA) synthesis is essential for activation-induced proliferation and differentiation of effector T cells, FA catabolism via β-oxidation is important for the development of CD8(+) T cell memory as well as for the differentiation of CD4(+) regulatory T cells. We consider the influence of lipid metabolism and metabolic intermediates on the regulation of signaling and transcriptional pathways via post-translational modifications, and discuss how an improved understanding of FA metabolism may reveal strategies for manipulating immune responses towards therapeutic outcomes.
Collapse
Affiliation(s)
- Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.
| |
Collapse
|