1
|
Chang YC, Hee SW, Chuang LM. T helper 17 cells: A new actor on the stage of type 2 diabetes and aging? J Diabetes Investig 2021; 12:909-913. [PMID: 33686797 PMCID: PMC8169348 DOI: 10.1111/jdi.13541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Sakashita M, Yamada T, Imoto Y, Hirota T, Tamari M, Ito Y, Kubo S, Osawa Y, Takahashi N, Fujieda S. Long-term sublingual immunotherapy for Japanese cedar pollinosis and the levels of IL-17A and complement components 3a and 5a. Cytokine 2015; 75:181-5. [DOI: 10.1016/j.cyto.2015.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/14/2015] [Accepted: 03/31/2015] [Indexed: 12/23/2022]
|
3
|
Cytokine Responses to Specific Immunotherapy in House Dust Mite-Induced Allergic Rhinitis Patients. Inflammation 2015; 38:2216-23. [DOI: 10.1007/s10753-015-0204-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Brenner DR, Scherer D, Muir K, Schildkraut J, Boffetta P, Spitz MR, Le Marchand L, Chan AT, Goode EL, Ulrich CM, Hung RJ. A review of the application of inflammatory biomarkers in epidemiologic cancer research. Cancer Epidemiol Biomarkers Prev 2014; 23:1729-51. [PMID: 24962838 DOI: 10.1158/1055-9965.epi-14-0064] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a facilitating process for multiple cancer types. It is believed to affect cancer development and progression through several etiologic pathways, including increased levels of DNA adduct formation, increased angiogenesis, and altered antiapoptotic signaling. This review highlights the application of inflammatory biomarkers in epidemiologic studies and discusses the various cellular mediators of inflammation characterizing the innate immune system response to infection and chronic insult from environmental factors. Included is a review of six classes of inflammation-related biomarkers: cytokines/chemokines, immune-related effectors, acute-phase proteins, reactive oxygen and nitrogen species, prostaglandins and cyclooxygenase-related factors, and mediators such as transcription factors and growth factors. For each of these biomarkers, we provide a brief overview of the etiologic role in the inflammation response and how they have been related to cancer etiology and progression within the literature. We provide a discussion of the common techniques available for quantification of each marker, including strengths, weaknesses, and potential pitfalls. Subsequently, we highlight a few under-studied measures to characterize the inflammatory response and their potential utility in epidemiologic studies of cancer. Finally, we suggest integrative methods for future studies to apply multifaceted approaches to examine the relationship between inflammatory markers and their roles in cancer development.
Collapse
Affiliation(s)
- Darren R Brenner
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada. Department of Cancer Epidemiology and Prevention, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta, Canada
| | - Dominique Scherer
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | | | | | - Paolo Boffetta
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | | | | | - Andrew T Chan
- Dana Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Cornelia M Ulrich
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany. Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
DING FENGMING, ZHU SONGLEI, SHEN CE, JIANG YANQUN. Low-dose clarithromycin therapy modulates CD4+ T-cell responses in a mouse model of chronic Pseudomonas aeruginosa lung infection. Respirology 2012; 17:727-34. [DOI: 10.1111/j.1440-1843.2012.02166.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Essakalli M, Brick C, Bennani N, Benseffaj N, Ouadghiri S, Atouf O. [The latest TH17 lymphocyte in the family of T CD4+ lymphocytes]. PATHOLOGIE-BIOLOGIE 2010; 58:437-43. [PMID: 19299092 DOI: 10.1016/j.patbio.2009.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 01/15/2009] [Indexed: 11/30/2022]
Abstract
In recent years the T CD4+ lymphocyte family has grown. In the initial two components TH1 and TH2 lymphocytes were added the TH17 lymphocyte and T cell regulator (Treg). Under the influence of transforming growth factor β, interleukin 6 (IL6), IL21 and IL23, the naive lymphocyte T CD4+ differentiates in TH17. Currently, the TH17 is recognized as the leading actor of local inflammation through the pro-inflammatory cytokines (interleukins 17, 21, 22) that secretes and the expansion and recruitment of neutrophils that leads. Therefore, it is involved in chronic inflammatory processes, autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus), allergy and rejection of allogeneic transplants. TH17 lymphocyte opens up new therapeutic prospects for these pathologies.
Collapse
Affiliation(s)
- M Essakalli
- Service de transfusion et d'hémovigilance de l'hôpital Ibn Sina, CHU Rabat, BP 2014, Rabat Ryad, Rabat, Maroc.
| | | | | | | | | | | |
Collapse
|
7
|
Targeted depletion of lymphotoxin-alpha-expressing TH1 and TH17 cells inhibits autoimmune disease. Nat Med 2009; 15:766-73. [PMID: 19561618 DOI: 10.1038/nm.1984] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 05/05/2009] [Indexed: 02/07/2023]
Abstract
Uncontrolled T helper type 1 (T(H)1) and T(H)17 cells are associated with autoimmune responses. We identify surface lymphotoxin-alpha (LT-alpha) as common to T(H)0, T(H)1 and T(H)17 cells and employ a unique strategy to target these subsets using a depleting monoclonal antibody (mAb) directed to surface LT-alpha. Depleting LT-alpha-specific mAb inhibited T cell-mediated models of delayed-type hypersensitivity and experimental autoimmune encephalomyelitis. In collagen-induced arthritis (CIA), preventive and therapeutic administration of LT-alpha-specific mAb inhibited disease, and immunoablated T cells expressing interleukin-17 (IL-17), interferon-gamma and tumor necrosis factor-alpha (TNF-alpha), whereas decoy lymphotoxin-beta receptor (LT-betaR) fusion protein had no effect. A mutation in the Fc tail, rendering the antibody incapable of Fcgamma receptor binding and antibody-dependent cellular cytotoxicity activity, abolished all in vivo effects. Efficacy in CIA was preceded by a loss of rheumatoid-associated cytokines IL-6, IL-1beta and TNF-alpha within joints. These data indicate that depleting LT-alpha-expressing lymphocytes with LT-alpha-specific mAb may be beneficial in the treatment of autoimmune disease.
Collapse
|
8
|
Hamada H, Garcia-Hernandez MDLL, Reome JB, Misra SK, Strutt TM, McKinstry KK, Cooper AM, Swain SL, Dutton RW. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. THE JOURNAL OF IMMUNOLOGY 2009; 182:3469-81. [PMID: 19265125 DOI: 10.4049/jimmunol.0801814] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We show here that IL-17-secreting CD4 T (Th)17 and CD8 T (Tc)17 effector cells are found in the lung following primary challenge with influenza A and that blocking Ab to IL-17 increases weight loss and reduces survival. Tc17 effectors can be generated in vitro using naive CD8 T cells from OT-I TCR-transgenic mice. T cell numbers expand 20-fold and a majority secretes IL-17, but little IFN-gamma. Many of the IL-17-secreting cells also secrete TNF and some secrete IL-2. Tc17 are negative for granzyme B, perforin message, and cytolytic activity, in contrast to Tc1 effectors. Tc17 populations express message for orphan nuclear receptor gammat and FoxP3, but are negative for T-bet and GATA-3 transcription factors. The FoxP3-positive, IL-17-secreting and IFN-gamma-secreting cells represent three separate populations. The IFN-gamma-, granzyme B-, FoxP3-positive cells and cells positive for IL-22 come mainly from memory cells and decrease in number when generated from CD44(low) rather than unselected CD8 T cells. Cells of this unique subset of CD8 effector T cells expand greatly after transfer to naive recipients following challenge and can protect them against lethal influenza infection. Tc17 protection is accompanied by greater neutrophil influx into the lung than in Tc1-injected mice, and the protection afforded by Tc17 effectors is less perforin but more IFN-gamma dependent, implying that different mechanisms are involved.
Collapse
|
9
|
Abstract
T helper 17 (Th17) cells belong to a recently identified T helper subset, in addition to the traditional Th1 and Th2 subsets. These cells are characterized as preferential producers of interleukin-17A (IL-17A), IL-17F, IL-21, and IL-22. Th17 cells and their effector cytokines mediate host defensive mechanisms to various infections, especially extracellular bacteria infections, and are involved in the pathogenesis of many autoimmune diseases. The receptors for IL-17 and IL-22 are broadly expressed on various epithelial tissues. The effector cytokines of Th17 cells, therefore, mediate the crucial crosstalk between immune system and tissues, and play indispensable roles in tissue immunity.
Collapse
Affiliation(s)
- Wenjun Ouyang
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Jay K. Kolls
- Division of Pulmonary Medicine, Allergy, and Immunology, Department of Pediatrics, Children’s Hospital of Pittsburgh and The University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yan Zheng
- Inflammation Pathways Group, Pfizer Global Research and Development, St. Louis Laboratories, 700 Chesterfield Parkway West, Chesterfield, Missouri 63017, USA
| |
Collapse
|