1
|
Nakayama I, Shitara K. Cell-Based Therapies in GI Cancers: Current Landscape and Future Directions. Am Soc Clin Oncol Educ Book 2025; 45:e471716. [PMID: 39841955 DOI: 10.1200/edbk-25-471716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Cell-based therapies have become integral to the routine clinical management of hematologic malignancies. Tumor-infiltrating lymphocyte (TIL) therapy has demonstrated efficacy in immunogenic solid tumors, such as melanoma. However, in the GI field, evidence supporting the clinical success of cell-based therapies is still awaited. CLDN18.2, a key tight junction molecule in stomach epithelium, has emerged as a promising target for gastric cancer (GC) treatment. Because of its lineage-specific expression, significant efforts have been made to develop chimeric antigen receptor T-cell (CAR-T) therapies targeting CLDN18.2. These therapies have shown encouraging tumor shrinkage in patients with heavily pretreated GC. However, durable responses remain uncommon. CAR-T exhaustion driven by immune-suppressive cells in the tumor microenvironment, along with the heterogeneous expression of target molecules, poses significant challenges. In addition, managing on-target, off-tumor toxicities remains a critical issue in therapies targeting tissue-associated antigens. Next-generation CARs are expected to address these resistance mechanisms. Furthermore, adoptive macrophage and natural killer cell therapies hold promise for not only their efficacy but also for the ease off-the-shelf production. Advanced neoantigen prediction and identification of optimal T-cell activation targets could facilitate the clinical application of TIL and T-cell receptor-T therapies in GI cancers. Cell-based therapies might have the potential to transform the treatment landscape for GI cancers.
Collapse
Affiliation(s)
- Izuma Nakayama
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
2
|
Shirizadeh A, Borzouei S, Razavi Z, Taherkhani A, Faradmal J, Solgi G. Determination of HLA class II risk alleles and prediction of self/non-self-epitopes contributing Hashimoto's thyroiditis in a group of Iranian patients. Immunogenetics 2024; 76:175-187. [PMID: 38607388 DOI: 10.1007/s00251-024-01339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024]
Abstract
One of the probable hypotheses for the onset of autoimmunity is molecular mimicry. This study aimed to determine the HLA-II risk alleles for developing Hashimoto's thyroiditis (HT) in order to analyze the molecular homology between candidate pathogen-derived epitopes and potentially self-antigens (thyroid peroxidase, TPO) based on the presence of HLA risk alleles. HLA-DRB1/-DQB1 genotyping was performed in 100 HT patients and 330 ethnically matched healthy controls to determine the predisposing/protective alleles for HT disease. Then, in silico analysis was conducted to examine the sequence homology between epitopes derived from autoantigens and four potentially relevant pathogens and their binding capacities to HLA risk alleles based on peptide docking analysis. We identified HLA-DRB1*03:01, *04:02, *04:05, and *11:04 as predisposing alleles and DRB1*13:01 as a potentially predictive allele for HT disease. Also, DRB1*11:04 ~ DQB1*03:01 (Pc = 0.002; OR, 3.97) and DRB1*03:01 ~ DQB1*02:01 (Pc = 0.004; OR, 2.24) haplotypes conferred a predisposing role for HT. Based on logistic regression analysis, carrying risk alleles increased the risk of HT development 4.5 times in our population (P = 7.09E-10). Also, ROC curve analysis revealed a high predictive power of those risk alleles for discrimination of the susceptible from healthy individuals (AUC, 0.70; P = 6.6E-10). Analysis of peptide sequence homology between epitopes of TPO and epitopes derived from four candidate microorganisms revealed a homology between envelop glycoprotein D of herpes virus and sequence 151-199 of TPO with remarkable binding capacity to HLA-DRB1*03:01 allele. Our findings indicate the increased risk of developing HT in those individuals carrying HLA risk alleles which can also be related to herpes virus infection.
Collapse
Affiliation(s)
- Ata Shirizadeh
- Immunology Department, Medical School, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, P.O. Box: 6517838736, Opposite to Lona ParkHamadan, Iran
| | - Shiva Borzouei
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Razavi
- Pediatrics Department, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Javad Faradmal
- Biostatistics Department, Health School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Solgi
- Immunology Department, Medical School, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, P.O. Box: 6517838736, Opposite to Lona ParkHamadan, Iran.
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Soldan SS, Su C, Monaco MC, Yoon L, Kannan T, Zankharia U, Patel RJ, Dheekollu J, Vladimirova O, Dowling JW, Thebault S, Brown N, Clauze A, Andrada F, Feder A, Planet PJ, Kossenkov A, Schäffer DE, Ohayon J, Auslander N, Jacobson S, Lieberman PM. Multiple sclerosis patient-derived spontaneous B cells have distinct EBV and host gene expression profiles in active disease. Nat Microbiol 2024; 9:1540-1554. [PMID: 38806670 DOI: 10.1038/s41564-024-01699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
Epstein-Barr virus (EBV) is an aetiologic risk factor for the development of multiple sclerosis (MS). However, the role of EBV-infected B cells in the immunopathology of MS is not well understood. Here we characterized spontaneous lymphoblastoid cell lines (SLCLs) isolated from MS patients and healthy controls (HC) ex vivo to study EBV and host gene expression in the context of an individual's endogenous EBV. SLCLs derived from MS patient B cells during active disease had higher EBV lytic gene expression than SLCLs from MS patients with stable disease or HCs. Host gene expression analysis revealed activation of pathways associated with hypercytokinemia and interferon signalling in MS SLCLs and upregulation of forkhead box protein 1 (FOXP1), which contributes to EBV lytic gene expression. We demonstrate that antiviral approaches targeting EBV replication decreased cytokine production and autologous CD4+ T cell responses in this ex vivo model. These data suggest that dysregulation of intrinsic B cell control of EBV gene expression drives a pro-inflammatory, pathogenic B cell phenotype that can be attenuated by suppressing EBV lytic gene expression.
Collapse
Affiliation(s)
| | - Chenhe Su
- The Wistar Institute, Philadelphia, PA, USA
| | - Maria Chiara Monaco
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Leena Yoon
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | | | | | - Jack W Dowling
- The Wistar Institute, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simon Thebault
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Annaliese Clauze
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Frances Andrada
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Andries Feder
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul J Planet
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Joan Ohayon
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | | | - Steven Jacobson
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | | |
Collapse
|
4
|
Tarlinton R, Tanasescu R, Shannon-Lowe C, Gran B. Ocrelizumab B cell depletion has no effect on HERV RNA expression in PBMC in MS patients. Mult Scler Relat Disord 2024; 86:105597. [PMID: 38598954 DOI: 10.1016/j.msard.2024.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Epstein barr virus (EBV) infection of B cells is now understood to be one of the triggering events for the development of Multiple Sclerosis (MS), a progressive immune-mediated disease of the central nervous system. EBV infection is also linked to expression of human endogenous retroviruses (HERVs) of the HERV-W group, a further risk factor for the development of MS. Ocrelizumab is a high-potency disease-modifying treatment (DMT) for MS, which depletes B cells by targeting CD20. OBJECTIVES We studied the effects of ocrelizumab on gene expression in peripheral blood mononuclear cells (PBMC) from paired samples from 20 patients taken prior to and 6 months after beginning ocrelizumab therapy. We hypothesised that EBV and HERV-W loads would be lower in post-treatment samples. METHODS Samples were collected in Paxgene tubes, subject to RNA extraction and Illumina paired end short read mRNA sequencing with mapping of sequence reads to the human genome using Salmon and differential gene expression compared with DeSeq2. Mapping was also performed separately to the HERV-D database of HERV sequences and the EBV reference sequence. RESULTS Patient samples were more strongly clustered by individual rather than disease type (relapsing/remitting or primary progressive), treatment (pre and post), age, or sex. Fourteen genes, all clearly linked to B cell function were significantly down regulated in the post treatment samples. Interestingly only one pre-treatment sample had detectable EBV RNA and there were no significant differences in HERV expression (of any group) between pre- and post-treatment samples. CONCLUSIONS While EBV and HERV expression are clearly linked to triggering MS pathogenesis, it does not appear that high level expression of these viruses is a part of the ongoing disease process or that changes in virus load are associated with ocrelizumab treatment.
Collapse
Affiliation(s)
- Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom.
| | - Radu Tanasescu
- Department of Neurology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Road, Nottingham, United Kingdom; School of Medicine, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Bruno Gran
- Department of Neurology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Road, Nottingham, United Kingdom; School of Medicine, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| |
Collapse
|
5
|
Cortese M, Leng Y, Bjornevik K, Mitchell M, Healy BC, Mina MJ, Mancuso JD, Niebuhr DW, Munger KL, Elledge SJ, Ascherio A. Serologic Response to the Epstein-Barr Virus Peptidome and the Risk for Multiple Sclerosis. JAMA Neurol 2024; 81:515-524. [PMID: 38497939 PMCID: PMC10949154 DOI: 10.1001/jamaneurol.2024.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/24/2023] [Indexed: 03/19/2024]
Abstract
Importance It remains unclear why only a small proportion of individuals infected with the Epstein-Barr virus (EBV) develop multiple sclerosis (MS) and what the underlying mechanisms are. Objective To assess the serologic response to all EBV peptides before the first symptoms of MS occur, determine whether the disease is associated with a distinct immune response to EBV, and evaluate whether specific EBV epitopes drive this response. Design, Setting, and Participants In this prospective, nested case-control study, individuals were selected among US military personnel with serum samples stored in the US Department of Defense Serum Repository. Individuals with MS had serum collected at a median 1 year before onset (reported to the military in 2000-2011) and were matched to controls for age, sex, race and ethnicity, blood collection, and military branch. No individuals were excluded. The data were analyzed between September 1, 2022, and August 31, 2023. Exposure Antibodies (enrichment z scores) to the human virome measured using VirScan (phage-displayed immunoprecipitation and sequencing). Main Outcome and Measure Rate ratios (RRs) for MS for antibodies to 2263 EBV peptides (the EBV peptidome) were estimated using conditional logistic regression, adjusting for total anti-EBV nuclear antigen 1 (EBNA-1) antibodies, which have consistently been associated with a higher MS risk. The role of antibodies against other viral peptides was also explored. Results A total of 30 individuals with MS were matched with 30 controls. Mean (SD) age at sample collection was 27.8 (6.5) years; 46 of 60 participants (76.7%) were male. The antibody response to the EBV peptidome was stronger in individuals with MS, but without a discernible pattern. The antibody responses to 66 EBV peptides, the majority mapping to EBNA antigens, were significantly higher in preonset sera from individuals with MS (RR of highest vs lowest tertile of antibody enrichment, 33.4; 95% CI, 2.5-448.4; P for trend = .008). Higher total anti-EBNA-1 antibodies were also associated with an elevated MS risk (top vs bottom tertile: RR, 27.6; 95% CI, 2.3-327.6; P for trend = .008). After adjusting for total anti-EBNA-1 antibodies, risk estimates from most EBV peptides analyses were attenuated, with 4 remaining significantly associated with MS, the strongest within EBNA-6/EBNA-3C, while the association between total anti-EBNA-1 antibodies and MS persisted. Conclusion and Relevance These findings suggest that antibody response to EBNA-1 may be the strongest serologic risk factor for MS. No single EBV peptide stood out as being selectively targeted in individuals with MS but not controls. Larger investigations are needed to explore possible heterogeneity of anti-EBV humoral immunity in MS.
Collapse
Affiliation(s)
- Marianna Cortese
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Yumei Leng
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Kjetil Bjornevik
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Moriah Mitchell
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Program in Systems, Synthetic, and Quantitative Biology, Harvard University, Boston, Massachusetts
| | - Brian C. Healy
- Brigham Multiple Sclerosis Center, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| | | | - James D. Mancuso
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David W. Niebuhr
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Kassandra L. Munger
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Epidemiology, Biogen, Cambridge, Massachusetts
| | - Stephen J. Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Alberto Ascherio
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Borghol AH, Bitar ER, Hanna A, Naim G, Rahal EA. The role of Epstein-Barr virus in autoimmune and autoinflammatory diseases. Crit Rev Microbiol 2024:1-21. [PMID: 38634723 DOI: 10.1080/1040841x.2024.2344114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Epstein-Barr Virus (EBV), a dsDNA herpesvirus, is believed to play a significant role in exacerbating and potentially triggering autoimmune and autoinflammatory maladies. Around 90% of the world is infected with the virus, which establishes latency within lymphocytes. EBV is also known to cause infectious mononucleosis, a self-limited flu-like illness, in adolescents. EBV is often reactivated and it employs several mechanisms of evading the host immune system. It has also been implicated in inducing host immune dysfunction potentially resulting in exacerbation or triggering of inflammatory processes. EBV has therefore been linked to a number of autoimmune diseases, including systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, and Sjögren's syndrome. The review examines the molecular mechanisms through which the virus alters host immune system components thus possibly resulting in autoimmune processes. Understanding the mechanisms underpinning EBV-associated autoimmunity is pivotal; however, the precise causal pathways remain elusive. Research on therapeutic agents and vaccines for EBV has been stagnant for a long number of years until recent advances shed light on potential therapeutic targets. The implications of EBV in autoimmunity underscore the importance of developing targeted therapeutic strategies and, potentially, vaccines to mitigate the autoimmune burden associated with this ubiquitous virus.
Collapse
Affiliation(s)
- Abdul Hamid Borghol
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elio R Bitar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Aya Hanna
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Georges Naim
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| |
Collapse
|
7
|
De Francesco MA. Herpesviridae, Neurodegenerative Disorders and Autoimmune Diseases: What Is the Relationship between Them? Viruses 2024; 16:133. [PMID: 38257833 PMCID: PMC10818483 DOI: 10.3390/v16010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease and Parkinson's disease represent the most common forms of cognitive impairment. Multiple sclerosis is a chronic inflammatory disease of the central nervous system responsible for severe disability. An aberrant immune response is the cause of myelin destruction that covers axons in the brain, spinal cord, and optic nerves. Systemic lupus erythematosus is an autoimmune disease characterized by alteration of B cell activation, while Sjögren's syndrome is a heterogeneous autoimmune disease characterized by altered immune responses. The etiology of all these diseases is very complex, including an interrelationship between genetic factors, principally immune associated genes, and environmental factors such as infectious agents. However, neurodegenerative and autoimmune diseases share proinflammatory signatures and a perturbation of adaptive immunity that might be influenced by herpesviruses. Therefore, they might play a critical role in the disease pathogenesis. The aim of this review was to summarize the principal findings that link herpesviruses to both neurodegenerative and autoimmune diseases; moreover, briefly underlining the potential therapeutic approach of virus vaccination and antivirals.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
8
|
Wieland L, Schwarz T, Engel K, Volkmer I, Krüger A, Tarabuko A, Junghans J, Kornhuber ME, Hoffmann F, Staege MS, Emmer A. Epstein-Barr Virus-Induced Genes and Endogenous Retroviruses in Immortalized B Cells from Patients with Multiple Sclerosis. Cells 2022; 11:cells11223619. [PMID: 36429047 PMCID: PMC9688211 DOI: 10.3390/cells11223619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022] Open
Abstract
The immune pathogenesis of multiple sclerosis (MS) is thought to be triggered by environmental factors in individuals with an unfavorable genetic predisposition. Epstein-Barr virus (EBV) infection is a major risk factor for subsequent development of MS. Human endogenous retroviruses (HERVs) can be activated by EBV, and might be a missing link between an initial EBV infection and the later onset of MS. In this study, we investigated differential gene expression patterns in EBV-immortalized lymphoblastoid B cell lines (LCL) from MS-affected individuals (MSLCL) and controls by using RNAseq and qRT-PCR. RNAseq data from LCL mapped to the human genome and a virtual virus metagenome were used to identify possible biomarkers for MS or disease-relevant risk factors, e.g., the relapse rate. We observed that lytic EBNA-1 transcripts seemed to be negatively correlated with age leading to an increased expression in LCL from younger PBMC donors. Further, HERV-K (HML-2) GAG was increased upon EBV-triggered immortalization. Besides the well-known transactivation of HERV-K18, our results suggest that another six HERV loci are up-regulated upon stimulation with EBV. We identified differentially expressed genes in MSLCL, e.g., several HERV-K loci, ERVMER61-1 and ERV3-1, as well as genes associated with relapses. In summary, EBV induces genes and HERV in LCL that might be suitable as biomarkers for MS or the relapse risk.
Collapse
Affiliation(s)
- Lisa Wieland
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Tommy Schwarz
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Kristina Engel
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ines Volkmer
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Anna Krüger
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Alexander Tarabuko
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jutta Junghans
- Department of Neurology, Martha-Maria Hospital Halle-Dölau, 06120 Halle (Saale), Germany
| | - Malte E. Kornhuber
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Frank Hoffmann
- Department of Neurology, Martha-Maria Hospital Halle-Dölau, 06120 Halle (Saale), Germany
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-34-5557-7280
| | - Alexander Emmer
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
9
|
Lomakin YA, Ovchinnikova LA, Zakharova MN, Ivanova MV, Simaniv TO, Kabilov MR, Bykova NA, Mukhina VS, Kaminskaya AN, Tupikin AE, Zakharova MY, Favorov AV, Illarioshkin SN, Belogurov AA, Gabibov AG. Multiple Sclerosis Is Associated with Immunoglobulin Germline Gene Variation of Transitional B Cells. Acta Naturae 2022; 14:84-93. [PMID: 36694905 PMCID: PMC9844083 DOI: 10.32607/actanaturae.11794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/20/2022] [Indexed: 01/22/2023] Open
Abstract
The regulatory functions of the B-cell compartment play an important role in the development and suppression of the immune response. Disruption of their anti-inflammatory functions may lead to the acceleration of immunopathological processes, and to autoimmune diseases, in particular. Unfortunately, the exact mechanism underlying the functioning and development of regulatory B cells (Breg) has not yet been fully elucidated. Almost nothing is known about their specificity and the structure of their B-cell receptors (BCRs). In this research, we analyzed the BCR repertoire of the transitional Breg (tBreg) subpopulation with the CD19+CD24highCD38high phenotype in patients with multiple sclerosis (MS), using next-generation sequencing (NGS). We show, for the first time, that the immunoglobulin germline distribution in the tBreg subpopulation is different between MS patients and healthy donors. The registered variation was more significant in patients with a more severe form of the disease, highly active MS (HAMS), compared to those with benign MS (BMS). Our data suggest that during MS development, deviations in the immunoglobulin Breg repertoire occur already at the early stage of B-cell maturation, namely at the stage of tBregs: between immature B cells in the bone marrow and mature peripheral B cells.
Collapse
Affiliation(s)
- Y. A. Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - L. A. Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | | | | | | | - M. R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090 Russia
| | - N. A. Bykova
- Vavilov Institute of General Genetics RAS, Moscow, 119991 Russia
| | - V. S. Mukhina
- Vavilov Institute of General Genetics RAS, Moscow, 119991 Russia
- Institute for information transmission problems RAS, Moscow, 127051 Russia
| | - A. N. Kaminskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - A. E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090 Russia
| | - M. Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - A. V. Favorov
- Vavilov Institute of General Genetics RAS, Moscow, 119991 Russia
| | | | - A. A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, 127473 Russia
| | - A. G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
- Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
10
|
Zhang N, Zuo Y, Jiang L, Peng Y, Huang X, Zuo L. Epstein-Barr Virus and Neurological Diseases. Front Mol Biosci 2022; 8:816098. [PMID: 35083281 PMCID: PMC8784775 DOI: 10.3389/fmolb.2021.816098] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV), also known as human herpesvirus 4, is a double-stranded DNA virus that is ubiquitous in 90–95% of the population as a gamma herpesvirus. It exists in two main states, latent infection and lytic replication, each encoding viral proteins with different functions. Human B-lymphocytes and epithelial cells are EBV-susceptible host cells. EBV latently infects B cells and nasopharyngeal epithelial cells throughout life in most immunologically active individuals. EBV-infected cells, free viruses, their gene products, and abnormally elevated EBV titers are observed in the cerebrospinal fluid. Studies have shown that EBV can infect neurons directly or indirectly via infected B-lymphocytes, induce neuroinflammation and demyelination, promote the proliferation, degeneration, and necrosis of glial cells, promote proliferative disorders of B- and T-lymphocytes, and contribute to the occurrence and development of nervous system diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, acute cerebellar ataxia, meningitis, acute disseminated encephalomyelitis, and brain tumors. However, the specific underlying molecular mechanisms are unclear. In this paper, we review the mechanisms underlying the role of EBV in the development of central nervous system diseases, which could bebeneficial in providing new research ideas and potential clinical therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
- Hunan Dongkou People’s Hospital, Shaoyang, China
| | - Yuxin Zuo
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Liping Jiang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Yu Peng
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Xu Huang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Lielian Zuo
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Lielian Zuo,
| |
Collapse
|
11
|
Pérez-Pérez S, Domínguez-Mozo MI, García-Martínez MÁ, García-Frontini MC, Villarrubia N, Costa-Frossard L, Villar LM, Arroyo R, Álvarez-Lafuente R. Anti-Human Herpesvirus 6 A/B Antibodies Titers Correlate With Multiple Sclerosis-Associated Retrovirus Envelope Expression. Front Immunol 2021; 12:798003. [PMID: 34912348 PMCID: PMC8666430 DOI: 10.3389/fimmu.2021.798003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022] Open
Abstract
Human endogenous retrovirus W family envelope proteins (pHERV-W ENV/syncytin-1) have been repeatedly associated with multiple sclerosis (MS). Here, we have focused on the study of pHERV-W ENV/syncytin-1 expression levels in MS patients (relapsing and progressive forms) and in healthy donors (HD) and on exploring their possible relationship with Epstein-Barr virus (EBV) and human herpesvirus-6A/B (HHV-6A/B). We included blood samples from 101 MS patients and 37 HD to analyze antiviral antibody titers by ELISA and pHERV-W ENV/syncytin-1 expression levels by flow cytometry as well as by qPCR. Patients with relapsing MS forms showed significantly higher pHERV-W ENV/syncytin-1 protein and gene expression levels than HD. Progressive MS patients also showed significantly higher protein and gene expression levels than both HD and relapsing MS patients. Regarding antiviral antibodies titers, anti-HHV-6A/B IgM levels were positively correlated with pHERV-W ENV/syncytin-1 protein expression levels in patients with relapsing MS, while in the progressive forms patients this correlation was found with anti-HHVA/B IgG levels. Therefore, pHERV-W ENV could be involved in MS pathogenesis, playing a role in relapsing and progressive forms. Besides, anti-HHV-6A/B antibodies positively correlated with pHERV-W ENV expression. Further studies are needed to better understand this possible relationship.
Collapse
Affiliation(s)
- Silvia Pérez-Pérez
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - María I. Domínguez-Mozo
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - M. Ángel García-Martínez
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - M. Celeste García-Frontini
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Noelia Villarrubia
- Immunology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Luisa M. Villar
- Immunology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rafael Arroyo
- Neurology Department, Hospital Universitario Quironsalud Madrid, Madrid, Spain
| | - Roberto Álvarez-Lafuente
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
12
|
Meier UC, Cipian RC, Karimi A, Ramasamy R, Middeldorp JM. Cumulative Roles for Epstein-Barr Virus, Human Endogenous Retroviruses, and Human Herpes Virus-6 in Driving an Inflammatory Cascade Underlying MS Pathogenesis. Front Immunol 2021; 12:757302. [PMID: 34790199 PMCID: PMC8592026 DOI: 10.3389/fimmu.2021.757302] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Roles for viral infections and aberrant immune responses in driving localized neuroinflammation and neurodegeneration in multiple sclerosis (MS) are the focus of intense research. Epstein-Barr virus (EBV), as a persistent and frequently reactivating virus with major immunogenic influences and a near 100% epidemiological association with MS, is considered to play a leading role in MS pathogenesis, triggering localized inflammation near or within the central nervous system (CNS). This triggering may occur directly via viral products (RNA and protein) and/or indirectly via antigenic mimicry involving B-cells, T-cells and cytokine-activated astrocytes and microglia cells damaging the myelin sheath of neurons. The genetic MS-risk factor HLA-DR2b (DRB1*1501β, DRA1*0101α) may contribute to aberrant EBV antigen-presentation and anti-EBV reactivity but also to mimicry-induced autoimmune responses characteristic of MS. A central role is proposed for inflammatory EBER1, EBV-miRNA and LMP1 containing exosomes secreted by viable reactivating EBV+ B-cells and repetitive release of EBNA1-DNA complexes from apoptotic EBV+ B-cells, forming reactive immune complexes with EBNA1-IgG and complement. This may be accompanied by cytokine- or EBV-induced expression of human endogenous retrovirus-W/-K (HERV-W/-K) elements and possibly by activation of human herpesvirus-6A (HHV-6A) in early-stage CNS lesions, each contributing to an inflammatory cascade causing the relapsing-remitting neuro-inflammatory and/or progressive features characteristic of MS. Elimination of EBV-carrying B-cells by antibody- and EBV-specific T-cell therapy may hold the promise of reducing EBV activity in the CNS, thereby limiting CNS inflammation, MS symptoms and possibly reversing disease. Other approaches targeting HHV-6 and HERV-W and limiting inflammatory kinase-signaling to treat MS are also being tested with promising results. This article presents an overview of the evidence that EBV, HHV-6, and HERV-W may have a pathogenic role in initiating and promoting MS and possible approaches to mitigate development of the disease.
Collapse
Affiliation(s)
- Ute-Christiane Meier
- Institut für Laboratoriumsmedizin, Klinikum der Universität München, München, Germany.,Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
13
|
Wang Z, Kennedy PG, Dupree C, Wang M, Lee C, Pointon T, Langford TD, Graner MW, Yu X. Antibodies from Multiple Sclerosis Brain Identified Epstein-Barr Virus Nuclear Antigen 1 & 2 Epitopes which Are Recognized by Oligoclonal Bands. J Neuroimmune Pharmacol 2021; 16:567-580. [PMID: 32808238 PMCID: PMC7431217 DOI: 10.1007/s11481-020-09948-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), the etiology of which is poorly understood. The most common laboratory abnormality associated with MS is increased intrathecal immunoglobulin G (IgG) synthesis and the presence of oligoclonal bands (OCBs) in the brain and cerebrospinal fluid (CSF). However, the major antigenic targets of these antibody responses are unknown. The risk of MS is increased after infectious mononucleosis (IM) due to EBV infection, and MS patients have higher serum titers of anti-EBV antibodies than control populations. Our goal was to identify disease-relevant epitopes of IgG antibodies in MS; to do so, we screened phage-displayed random peptide libraries (12-mer) with total IgG antibodies purified from the brain of a patient with acute MS. We identified and characterized the phage peptides for binding specificity to intrathecal IgG from patients with MS and from controls by ELISA, phage-mediated Immuno-PCR, and isoelectric focusing. We identified two phage peptides that share sequence homologies with EBV nuclear antigens 1 and 2 (EBNA1 and EBNA2), respectively. The specificity of the EBV epitopes found by panning with MS brain IgG was confirmed by ELISA and competitive inhibition assays. Using a highly sensitive phage-mediated immuno-PCR assay, we determined specific bindings of the two EBV epitopes to IgG from CSF from 46 MS and 5 inflammatory control (IC) patients. MS CSF IgG have significantly higher bindings to EBNA1 epitope than to EBNA2 epitope, whereas EBNA1 and EBNA2 did not significantly differ in binding to IC CSF IgG. Further, the EBNA1 epitope was recognized by OCBs from multiple MS CSF as shown in blotting assays with samples separated by isoelectric focusing. The EBNA1 epitope is reactive to MS intrathecal antibodies corresponding to oligoclonal bands. This reinforces the potential role of EBV in the etiology of MS. Graphical abstract Antibodies purified from an MS brain plaque were panned by phage display peptide libraries to discern potential antigens. Phage displaying peptide sequences resembling Epstein-Barr Virus Nuclear Antigens 1 & 2 (EBNA1 & 2) epitopes were identified. Antibodies from sera and CSF from other MS patients also reacted to those epitopes.
Collapse
Affiliation(s)
- Zhe Wang
- National Engineering Research Center for Protein Drugs, Beijing, 102206, China
| | - Peter Ge Kennedy
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Cecily Dupree
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Min Wang
- Immunoah Therapeutics, Inc., 12635 East Montview Boulevard, Aurora, CO, 80045, USA
| | - Catherin Lee
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tiffany Pointon
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - T Dianne Langford
- Lewis Katz School of Medicine, Temple University, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Michael W Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The aim of this study was to evaluate the relationship between infection with SARS-CoV-2 and autoimmunity. RECENT FINDINGS Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome (SARS) associated coronavirus 2 (SARS-CoV-2). Although most of the infected individuals are asymptomatic, a proportion of patients with COVID-19 develop severe disease with multiple organ injuries. Evidence suggests that some medications used to treat autoimmune rheumatologic diseases might have therapeutic effect in patients with severe COVID-19 infections, drawing attention to the relationship between COVID-19 and autoimmune diseases. COVID-19 shares similarities with autoimmune diseases in clinical manifestations, immune responses and pathogenic mechanisms. Robust immune reactions participate in the pathogenesis of both disease conditions. Autoantibodies as a hallmark of autoimmune diseases can also be detected in COVID-19 patients. Moreover, some patients have been reported to develop autoimmune diseases, such as Guillain--Barré syndrome or systemic lupus erythematosus, after COVID-19 infection. It is speculated that SARS-CoV-2 can disturb self-tolerance and trigger autoimmune responses through cross-reactivity with host cells. The infection risk and prognosis of COVID-19 in patients with autoimmune diseases remains controversial, but patient adherence to medication regimens to prevent autoimmune disease flares is strongly recommended. SUMMARY We present a review of the association between COVID-19 and autoimmune diseases, focusing on similarities in immune responses, cross-reactivity of SARS-CoV-2, the development of autoimmune diseases in COVID-19 patients and the risk of COVID-19 infection in patients with preexisting autoimmune conditions.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, PR China
| | - Amr H. Sawalha
- Departments of Pediatrics, Medicine, and Immunology, and Lupus Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, PR China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
15
|
Epigenomic and transcriptomic analysis of chronic inflammatory diseases. Genes Genomics 2021; 43:227-236. [PMID: 33638813 DOI: 10.1007/s13258-021-01045-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Chronic inflammatory diseases (CIDs) have complex pathologies that result from aberrant and persistent immune responses. However, the precise triggers and mechanisms remain elusive. An important aspect of CID research focuses on epigenetics modifications, which regulate gene expression and provide a dynamic transcriptional response to inflammation. In recent years, mounting evidence has demonstrated an association between epigenomic and transcriptomic dysregulation and the phenotypes of CIDs. In particular, epigenetic changes at cis-regulatory elements have provided new insights for immune cell-specific alterations that contribute to disease etiology. Furthermore, the advancements in single-cell genomics provide novel solutions to cell type heterogeneity, which has long posed challenges for CID diagnosis and treatment. In this review, we discuss the current state of epigenomics research of CID and the insights derived from single-cell transcriptomic and epigenomic studies.
Collapse
|
16
|
Dechaumes A, Bertin A, Sane F, Levet S, Varghese J, Charvet B, Gmyr V, Kerr-Conte J, Pierquin J, Arunkumar G, Pattou F, Perron H, Hober D. Coxsackievirus-B4 Infection Can Induce the Expression of Human Endogenous Retrovirus W in Primary Cells. Microorganisms 2020; 8:E1335. [PMID: 32883004 PMCID: PMC7563422 DOI: 10.3390/microorganisms8091335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Human Endogenous Retrovirus W Envelope (HERV-W ENV) mRNA or protein can be found in peripheral blood mononuclear cells (PBMCs) and exocrine pancreas of patients with type 1 diabetes (T1D). Further, previous observations have shown an association between enteroviral infection and development of T1D; specifically, coxsackievirus-B (CV-B) has been detected in the blood and pancreas of patients with T1D. Notably, viruses can activate HERV-W expression. Hence, we evaluated the effect of CV-B4 infection on HERV-W ENV mRNA expression. Primary human pancreatic ductal cells were obtained from five brain-dead donors. In the pancreatic cells of three donors, the HERV-W ENV mRNA level measured using RT-qPCR was upregulated upon CV-B4 infection. The HERV-W ENV protein was detected in the infected cells using the immunoblot assay. In human PBMCs inoculated with CV-B4 or when CV-B4 was incubated with an enhancing serum, the HERV-W ENV mRNA level was higher than the background RNA level. In monocyte-derived macrophages obtained from 5 of 13 donors, the HERV-W ENV mRNA level was higher in cultures inoculated with CV-B4 than in the control. Therefore, CV-B4 can upregulate or induce the transcription of a certain HERV-W ENV copy (or copies) in primary cell cultures, such as monocytes, macrophages, and pancreatic cells.
Collapse
Affiliation(s)
- Arthur Dechaumes
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
| | - Antoine Bertin
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
| | - Famara Sane
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
| | - Sandrine Levet
- Geneuro Innovation, 69008 Lyon, France; (S.L.); (B.C.); (J.P.); (H.P.)
| | - Jennifer Varghese
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
- Manipal Institute of Virology, Manipal Academy of Higher Education, Karnataka 576104, India;
| | - Benjamin Charvet
- Geneuro Innovation, 69008 Lyon, France; (S.L.); (B.C.); (J.P.); (H.P.)
| | - Valéry Gmyr
- U1190 Univ Lille, Inserm, CHU Lille, European Genomic Institute for Diabetes, 59000 Lille, France; (V.G.); (J.K.-C.); (F.P.)
| | - Julie Kerr-Conte
- U1190 Univ Lille, Inserm, CHU Lille, European Genomic Institute for Diabetes, 59000 Lille, France; (V.G.); (J.K.-C.); (F.P.)
| | - Justine Pierquin
- Geneuro Innovation, 69008 Lyon, France; (S.L.); (B.C.); (J.P.); (H.P.)
| | | | - François Pattou
- U1190 Univ Lille, Inserm, CHU Lille, European Genomic Institute for Diabetes, 59000 Lille, France; (V.G.); (J.K.-C.); (F.P.)
| | - Hervé Perron
- Geneuro Innovation, 69008 Lyon, France; (S.L.); (B.C.); (J.P.); (H.P.)
- Geneuro SA, 1228 Geneva, Switzerland
- Faculté de Médecine Laënnec, Université de Lyon, 69008 Lyon, France
| | - Didier Hober
- Laboratoire de Virologie ULR3610 Univ Lille, CHU Lille, 59000 Lille, France; (A.D.); (A.B.); (F.S.); (J.V.)
| |
Collapse
|
17
|
Tarlinton RE, Martynova E, Rizvanov AA, Khaiboullina S, Verma S. Role of Viruses in the Pathogenesis of Multiple Sclerosis. Viruses 2020; 12:E643. [PMID: 32545816 PMCID: PMC7354629 DOI: 10.3390/v12060643] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an immune inflammatory disease, where the underlying etiological cause remains elusive. Multiple triggering factors have been suggested, including environmental, genetic and gender components. However, underlying infectious triggers to the disease are also suspected. There is an increasing abundance of evidence supporting a viral etiology to MS, including the efficacy of interferon therapy and over-detection of viral antibodies and nucleic acids when compared with healthy patients. Several viruses have been proposed as potential triggering agents, including Epstein-Barr virus, human herpesvirus 6, varicella-zoster virus, cytomegalovirus, John Cunningham virus and human endogenous retroviruses. These viruses are all near ubiquitous and have a high prevalence in adult populations (or in the case of the retroviruses are actually part of the genome). They can establish lifelong infections with periods of reactivation, which may be linked to the relapsing nature of MS. In this review, the evidence for a role for viral infection in MS will be discussed with an emphasis on immune system activation related to MS disease pathogenesis.
Collapse
Affiliation(s)
- Rachael E. Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, UK;
| | - Ekaterina Martynova
- Insititute of Fundamental Medicine and Biology Kazan Federal University, 420008 Kazan, Russia; (E.M.); (A.A.R.)
| | - Albert A. Rizvanov
- Insititute of Fundamental Medicine and Biology Kazan Federal University, 420008 Kazan, Russia; (E.M.); (A.A.R.)
| | | | - Subhash Verma
- School of Medicine, University of Nevada, Reno, NV 89557, USA;
| |
Collapse
|
18
|
Meeting report: "Human endogenous retroviruses: HERVs or transposable elements in autoimmune, chronic inflammatory and degenerative diseases or cancer", Lyon, France, november 5th and 6th 2019 - an MS scientist's digest. Mult Scler Relat Disord 2020; 42:102068. [PMID: 32302965 DOI: 10.1016/j.msard.2020.102068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 12/17/2022]
Abstract
The Third International Workshop on Human Endogenous Retroviruses and disease (www.hervanddisease.com), addressing HERVs or transposable elements in autoimmune, chronic inflammatory and degenerative diseases or cancer, in Lyon, France on November 5-6th 2019, once again gathered an international group of basic and clinical scientists investigating the involvement of human endogenous retroviruses (HERVs) in human diseases.
Collapse
|