1
|
Yadav S, Prasannan A, Venkatachalam K, Binesh A. Exploring the mechanism and crosstalk between IL-6 and IL- 1β on M2 macrophages under metabolic stress conditions. Cytokine 2025; 186:156852. [PMID: 39765025 DOI: 10.1016/j.cyto.2024.156852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/14/2025]
Abstract
Macrophages are highly variable immune cells that are important in controlling inflammation and maintaining tissue balance. The ability to polarize into two major types-M1, promoting inflammation, and M2, resolving inflammation and contributing to tissue repair-determines their specific roles in health and disease. M2 macrophages are particularly important for reducing inflammation and promoting tissue regeneration, but their function is shaped mainly by surrounding cells. This is evident in obesity, diabetes, and chronic inflammation. Although many cytokines regulate macrophage polarization, interleukin-6 (IL-6) and interleukin-1β (IL-1β) are major players, but their effects on M2 macrophage behavior under metabolic stress remain unclear. This study describes the intricacies within M2 macrophages concerning IL-6 and IL-1β signaling when under metabolic stress. Though, more frequently than not, IL-6 is labelled as pro-inflammatory, it can also behave as an anti-inflammatory mediator. On the other hand, IL-1β is the main pro-inflammatory agent, particularly in metabolic disorders. The relationship between these cytokines and the macrophages is mediated through important pathways such as JAK/STAT and NFκB, which get perturbed by metabolic stress. Therefore, metabolic stress also alters the functional parameters of macrophages, including alterations in mitochondrial metabolism, glycolytic and oxidative metabolism. Phosphorylation alters the kinetics involved in energy consumption and affects their polarization and their function. However, it has been suggested that IL-6 and IL-1β may work in concert or competition when inducing M2 polarization and, importantly, implicate cytokine release, phagocytic activity, and tissue repair processes. In this review, we discuss the recent literature on the participation of IL-6 and IL-1β cytokines in macrophage polarization and how metabolic stress changes cytokine functions and synergistic relations. A better understanding of these cytokines would serve as an important step toward exploring alternative antiviral strategies directed against metabolic disturbance and, hence, approve further endeavors.
Collapse
Affiliation(s)
- Shawna Yadav
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India
| | - Anusha Prasannan
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India
| | - Kaliyamurthi Venkatachalam
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India
| | - Ambika Binesh
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India.
| |
Collapse
|
2
|
Abdollahzadeh B, Cantale Aeo NM, Giordano N, Orlando A, Basciani M, Peruzzi G, Grazioli P, Screpanti I, Felli MP, Campese AF. The NF-κB1/p50 Subunit Influences the Notch/IL-6-Driven Expansion of Myeloid-Derived Suppressor Cells in Murine T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:9882. [PMID: 39337370 PMCID: PMC11431874 DOI: 10.3390/ijms25189882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
T-cell acute lymphoblastic leukemia is an aggressive neoplasia due to hyper-proliferation of lymphoid progenitors and lacking a definitive cure to date. Notch-activating mutations are the most common in driving disease onset and progression, often in combination with sustained activity of NF-κB. Myeloid-derived suppressor cells represent a mixed population of immature progenitors exerting suppression of anti-cancer immune responses in the tumor microenvironment of many malignancies. We recently reported that in a transgenic murine model of Notch3-dependent T-cell acute lymphoblastic leukemia there is an accumulation of myeloid-derived suppressor cells, dependent on both Notch signaling deregulation and IL-6 production inside tumor T-cells. However, possible interaction between NF-κB and Notch in this context remains unexplored. Interestingly, we also reported that Notch3 transgenic and NF-κB1/p50 deleted double mutant mice display massive myeloproliferation. Here, we demonstrated that the absence of the p50 subunit in these mice dramatically enhances the induction and suppressive function of myeloid-derived suppressor cells. This runs in parallel with an impressive increase in IL-6 concentration in the peripheral blood serum, depending on IL-6 hyper-production by tumor T-cells from double mutant mice. Mechanistically, IL-6 increase relies on loss of the negative control exerted by the p50 subunit on the IL-6 promoter. Our results reveal the Notch/NF-κB cross-talk in regulating myeloid-derived suppressor cell biology in T-cell leukemia, highlighting the need to consider carefully the pleiotropic effects of NF-κB-based therapy on the tumor microenvironment.
Collapse
Affiliation(s)
- Behnaz Abdollahzadeh
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Noemi Martina Cantale Aeo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Nike Giordano
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Andrea Orlando
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Maria Basciani
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Giovanna Peruzzi
- Center for Life Nano- and Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy;
| | - Paola Grazioli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Antonio Francesco Campese
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| |
Collapse
|
3
|
Damås JK, Otterdal K, Astrup E, Lekva T, Janardhanan J, Michelsen A, Aukrust P, Varghese GM, Ueland T. Canonical notch activation in patients with scrub typhus: association with organ dysfunction and poor outcome. Infection 2024; 52:1357-1365. [PMID: 38502427 PMCID: PMC11288987 DOI: 10.1007/s15010-024-02192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE The mechanisms that control inflammation in scrub typhus are not fully elucidated. The Notch pathways are important regulators of inflammation and infection, but have not been investigated in scrub typhus. METHODS Plasma levels of the canonical Notch ligand Delta-like protein 1 (DLL1) were measured by enzyme immunoassay and RNA expression of the Notch receptors (NOTCH1, NOTCH2 and NOTCH4) in whole blood was analyzed by real-time PCR in patients with scrub typhus (n = 129), in patients with similar febrile illness without O. tsutsugamushi infection (n = 31) and in healthy controls (n = 31); all from the same area of South India. RESULTS Our main results were: (i) plasma DLL1 was markedly increased in scrub typhus patients at hospital admission with a significant decrease during recovery. (ii) RNA expression of NOTCH4 was decreased at admission in whole blood. (iii) A similar pattern for DLL1 and NOTCH4 was seen in febrile disease controls. (iv) Admission DLL1 in plasma was associated with disease severity and short-term survival. (vi) Regulation of Notch pathways in O. tsutsugamushi-infected monocytes as evaluated by public repository data revealed enhanced canonical Notch activation with upregulation of DLL1 and downregulation of NOTCH4. CONCLUSION Our findings suggest that scrub typhus patients are characterized by enhanced canonical Notch activation. Elevated plasma levels of DLL1 were associated with organ dysfunction and poor outcomes in these patients.
Collapse
Affiliation(s)
- Jan K Damås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infectious Diseases, St. Olavs Hospital, Trondheim, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Kari Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Elisabeth Astrup
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Akershus University Hospital, Lørenskog, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Jeshina Janardhanan
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Annika Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - George M Varghese
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway.
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India.
| |
Collapse
|
4
|
Cheng Y, Ren Y, Wang W, Zhang W. Similar proteome expression profiles of the aggregated lymphoid nodules area and Peyer's patches in Bactrian camel. BMC Genomics 2023; 24:608. [PMID: 37821839 PMCID: PMC10568864 DOI: 10.1186/s12864-023-09715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND The presence of Aggregated Lymphoid Nodules Area (ALNA) is a notable anatomical characteristic observed in the abomasum of Bactrian camels. This area is comprised of two separate regions, namely the Reticular Mucosal Folds Region (RMFR) and the Longitudinal Mucosal Folds Region (LMFR). The histological properties of ALNA exhibit significant similarities to those of Peyer's patches (PPs) found in the gastrointestinal system. The functional characteristics of ALNA were examined in relation to mucosal immunity in the gastrointestinal system. RESULTS We used iTRAQ-based proteomic analysis on twelve Bactrian camels to measure the amount of proteins expressed in ALNA. In the experiment, we sampled the RMFR and LMFR separately from the ALNA and compared their proteomic quantification results with samples from the PPs. A total of 1253 proteins were identified, among which 39 differentially expressed proteins (DEPs) were found between RMFR and PPs, 33 DEPs were found between LMFR and PPs, and 22 DEPs were found between LMFR and RMFR. The proteins FLNA, MYH11, and HSPB1 were chosen for validation using the enzyme-linked immunosorbent assay (ELISA), and the observed expression profiles were found to be in agreement with the results obtained from the iTRAQ study. The InnateDB database was utilized to get data pertaining to immune-associated proteins in ALNA. It was observed that a significant proportion, specifically 76.6%, of these proteins were found to be associated with the same orthogroups as human immune-related genes. These proteins are acknowledged to be associated with a diverse range of functions, encompassing the uptake, processing and presentation of antigens, activation of lymphocytes, the signaling pathways of T-cell and B-cell receptors, and the control of actin polymerization. CONCLUSIONS The experimental results suggest that there are parallels in the immune-related proteins found in ALNA and PPs. Although there are variations in the structures of LMFR and RMFR, the proteins produced in both structures exhibit a high degree of similarity and perform comparable functions in the context of mucosal immune responses.
Collapse
Affiliation(s)
- Yujiao Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Ren
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| |
Collapse
|
5
|
Chen L, Zhang S, Li Q, Li J, Deng H, Zhang S, Meng R. Emerging role of Protein Kinase CK2 in Tumor immunity. Front Oncol 2022; 12:1065027. [DOI: 10.3389/fonc.2022.1065027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Protein kinase CK2, a conserved serine/threonine-protein kinase, is ubiquitous in cells and regulates various intracellular processes, especially in tumor cells. As one of the earliest discovered protein kinases in humans, CK2 plays a crucial role in phosphorylating or associating with hundreds of substrates to modulate several signaling pathways. Excellent reviews have reported that the overexpression of CK2 could be observed in many cancers and was closely associated with tumor occurrence and development. The elevation of CK2 is also an indicator of a poor prognosis. Recently, increasing attention has been paid to the relationship between CK2 and tumor immunity. However, there is no comprehensive description of how CK2 regulates the immune cells in the tumor microenvironment (TME). Also, the underlying mechanisms are still not very clear. In this review, we systematically summarized the correlation between CK2 and tumor immunity, primarily the effects on various immune cells, both in innate and adaptive immunity in the TME. With the comprehensive development of immunotherapy and the mounting transformation research of CK2 inhibitors from the bench to the clinic, this review will provide vital information to find new treatment options for enhancing the efficacy of immunotherapy.
Collapse
|
6
|
Du X, Zhu M, Zhang T, Wang C, Tao J, Yang S, Zhu Y, Zhao W. The Recombinant Eg.P29-Mediated miR-126a-5p Promotes the Differentiation of Mouse Naive CD4 + T Cells via DLK1-Mediated Notch1 Signal Pathway. Front Immunol 2022; 13:773276. [PMID: 35211114 PMCID: PMC8861942 DOI: 10.3389/fimmu.2022.773276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic parasitic disease spread worldwide caused by Echinococcus granulosus (Eg), which sometimes causes serious damage; however, in many cases, people are not aware that they are infected. A number of recombinant vaccines based on Eg are used to evaluate their effectiveness against the infection. Our previous report showed that recombinant Eg.P29 (rEg.P29) has a marvelous immunoprotection and can induce Th1 immune response. Furthermore, data of miRNA microarray in mice spleen CD4+ T cells showed that miR-126a-5p was significantly elevated 1 week after immunization by using rEg.P29. Therefore, in this perspective, we discussed the role of miR-126a-5p in the differentiation of naive CD4+ T cells into Th1/Th2 under rEg.P29 immunization and determined the mechanisms associated with delta-like 1 homolog (DLK1) and Notch1 signaling pathway. One week after P29 immunization of mice, we found that miR-126a-5p was significantly increased and DLK1 expression was decreased, while Notch1 pathway activation was enhanced and Th1 response was significantly stronger. The identical conclusion was obtained by overexpression of mmu-miR-126a-5p in primary naive CD4+ T cells in mice. Intriguingly, mmu-miR-126a-5p was significantly raised in serum from mice infected with protoscolex in the early stages of infection and markedly declined in the late stages of infection, while has-miR-126-5p expression was dramatically reduced in serum from CE patients. Taken together, we show that miR-126a-5p functions as a positive regulator of Notch1-mediated differentiation of CD4+ T cells into Th1 through downregulating DLK1 in vivo and in vitro. Hsa-miR-126-5p is potentially a very promising diagnostic biomarker for CE.
Collapse
Affiliation(s)
- Xiancai Du
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Mingxing Zhu
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.,Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
| | - Tingrui Zhang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Chan Wang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Jia Tao
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Songhao Yang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Yazhou Zhu
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Wei Zhao
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.,Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
7
|
Zhang C, Berndt-Paetz M, Neuhaus J. A Comprehensive Bioinformatics Analysis of Notch Pathways in Bladder Cancer. Cancers (Basel) 2021; 13:cancers13123089. [PMID: 34205690 PMCID: PMC8235546 DOI: 10.3390/cancers13123089] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The Notch pathway is important in embryology and numerous tumor diseases. However, its role in bladder cancer (BCa) has not been deeply investigated thus far. Gene expression data are available for BCa, and bioinformatics analysis can provide insights into a possible role of the Notch pathway in BCa development and prognosis. Using this information can help in better understanding the origin of BCa, finding novel biomarkers for prediction of disease progression, and potentially opening new avenues to improved treatment. Our analysis identified the Notch receptors NOTCH2/3 and their ligand DLL4 as potential drivers of BCa by direct interaction with basic cell functions and indirect by modulating the immune response. Abstract Background: A hallmark of Notch signaling is its variable role in tumor biology, ranging from tumor-suppressive to oncogenic effects. Until now, the mechanisms and functions of Notch pathways in bladder cancer (BCa) are still unclear. Methods: We used publicly available data from the GTEx and TCGA-BLCA databases to explore the role of the canonical Notch pathways in BCa on the basis of the RNA expression levels of Notch receptors, ligands, and downstream genes. For statistical analyses of cancer and non-cancerous samples, we used R software packages and public databases/webservers. Results: We found differential expression between control and BCa samples for all Notch receptors (NOTCH1, 2, 3, 4), the delta-like Notch ligands (DLL1, 3, 4), and the typical downstream gene hairy and enhancer of split 1 (HES1). NOTCH2/3 and DLL4 can significantly differentiate non-cancerous samples from cancers and were broadly altered in subgroups. High expression levels of NOTCH2/3 receptors correlated with worse overall survival (OS) and shorter disease-free survival (DFS). However, at long-term (>8 years) follow-up, NOTCH2 expression was associated with a better OS and DFS. Furthermore, the cases with the high levels of DLL4 were associated with worse OS but improved DFS. Pathway network analysis revealed that NOTCH2/3 in particular correlated with cell cycle, epithelial–mesenchymal transition (EMT), numbers of lymphocyte subtypes, and modulation of the immune system. Conclusions: NOTCH2/3 and DLL4 are potential drivers of Notch signaling in BCa, indicating that Notch and associated pathways play an essential role in the progression and prognosis of BCa through directly modulating immune cells or through interaction with cell cycle and EMT.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of Urology, University of Leipzig, 04109 Leipzig, Germany; (C.Z.); (M.B.-P.)
- Department of Urology, Chengdu Fifth People’s Hospital Affiliated to the Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Mandy Berndt-Paetz
- Department of Urology, University of Leipzig, 04109 Leipzig, Germany; (C.Z.); (M.B.-P.)
| | - Jochen Neuhaus
- Department of Urology, University of Leipzig, 04109 Leipzig, Germany; (C.Z.); (M.B.-P.)
- Correspondence: ; Tel.: +49-341-971-7688
| |
Collapse
|
8
|
Husain K, Williamson TT, Nelson N, Ghansah T. Protein kinase 2 (CK2): a potential regulator of immune cell development and function in cancer. Immunol Med 2020; 44:159-174. [PMID: 33164702 DOI: 10.1080/25785826.2020.1843267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein kinase CK2, formally known as casein kinase II, is ubiquitously expressed and highly conserved serine/threonine or tyrosine kinase enzyme that regulates diverse signaling pathways responsible for cellular processes (i.e., cell proliferation and apoptosis) via interactions with over 500 known substrates. The enzyme's physiological interactions and cellular functions have been widely studied, most notably in the blood and solid malignancies. CK2 has intrinsic role in carcinogenesis as overexpression of CK2 subunits (α, α`, and β) and deregulation of its activity have been linked to various forms of cancers. CK2 also has extrinsic role in cancer stroma or in the tumor microenvironment (TME) including the immune cells. However, very few research studies have focused on extrinsic role of CK2 in regulating immune responses as a therapeutic alternative for cancer. The following review discusses CK2's regulation of key signaling events [Nuclear factor kappa B (NF-κB), Janus kinase/signal transducer and activators of transcription (JAK/STAT), Hypoxia inducible factor-1alpha (HIF-1α), Cyclooygenase-2 (COX-2), Extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK), Notch, Protein kinase B/AKT, Ikaros and Wnt] that can influence the development and function of immune cells in cancer. Potential clinical trials using potent CK2 inhibitors will facilitate and improve the treatment of human malignancies.
Collapse
Affiliation(s)
- Kazim Husain
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Tanika T Williamson
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Nadine Nelson
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Tomar Ghansah
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
9
|
Li QF, He XY, Xin T. [Role of the Notch signaling pathway in children with tuberculosis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21. [PMID: 31642436 PMCID: PMC7389733 DOI: 10.7499/j.issn.1008-8830.2019.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
OBJECTIVE To study the expression of molecules associated with the Notch signaling pathway in children with tuberculosis, as well as the role of this pathway in the pathogenesis of tuberculosis in children. METHODS A total of 62 children who were diagnosed with tuberculosis from June 2017 to December 2018 were enrolled as the case group, and 64 healthy children were enrolled as the healthy control group. Peripheral venous blood samples with a volume of 2 mL were collected, and quantitative real-time PCR was used to measure the mRNA expression levels of the molecules associated with the Notch signaling pathway (receptors Notch1-4, ligands Jagged1/2 and DLL1/3/4, and downstream target genes Hes1 and Hey1) in leukocytes. RESULTS Compared with the healthy control group, the case group had significant increases in the mRNA expression levels of Notch1, Notch2, and DLL4 in leukocytes (P<0.05), while there were no significant differences in the mRNA expression levels of Notch3/4, Jagged1/2, DLL1/3, Hes1, and Hey1 between the two groups (P>0.05). CONCLUSIONS There are significant increases in the mRNA expression of Notch1/2 and DLL4 in children with tuberculosis, while there are no significant changes in the expression of downstream target genes, suggesting that the Notch signaling pathway, which is activated by the interaction between Notch1/2 and DLL4 after Mycobacterium tuberculosis infection, may play a role in childhood tuberculosis by acting on other target genes, and further studies are needed for clarification.
Collapse
Affiliation(s)
- Qi-Feng Li
- Xinjiang Institute of Pediatrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China.
| | | | | |
Collapse
|
10
|
Chen J, Guan L, Tang L, Liu S, Zhou Y, Chen C, He Z, Xu L. T Helper 9 Cells: A New Player in Immune-Related Diseases. DNA Cell Biol 2019; 38:1040-1047. [PMID: 31414895 PMCID: PMC6791470 DOI: 10.1089/dna.2019.4729] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The helper T cell 9 (Thelper-9, Th9), as a functional subgroup of CD4+T cells, was first discovered in 2008. Th9 cells expressed transcription factor PU.1 and cytokine interleukin-9 (IL-9) characteristically. Recent researches have shown that the differentiation of Th9 cells was coregulated by cytokine transforming growth factor β, IL-4, and various transcription factors. Th9 cells, as a new player, played an important role in various immune-related diseases, including tumors, inflammatory diseases, parasite infection, and other diseases. In this article, we summarize the related research progress and discuss the possible prospect.
Collapse
Affiliation(s)
- Jing Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lian Guan
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lin Tang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shiming Liu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhixu He
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Zunyi, Guizhou, China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
- Address correspondence to: Lin Xu, PhD, Department of Immunology, Zunyi Medical University, Zunyi 563003, Guizhou, China
| |
Collapse
|