1
|
Lo WL, Huseby ES. The partitioning of TCR repertoires by thymic selection. J Exp Med 2024; 221:e20230897. [PMID: 39167074 PMCID: PMC11338286 DOI: 10.1084/jem.20230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024] Open
Abstract
αβ T cells are critical components of the adaptive immune system; they maintain tissue and immune homeostasis during health, provide sterilizing immunity after pathogen infection, and are capable of eliminating transformed tumor cells. Fundamental to these distinct functions is the ligand specificity of the unique antigen receptor expressed on each mature T cell (TCR), which endows lymphocytes with the ability to behave in a cell-autonomous, disease context-specific manner. Clone-specific behavioral properties are initially established during T cell development when thymocytes use TCR recognition of major histocompatibility complex (MHC) and MHC-like ligands to instruct survival versus death and to differentiate into a plethora of inflammatory and regulatory T cell lineages. Here, we review the ligand specificity of the preselection thymocyte repertoire and argue that developmental stage-specific alterations in TCR signaling control cross-reactivity and foreign versus self-specificity of T cell sublineages.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
2
|
Iizuka-Koga M, Ito M, Yumoto N, Mise-Omata S, Hayakawa T, Komai K, Chikuma S, Takahashi S, Matsumoto I, Sumida T, Yoshimura A. Reconstruction of Sjögren's syndrome-like sialadenitis by a defined disease specific gut-reactive single TCR and an autoantibody. Clin Immunol 2024; 264:110258. [PMID: 38762063 DOI: 10.1016/j.clim.2024.110258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Lymphocytes such as CD4+ T cells and B cells mainly infiltrate the salivary glands; however, the precise roles and targets of autoreactive T cells and autoantibodies in the pathogenesis of Sjögren's Syndrome (SS) remain unclear. This study was designed to clarify the role of autoreactive T cells and autoantibodies at the single-cell level involved in the development of sialadenitis. Infiltrated CD4+ T and B cells in the salivary glands of a mouse model resembling SS were single-cell-sorted, and their T cell receptor (TCR) and B cell receptor (BCR) sequences were analyzed. The predominant TCR and BCR clonotypes were reconstituted in vitro, and their pathogenicity was evaluated by transferring reconstituted TCR-expressing CD4+ T cells into Rag2-/- mice and administering recombinant IgG in vivo. The reconstitution of Th17 cells expressing TCR (#G) in Rag2-/- mice resulted in the infiltration of T cells into the salivary glands and development of sialadenitis, while an autoantibody (IgGr22) was observed to promote the proliferation of pathogenic T cells. IgGr22 specifically recognizes double-stranded RNA (dsRNA) and induces the activation of dendritic cells, thereby enhancing the expression of IFN signature and inflammatory genes. TCR#G recognizes antigens related to the gut microbiota. Antibiotic treatment severely reduces the activation of TCR#G-expressing Th17 cells and suppresses sialadenitis development. These data suggest that the anti-dsRNA antibodies and, TCR recognizing the gut microbiota involved in the development of sialadenitis like SS. Thus, our model provides a novel strategy for defining the roles of autoreactive TCR and autoantibodies in the development and pathogenesis of SS.
Collapse
Affiliation(s)
- Mana Iizuka-Koga
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Minako Ito
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Noriko Yumoto
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Setsuko Mise-Omata
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba 278-0022, Japan
| | - Taeko Hayakawa
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kyoko Komai
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda-shi, Chiba 278-0022, Japan.
| |
Collapse
|
3
|
Kalinina AA, Khromykh LM, Kazansky DB. T Cell Receptor Chain Centricity: The Phenomenon and Potential Applications in Cancer Immunotherapy. Int J Mol Sci 2023; 24:15211. [PMID: 37894892 PMCID: PMC10607890 DOI: 10.3390/ijms242015211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
T cells are crucial players in adaptive anti-cancer immunity. The gene modification of T cells with tumor antigen-specific T cell receptors (TCRs) was a milestone in personalized cancer immunotherapy. TCR is a heterodimer (either α/β or γ/δ) able to recognize a peptide antigen in a complex with self-MHC molecules. Although traditional concepts assume that an α- and β-chain contribute equally to antigen recognition, mounting data reveal that certain receptors possess chain centricity, i.e., one hemi-chain TCR dominates antigen recognition and dictates its specificity. Chain-centric TCRs are currently poorly understood in terms of their origin and the functional T cell subsets that express them. In addition, the ratio of α- and β-chain-centric TCRs, as well as the exact proportion of chain-centric TCRs in the native repertoire, is generally still unknown today. In this review, we provide a retrospective analysis of studies that evidence chain-centric TCRs, propose patterns of their generation, and discuss the potential applications of such receptors in T cell gene modification for adoptive cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Dmitry B. Kazansky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| |
Collapse
|
4
|
Jones MC, Castonguay C, Nanaware PP, Weaver GC, Stadinski B, Kugler-Umana OA, Huseby ES, Stern LJ, McKinstry KK, Strutt TM, Devarajan P, Swain SL. CD4 Effector TCR Avidity for Peptide on APC Determines the Level of Memory Generated. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1950-1961. [PMID: 37093656 PMCID: PMC10247507 DOI: 10.4049/jimmunol.2200337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
Initial TCR affinity for peptide Ag is known to impact the generation of memory; however, its contributions later, when effectors must again recognize Ag at 5-8 d postinfection to become memory, is unclear. We examined whether the effector TCR affinity for peptide at this "effector checkpoint" dictates the extent of memory and degree of protection against rechallenge. We made an influenza A virus nucleoprotein (NP)-specific TCR transgenic mouse strain, FluNP, and generated NP-peptide variants that are presented by MHC class II to bind to the FluNP TCR over a broad range of avidity. To evaluate the impact of avidity in vivo, we primed naive donor FluNP in influenza A virus-infected host mice, purified donor effectors at the checkpoint, and cotransferred them with the range of peptides pulsed on activated APCs into second uninfected hosts. Higher-avidity peptides yielded higher numbers of FluNP memory cells in spleen and most dramatically in lung and draining lymph nodes and induced better protection against lethal influenza infection. Avidity determined memory cell number, not cytokine profile, and already impacted donor cell number within several days of transfer. We previously found that autocrine IL-2 production at the checkpoint prevents default effector apoptosis and supports memory formation. Here, we find that peptide avidity determines the level of IL-2 produced by these effectors and that IL-2Rα expression by the APCs enhances memory formation, suggesting that transpresentation of IL-2 by APCs further amplifies IL-2 availability. Secondary memory generation was also avidity dependent. We propose that this regulatory pathway selects CD4 effectors of highest affinity to progress to memory.
Collapse
Affiliation(s)
- Michael C. Jones
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Catherine Castonguay
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Padma P. Nanaware
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Grant C. Weaver
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Brian Stadinski
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Olivia A. Kugler-Umana
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Eric S. Huseby
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lawrence J. Stern
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Karl Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL. 32827,USA
| | - Tara M. Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL. 32827,USA
| | - Priyadharshini Devarajan
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Susan L. Swain
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Kalinina A, Persiyantseva N, Britanova O, Lupyr K, Shagina I, Khromykh L, Kazansky D. Unique features of the TCR repertoire of reactivated memory T cells in the experimental mouse tumor model. Comput Struct Biotechnol J 2023; 21:3196-3209. [PMID: 37333858 PMCID: PMC10275742 DOI: 10.1016/j.csbj.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cell engineering with T cell receptors (TCR) specific to tumor antigens has become a breakthrough towards personalized cancer adoptive cell immunotherapy. However, the search for therapeutic TCRs is often challenging, and effective strategies are strongly required for the identification and enrichment of tumor-specific T cells that express TCRs with superior functional characteristics. Using an experimental mouse tumor model, we studied sequential changes in TCR repertoire features of T cells involved in the primary and secondary immune responses to allogeneic tumor antigens. In-depth bioinformatics analysis of TCR repertoires showed differences in reactivated memory T cells compared to primarily activated effectors. After cognate antigen re-encounter, memory cells were enriched with clonotypes that express α-chain TCR with high potential cross-reactivity and enhanced strength of interaction with both MHC and docked peptides. Our findings suggest that functionally true memory T cells could be a better source of therapeutic TCRs for adoptive cell therapy. No marked changes were observed in the physicochemical characteristics of TCRβ in reactivated memory clonotypes, indicative of the dominant role of TCRα in the secondary allogeneic immune response. The results of this study could further contribute to the development of TCR-modified T cell products based on the phenomenon of TCR chain centricity.
Collapse
Affiliation(s)
- Anastasiia Kalinina
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478 Moscow, Russian Federation
| | - Nadezda Persiyantseva
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478 Moscow, Russian Federation
| | - Olga Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, 117997 Moscow, Russian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovityanova st.1, 17997 Moscow, Russian Federation
| | - Ksenia Lupyr
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoi boulevard 30c1, 121205 Moscow, Russian Federation
- Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova st.1,build. 1, 17997 Moscow, Russian Federation
| | - Irina Shagina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, 117997 Moscow, Russian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovityanova st.1, 17997 Moscow, Russian Federation
| | - Ludmila Khromykh
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478 Moscow, Russian Federation
| | - Dmitry Kazansky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478 Moscow, Russian Federation
| |
Collapse
|
6
|
Stadinski BD, Cleveland SB, Brehm MA, Greiner DL, Huseby PG, Huseby ES. I-A g7 β56/57 polymorphisms regulate non-cognate negative selection to CD4 + T cell orchestrators of type 1 diabetes. Nat Immunol 2023; 24:652-663. [PMID: 36807641 PMCID: PMC10623581 DOI: 10.1038/s41590-023-01441-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/20/2023] [Indexed: 02/22/2023]
Abstract
Genetic susceptibility to type 1 diabetes is associated with homozygous expression of major histocompatibility complex class II alleles that carry specific beta chain polymorphisms. Why heterozygous expression of these major histocompatibility complex class II alleles does not confer a similar predisposition is unresolved. Using a nonobese diabetic mouse model, here we show that heterozygous expression of the type 1 diabetes-protective allele I-Ag7 β56P/57D induces negative selection to the I-Ag7-restricted T cell repertoire, including beta-islet-specific CD4+ T cells. Surprisingly, negative selection occurs despite I-Ag7 β56P/57D having a reduced ability to present beta-islet antigens to CD4+ T cells. Peripheral manifestations of non-cognate negative selection include a near complete loss of beta-islet-specific CXCR6+ CD4+ T cells, an inability to cross-prime islet-specific glucose-6-phosphatase catalytic subunit-related protein and insulin-specific CD8+ T cells and disease arrest at the insulitis stage. These data reveal that negative selection on non-cognate self-antigens in the thymus can promote T cell tolerance and protection from autoimmunity.
Collapse
Affiliation(s)
- Brian D Stadinski
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sarah B Cleveland
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael A Brehm
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Priya G Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Kalinina AA, Ziganshin RK, Silaeva YY, Sharova NI, Nikonova MF, Persiyantseva NA, Gorkova TG, Antoshina EE, Trukhanova LS, Donetskova AD, Komogorova VV, Litvina MM, Mitin AN, Zamkova MA, Bruter AV, Khromykh LM, Kazansky DB. Physiological and Functional Effects of Dominant Active TCRα Expression in Transgenic Mice. Int J Mol Sci 2023; 24:ijms24076527. [PMID: 37047500 PMCID: PMC10094918 DOI: 10.3390/ijms24076527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
A T cell receptor (TCR) consists of α- and β-chains. Accumulating evidence suggests that some TCRs possess chain centricity, i.e., either of the hemi-chains can dominate in antigen recognition and dictate the TCR’s specificity. The introduction of TCRα/β into naive lymphocytes generates antigen-specific T cells that are ready to perform their functions. Transgenesis of the dominant active TCRα creates transgenic animals with improved anti-tumor immune control, and adoptive immunotherapy with TCRα-transduced T cells provides resistance to infections. However, the potential detrimental effects of the dominant hemi-chain TCR’s expression in transgenic animals have not been well investigated. Here, we analyzed, in detail, the functional status of the immune system of recently generated 1D1a transgenic mice expressing the dominant active TCRα specific to the H2-Kb molecule. In their age dynamics, neither autoimmunity due to the random pairing of transgenic TCRα with endogenous TCRβ variants nor significant disturbances in systemic homeostasis were detected in these mice. Although the specific immune response was considerably enhanced in 1D1a mice, responses to third-party alloantigens were not compromised, indicating that the expression of dominant active TCRα did not limit immune reactivity in transgenic mice. Our data suggest that TCRα transgene expression could delay thymic involution and maintain TCRβ repertoire diversity in old transgenic mice. The detected changes in the systemic homeostasis in 1D1a transgenic mice, which are minor and primarily transient, may indicate variations in the ontogeny of wild-type and transgenic mouse lines.
Collapse
Affiliation(s)
- Anastasiia A. Kalinina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Rustam Kh. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, 117997 Moscow, Russia
| | - Yulia Yu. Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, 119334 Moscow, Russia
| | - Nina I. Sharova
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Margarita F. Nikonova
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Nadezda A. Persiyantseva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Tatiana G. Gorkova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Elena E. Antoshina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Lubov S. Trukhanova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Almira D. Donetskova
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Victoria V. Komogorova
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Marina M. Litvina
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Alexander N. Mitin
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Maria A. Zamkova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, 119334 Moscow, Russia
| | - Alexandra V. Bruter
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Ludmila M. Khromykh
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Dmitry B. Kazansky
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
- Correspondence:
| |
Collapse
|
8
|
Covalent TCR-peptide-MHC interactions induce T cell activation and redirect T cell fate in the thymus. Nat Commun 2022; 13:4951. [PMID: 35999236 PMCID: PMC9399087 DOI: 10.1038/s41467-022-32692-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Interactions between a T cell receptor (TCR) and a peptide-major histocompatibility complex (pMHC) ligand are typically mediated by noncovalent bonds. By studying T cells expressing natural or engineered TCRs, here we describe covalent TCR-pMHC interactions that involve a cysteine-cysteine disulfide bond between the TCR and the peptide. By introducing cysteines into a known TCR-pMHC combination, we demonstrate that disulfide bond formation does not require structural rearrangement of the TCR or the peptide. We further show these disulfide bonds still form even when the initial affinity of the TCR-pMHC interaction is low. Accordingly, TCR-peptide disulfide bonds facilitate T cell activation by pMHC ligands with a wide spectrum of affinities for the TCR. Physiologically, this mechanism induces strong Zap70-dependent TCR signaling, which triggers T cell deletion or agonist selection in the thymus cortex. Covalent TCR-pMHC interactions may thus underlie a physiological T cell activation mechanism that has applications in basic immunology and potentially in immunotherapy. Differentiation and activation of T cells are normally modulated by non-covalent interactions between T cell receptor (TCR) and antigenic peptides. Here the authors use step-wise mutations, biochemical characterization and structural insights to describe the contributions of natural covalent bonds between TCR and antigenic peptides during these processes.
Collapse
|
9
|
Wang C, Daley SR. How Thymocyte Deletion in the Cortex May Curtail Antigen-Specific T-Regulatory Cell Development in the Medulla. Front Immunol 2022; 13:892498. [PMID: 35693793 PMCID: PMC9176388 DOI: 10.3389/fimmu.2022.892498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
CD4+ T cell responses to self-antigens are pivotal for immunological self-tolerance. Activation of Foxp3– T-conventional (T-conv) cells can precipitate autoimmune disease, whereas activation of Foxp3+ T-regulatory (T-reg) cells is essential to prevent autoimmune disease. This distinction indicates the importance of the thymus in controlling the differentiation of self-reactive CD4+ T cells. Thymocytes and thymic antigen-presenting cells (APC) depend on each other for normal maturation and differentiation. In this Hypothesis and Theory article, we propose this mutual dependence dictates which self-antigens induce T-reg cell development in the thymic medulla. We postulate self-reactive CD4+ CD8– thymocytes deliver signals that stabilize and amplify the presentation of their cognate self-antigen by APC in the thymic medulla, thereby seeding a niche for the development of T-reg cells specific for the same self-antigen. By limiting the number of antigen-specific CD4+ thymocytes in the medulla, thymocyte deletion in the cortex may impede the formation of medullary T-reg niches containing certain self-antigens. Susceptibility to autoimmune disease may arise from cortical deletion creating a “hole” in the self-antigen repertoire recognized by T-reg cells.
Collapse
Affiliation(s)
- Chenglong Wang
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stephen R Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Huseby ES, Teixeiro E. The perception and response of T cells to a changing environment are based on the law of initial value. Sci Signal 2022; 15:eabj9842. [PMID: 35639856 PMCID: PMC9290192 DOI: 10.1126/scisignal.abj9842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
αβ T cells are critical components of the adaptive immune system and are capable of inducing sterilizing immunity after pathogen infection and eliminating transformed tumor cells. The development and function of T cells are controlled through the T cell antigen receptor, which recognizes peptides displayed on major histocompatibility complex (MHC) molecules. Here, we review how T cells generate the ability to recognize self-peptide-bound MHC molecules and use signals derived from these interactions to instruct cellular development, activation thresholds, and functional specialization in the steady state and during immune responses. We argue that the basic tenants of T cell development and function follow Weber-Fetcher's law of just noticeable differences and Wilder's law of initial value. Together, these laws argue that the ability of a system to respond and the quality of that response are scalable to the basal state of that system. Manifestation of these laws in T cells generates clone-specific activation thresholds that are based on perceivable differences between homeostasis and pathogen encounter (self versus nonself discrimination), as well as poised states for subsequent differentiation into specific effector cell lineages.
Collapse
Affiliation(s)
- Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
11
|
Barthlott T, Handel AE, Teh HY, Wirasinha RC, Hafen K, Žuklys S, Roch B, Orkin SH, de Villartay JP, Daley SR, Holländer GA. Indispensable epigenetic control of thymic epithelial cell development and function by polycomb repressive complex 2. Nat Commun 2021; 12:3933. [PMID: 34168132 PMCID: PMC8225857 DOI: 10.1038/s41467-021-24158-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Thymic T cell development and T cell receptor repertoire selection are dependent on essential molecular cues provided by thymic epithelial cells (TEC). TEC development and function are regulated by their epigenetic landscape, in which the repressive H3K27me3 epigenetic marks are catalyzed by polycomb repressive complex 2 (PRC2). Here we show that a TEC-targeted deficiency of PRC2 function results in a hypoplastic thymus with reduced ability to express antigens and select a normal repertoire of T cells. The absence of PRC2 activity reveals a transcriptomically distinct medullary TEC lineage that incompletely off-sets the shortage of canonically-derived medullary TEC whereas cortical TEC numbers remain unchanged. This alternative TEC development is associated with the generation of reduced TCR diversity. Hence, normal PRC2 activity and placement of H3K27me3 marks are required for TEC lineage differentiation and function and, in their absence, the thymus is unable to compensate for the loss of a normal TEC scaffold.
Collapse
Affiliation(s)
- Thomas Barthlott
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, Basel, Switzerland
| | - Adam E Handel
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hong Ying Teh
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, Basel, Switzerland
| | - Rushika C Wirasinha
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Katrin Hafen
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, Basel, Switzerland
| | - Saulius Žuklys
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, Basel, Switzerland
| | - Benoit Roch
- Genome Dynamics in the Immune System Laboratory, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Stuart H Orkin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, USA
| | - Jean-Pierre de Villartay
- Genome Dynamics in the Immune System Laboratory, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Stephen R Daley
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Georg A Holländer
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, Basel, Switzerland.
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Zareie P, Szeto C, Farenc C, Gunasinghe SD, Kolawole EM, Nguyen A, Blyth C, Sng XYX, Li J, Jones CM, Fulcher AJ, Jacobs JR, Wei Q, Wojciech L, Petersen J, Gascoigne NRJ, Evavold BD, Gaus K, Gras S, Rossjohn J, La Gruta NL. Canonical T cell receptor docking on peptide-MHC is essential for T cell signaling. Science 2021; 372:372/6546/eabe9124. [PMID: 34083463 DOI: 10.1126/science.abe9124] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/23/2021] [Indexed: 12/23/2022]
Abstract
T cell receptor (TCR) recognition of peptide-major histocompatibility complexes (pMHCs) is characterized by a highly conserved docking polarity. Whether this polarity is driven by recognition or signaling constraints remains unclear. Using "reversed-docking" TCRβ-variable (TRBV) 17+ TCRs from the naïve mouse CD8+ T cell repertoire that recognizes the H-2Db-NP366 epitope, we demonstrate that their inability to support T cell activation and in vivo recruitment is a direct consequence of reversed docking polarity and not TCR-pMHCI binding or clustering characteristics. Canonical TCR-pMHCI docking optimally localizes CD8/Lck to the CD3 complex, which is prevented by reversed TCR-pMHCI polarity. The requirement for canonical docking was circumvented by dissociating Lck from CD8. Thus, the consensus TCR-pMHC docking topology is mandated by T cell signaling constraints.
Collapse
Affiliation(s)
- Pirooz Zareie
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Christopher Szeto
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sachith D Gunasinghe
- European Molecular Biology Laboratory (EMBL) Australia Node in Single Molecule Science and the ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Elizabeth M Kolawole
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Angela Nguyen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Chantelle Blyth
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Xavier Y X Sng
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jasmine Li
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Claerwen M Jones
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Jesica R Jacobs
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Qianru Wei
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545
| | - Lukasz Wojciech
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545
| | - Brian D Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Katharina Gaus
- European Molecular Biology Laboratory (EMBL) Australia Node in Single Molecule Science and the ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Nicole L La Gruta
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
13
|
Fulford TS, Grumont R, Wirasinha RC, Ellis D, Barugahare A, Turner SJ, Naeem H, Powell D, Lyons PA, Smith KGC, Scheer S, Zaph C, Klein U, Daley SR, Gerondakis S. c-Rel employs multiple mechanisms to promote the thymic development and peripheral function of regulatory T cells in mice. Eur J Immunol 2021; 51:2006-2026. [PMID: 33960413 DOI: 10.1002/eji.202048900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/12/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023]
Abstract
The NF-κB transcription factor c-Rel is a critical regulator of Treg ontogeny, controlling multiple points of the stepwise developmental pathway. Here, we found that the thymic Treg defect in c-Rel-deficient (cRel-/- ) mice is quantitative, not qualitative, based on analyses of TCR repertoire and TCR signaling strength. However, these parameters are altered in the thymic Treg-precursor population, which is also markedly diminished in cRel-/- mice. Moreover, c-Rel governs the transcriptional programme of both thymic and peripheral Tregs, controlling a core of genes involved with immune signaling, and separately in the periphery, cell cycle progression. Last, the immune suppressive function of peripheral cRel-/- tTregs is diminished in a lymphopenic model of T cell proliferation and is associated with decreased stability of Foxp3 expression. Collectively, we show that c-Rel is a transcriptional regulator that controls multiple aspects of Treg development, differentiation, and function via distinct mechanisms.
Collapse
Affiliation(s)
- Thomas S Fulford
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Raelene Grumont
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Rushika C Wirasinha
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Darcy Ellis
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Adele Barugahare
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,Monash Bioinformatics Platform, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Stephen J Turner
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,Department of Microbiology, Monash University, Melbourne, Australia
| | - Haroon Naeem
- Monash Bioinformatics Platform, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - David Powell
- Monash Bioinformatics Platform, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, England, UK.,Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge, England, UK
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, England, UK.,Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge, England, UK
| | - Sebastian Scheer
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Colby Zaph
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, LS2 7TF
| | - Stephen R Daley
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Steve Gerondakis
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| |
Collapse
|
14
|
Zhang W, Hawkins PG, He J, Gupta NT, Liu J, Choonoo G, Jeong SW, Chen CR, Dhanik A, Dillon M, Deering R, Macdonald LE, Thurston G, Atwal GS. A framework for highly multiplexed dextramer mapping and prediction of T cell receptor sequences to antigen specificity. SCIENCE ADVANCES 2021; 7:7/20/eabf5835. [PMID: 33990328 PMCID: PMC8121425 DOI: 10.1126/sciadv.abf5835] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/25/2021] [Indexed: 05/04/2023]
Abstract
T cell receptor (TCR) antigen-specific recognition is essential for the adaptive immune system. However, building a TCR-antigen interaction map has been challenging due to the staggering diversity of TCRs and antigens. Accordingly, highly multiplexed dextramer-TCR binding assays have been recently developed, but the utility of the ensuing large datasets is limited by the lack of robust computational methods for normalization and interpretation. Here, we present a computational framework comprising a novel method, ICON (Integrative COntext-specific Normalization), for identifying reliable TCR-pMHC (peptide-major histocompatibility complex) interactions and a neural network-based classifier TCRAI that outperforms other state-of-the-art methods for TCR-antigen specificity prediction. We further demonstrated that by combining ICON and TCRAI, we are able to discover novel subgroups of TCRs that bind to a given pMHC via different mechanisms. Our framework facilitates the identification and understanding of TCR-antigen-specific interactions for basic immunological research and clinical immune monitoring.
Collapse
Affiliation(s)
- Wen Zhang
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
| | - Peter G Hawkins
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jing He
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Namita T Gupta
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jinrui Liu
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Gabrielle Choonoo
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Se W Jeong
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Calvin R Chen
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Ankur Dhanik
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Myles Dillon
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Raquel Deering
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lynn E Macdonald
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Gurinder S Atwal
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
| |
Collapse
|
15
|
Kalinina AA, Nesterenko LN, Bruter AV, Balunets DV, Chudakov DM, Izraelson M, Britanova OV, Khromykh LM, Kazansky DB. Adoptive Immunotherapy Based on Chain-Centric TCRs in Treatment of Infectious Diseases. iScience 2020; 23:101854. [PMID: 33313494 PMCID: PMC7721641 DOI: 10.1016/j.isci.2020.101854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 12/29/2022] Open
Abstract
Complications after vaccination, lack of vaccines against certain infections, and the emergence of antibiotic-resistant microorganisms point to the need for alternative ways of protection and treatment of infectious diseases. Here, we proposed a therapeutic approach to control salmonellosis based on adoptive cell therapy. We showed that the T cell receptor (TCR) repertoire of salmonella-specific memory cells contains 20% of TCR variants with the dominant-active α-chain. Transduction of intact T lymphocytes with the dominant salmonella-specific TCRα led to their enhanced in vitro proliferation in response to salmonella. Adoptive transfer of transduced T cells resulted in a significant decrease in bacterial loads in mice infected with salmonella before or after the adoptive transfer. We demonstrated that adoptive immunotherapy based on T cells, transduced with dominant-specific TCRα could be successfully applied for treatment and prevention of infectious diseases and represent a useful addition to vaccination and existing therapeutic strategies. A regular TCR repertoire of memory T cells contains alpha-chain-centric TCRs Dominant-active TCRα, paired with random TCRβ, recognizes specific microbial antigens Adoptive immunotherapy could be applied for treatment of infections
Collapse
Affiliation(s)
- Anastasiia A Kalinina
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" оf the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| | - Ludmila N Nesterenko
- "N. F. Gamaleya National Research Center of Epidemiology and Microbiology", the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Alexandra V Bruter
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" оf the Ministry of Health of the Russian Federation, 115478 Moscow, Russia.,Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Denis V Balunets
- "N. F. Gamaleya National Research Center of Epidemiology and Microbiology", the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Mark Izraelson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ludmila M Khromykh
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" оf the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| | - Dmitry B Kazansky
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" оf the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| |
Collapse
|
16
|
Crean RM, MacLachlan BJ, Madura F, Whalley T, Rizkallah PJ, Holland CJ, McMurran C, Harper S, Godkin A, Sewell AK, Pudney CR, van der Kamp MW, Cole DK. Molecular Rules Underpinning Enhanced Affinity Binding of Human T Cell Receptors Engineered for Immunotherapy. Mol Ther Oncolytics 2020; 18:443-456. [PMID: 32913893 PMCID: PMC7452143 DOI: 10.1016/j.omto.2020.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 10/25/2022] Open
Abstract
Immuno-oncology approaches that utilize T cell receptors (TCRs) are becoming highly attractive because of their potential to target virtually all cellular proteins, including cancer-specific epitopes, via the recognition of peptide-human leukocyte antigen (pHLA) complexes presented at the cell surface. However, because natural TCRs generally recognize cancer-derived pHLAs with very weak affinities, efforts have been made to enhance their binding strength, in some cases by several million-fold. In this study, we investigated the mechanisms underpinning human TCR affinity enhancement by comparing the crystal structures of engineered enhanced affinity TCRs with those of their wild-type progenitors. Additionally, we performed molecular dynamics simulations to better understand the energetic mechanisms driving the affinity enhancements. These data demonstrate that supra-physiological binding affinities can be achieved without altering native TCR-pHLA binding modes via relatively subtle modifications to the interface contacts, often driven through the addition of buried hydrophobic residues. Individual energetic components of the TCR-pHLA interaction governing affinity enhancements were distinct and highly variable for each TCR, often resulting from additive, or knock-on, effects beyond the mutated residues. This comprehensive analysis of affinity-enhanced TCRs has important implications for the future rational design of engineered TCRs as efficacious and safe drugs for cancer treatment.
Collapse
Affiliation(s)
- Rory M. Crean
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
- Doctoral Training Centre in Sustainable Chemical Technologies, University of Bath, Bath, BA2 7AY, UK
| | | | - Florian Madura
- Division of Infection & Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - Thomas Whalley
- Division of Infection & Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | | | | | | | | | - Andrew Godkin
- Division of Infection & Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - Andrew K. Sewell
- Division of Infection & Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - Christopher R. Pudney
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
- Centre for Therapeutic Innovation, University of Bath, Bath, BA2 7AY, UK
| | - Marc W. van der Kamp
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - David K. Cole
- Division of Infection & Immunity, Cardiff University, Cardiff, CF14 4XN, UK
- Immunocore, Ltd., Abingdon, OX14 4RY, UK
| |
Collapse
|
17
|
Watkins TS, Miles JJ. The human T-cell receptor repertoire in health and disease and potential for omics integration. Immunol Cell Biol 2020; 99:135-145. [PMID: 32677130 DOI: 10.1111/imcb.12377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022]
Abstract
The adaptive immune system arose 600 million years ago in a cold-blooded fish. Over countless generations, our antecedents tuned the function of the T-cell receptor (TCR). The TCR system is arguably the most complex known to science. The TCR evolved hypervariability to fight the hypervariability of pathogens and cancers that look to consume our resources. This review describes the genetics and architecture of the human TCR and highlights surprising new discoveries over the past years that have disproved very old dogmas. The standardization of TCR sequencing data is discussed in preparation for big data bioinformatics and predictive analysis. We next catalogue new signatures and phenomenon discovered by TCR next generation sequencing (NGS) in health and disease and work that remain to be done in this space. Finally, we discuss how TCR NGS can add to immunodiagnostics and integrate with other omics platforms for both a deeper understanding of TCR biology and its use in the clinical setting.
Collapse
Affiliation(s)
- Thomas S Watkins
- The Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia.,Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| | - John J Miles
- The Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia.,Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
18
|
Abstract
Adoptive immunotherapy with engineered T cells is at the forefront of cancer treatment. T cells can be engineered to express T-cell receptors (TCRs) specific for tumor-associated antigens (TAAs) derived from intracellular or cell surface proteins. T cells engineered with TCRs (TCR-T) allow for targeting diverse types of TAAs, including proteins overexpressed in malignant cells, those with lineage-restricted expression, cancer-testis antigens, and neoantigens created from abnormal, malignancy-restricted proteins. Minor histocompatibility antigens can also serve as TAAs for TCR-T to treat relapsed hematologic malignancies after allogeneic hematopoietic cell transplantation. Moreover, TCR constructs can be modified to improve safety and enhance function and persistence of TCR-T. Transgenic T-cell receptor therapies targeting 3 different TAAs are in early-phase clinical trials for treatment of hematologic malignancies. Preclinical studies of TCR-T specific for many other TAAs are underway and offer great promise as safe and effective therapies for a wide range of cancers.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Michelle Brault
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
19
|
Lu J, Van Laethem F, Saba I, Chu J, Tikhonova AN, Bhattacharya A, Singer A, Sun PD. Structure of MHC-Independent TCRs and Their Recognition of Native Antigen CD155. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:3351-3359. [PMID: 32321756 PMCID: PMC7390066 DOI: 10.4049/jimmunol.1901084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/02/2020] [Indexed: 01/07/2023]
Abstract
During normal T cell development in the thymus, αβ TCRs signal immature thymocytes to differentiate into mature T cells by binding to peptide-MHC ligands together with CD4/CD8 coreceptors. Conversely, in MHC and CD4/CD8 coreceptor-deficient mice, the thymus generates mature T cells expressing MHC-independent TCRs that recognize native conformational epitopes rather than linear antigenic-peptides presented by MHC. To date, no structural information of MHC-independent TCRs is available, and their structural recognition of non-MHC ligand remains unknown. To our knowledge in this study, we determined the first structures of two murine MHC-independent TCRs (A11 and B12A) that bind with high nanomolar affinities to mouse adhesion receptor CD155. Solution binding demonstrated the Vαβ-domain is responsible for MHC-independent B12A recognition of its ligand. Analysis of A11 and B12A sequences against various MHC-restricted and -independent TCR sequence repertoires showed that individual V-genes of A11 and B12A did not exhibit preference against MHC-restriction. Likewise, CDR3 alone did not discriminate against MHC binding, suggesting VDJ recombination together with Vα/Vβ pairing determine their MHC-independent specificity for CD155. The structures of A11 and B12A TCR are nearly identical to those of MHC-restricted TCR, including the conformations of CDR1 and 2. Mutational analysis, together with negative-staining electron microscopy images, showed that the CDR regions of A11 and B12A recognized epitopes on D1 domain of CD155, a region also involved in CD155 binding to poliovirus and Tactile in human. Taken together, MHC-independent TCRs adopt canonical TCR structures to recognize native Ags, highlighting the importance of thymic selection in determining TCR ligand specificity.
Collapse
Affiliation(s)
- Jinghua Lu
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland 20852
| | - François Van Laethem
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892
| | - Ingrid Saba
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892
| | - Jonathan Chu
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland 20852
| | | | - Abhisek Bhattacharya
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892
| | - Peter D. Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland 20852
| |
Collapse
|
20
|
MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naïve CD4 + T cells. Proc Natl Acad Sci U S A 2020; 117:13659-13669. [PMID: 32482872 DOI: 10.1073/pnas.2003170117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
T cell maturation and activation depend upon T cell receptor (TCR) interactions with a wide variety of antigenic peptides displayed in a given major histocompatibility complex (MHC) context. Complementarity-determining region 3 (CDR3) is the most variable part of the TCRα and -β chains, which govern interactions with peptide-MHC complexes. However, it remains unclear how the CDR3 landscape is shaped by individual MHC context during thymic selection of naïve T cells. We established two mouse strains carrying distinct allelic variants of H2-A and analyzed thymic and peripheral production and TCR repertoires of naïve conventional CD4+ T (Tconv) and naïve regulatory CD4+ T (Treg) cells. Compared with tuberculosis-resistant C57BL/6 (H2-Ab) mice, the tuberculosis-susceptible H2-Aj mice had fewer CD4+ T cells of both subsets in the thymus. In the periphery, this deficiency was only apparent for Tconv and was compensated for by peripheral reconstitution for Treg We show that H2-Aj favors selection of a narrower and more convergent repertoire with more hydrophobic and strongly interacting amino acid residues in the middle of CDR3α and CDR3β, suggesting more stringent selection against a narrower peptide-MHC-II context. H2-Aj and H2-Ab mice have prominent reciprocal differences in CDR3α and CDR3β features, probably reflecting distinct modes of TCR fitting to MHC-II variants. These data reveal the mechanics and extent of how MHC-II shapes the naïve CD4+ T cell CDR3 landscape, which essentially defines adaptive response to infections and self-antigens.
Collapse
|
21
|
Affiliation(s)
- Pirooz Zareie
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Carine Farenc
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Nicole L. La Gruta
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
22
|
|
23
|
Abstract
The repertoire of αβ T cell antigen receptors (TCRs) on mature T cells is selected in the thymus where it is rendered both self-tolerant and restricted to the recognition of major histocompatibility complex molecules presenting peptide antigens (pMHC). It remains unclear whether germline TCR sequences exhibit an inherent bias to interact with pMHC prior to selection. Here, we isolated TCR libraries from unselected thymocytes and upon reexpression of these random TCR repertoires in recipient T cell hybridomas, interrogated their reactivities to antigen-presenting cell lines. While these random TCR combinations could potentially have reacted with any surface molecule on the cell lines, the hybridomas were stimulated most frequently by pMHC ligands. The nature and CDR3 loop composition of the TCRβ chain played a dominant role in determining pMHC-reactivity. Replacing the germline regions of mouse TCRβ chains with those of other jawed vertebrates preserved reactivity to mouse pMHC. Finally, introducing the CD4 coreceptor into the hybridomas increased the proportion of cells that could respond to pMHC ligands. Thus, αβ TCRs display an intrinsic and evolutionary conserved bias for pMHC molecules in the absence of any selective pressure, which is further strengthened in the presence of coreceptors.
Collapse
|
24
|
Zamkova M, Kalinina A, Silaeva Y, Persiyantseva N, Bruter A, Deikin A, Khromykh L, Kazansky D. Dominant role of the α-chain in rejection of tumor cells bearing a specific alloantigen in TCRα transgenic mice and in in vitro experiments. Oncotarget 2019; 10:4808-4821. [PMID: 31448049 PMCID: PMC6690675 DOI: 10.18632/oncotarget.27093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/29/2019] [Indexed: 12/17/2022] Open
Abstract
Both TCRα and TCRβ types of T-cell receptors contribute to antigen recognition. However, some TCRs have chain centricity, which means that either the α-chain or the β-chain dictates the peptide–MHC complex specificity. Most earlier reports investigated the role of well-studied β-chains in antigen recognition by TCRαβ. In a previous study, we identified TCRs specific to the H-2Kb molecule. In the present work, we generated transgenic mice carrying the α-chain of this TCR. We found that these transgenic mice rejected EL-4 tumor cells bearing alloantigen H-2Kb more effectively than wild-type mice and similarly to mice with established specific memory T cells. Moreover, we found that T cells transduced with this TCRα can inhibit EL-4 cell growth in vitro and in vivo. We also found that transgenic mice recruit fewer CD8 T cells into the peritoneal cavity at the peak of the immune response and had a significantly higher number of central memory CD8 T cells in the spleen of intact transgenic mice compared to intact wild-type control. These results indicate the ability of a single transgenic α-chain of the H-2Kb-specific TCR to determine specific recognition of the H-2Kb molecule by a repertoire of T lymphocytes and to rapidly reject H-2Kb-bearing lymphoma cells.
Collapse
Affiliation(s)
- Maria Zamkova
- "N. N. Blokhin National Medical Research Centre of Oncology" of the Health Ministry of Russia, Moscow, Russia
| | - Anastasiya Kalinina
- "N. N. Blokhin National Medical Research Centre of Oncology" of the Health Ministry of Russia, Moscow, Russia
| | - Yuliya Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda Persiyantseva
- "N. N. Blokhin National Medical Research Centre of Oncology" of the Health Ministry of Russia, Moscow, Russia
| | - Alexandra Bruter
- Russian Academy of Sciences, Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Alexey Deikin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila Khromykh
- "N. N. Blokhin National Medical Research Centre of Oncology" of the Health Ministry of Russia, Moscow, Russia
| | - Dmitry Kazansky
- "N. N. Blokhin National Medical Research Centre of Oncology" of the Health Ministry of Russia, Moscow, Russia
| |
Collapse
|
25
|
Carter JA, Preall JB, Grigaityte K, Goldfless SJ, Jeffery E, Briggs AW, Vigneault F, Atwal GS. Single T Cell Sequencing Demonstrates the Functional Role of αβ TCR Pairing in Cell Lineage and Antigen Specificity. Front Immunol 2019; 10:1516. [PMID: 31417541 PMCID: PMC6684766 DOI: 10.3389/fimmu.2019.01516] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
Although structural studies of individual T cell receptors (TCRs) have revealed important roles for both the α and β chain in directing MHC and antigen recognition, repertoire-level immunogenomic analyses have historically examined the β chain alone. To determine the amount of useful information about TCR repertoire function encoded within αβ pairings, we analyzed paired TCR sequences from nearly 100,000 unique CD4+ and CD8+ T cells captured using two different high-throughput, single-cell sequencing approaches. Our results demonstrate little overlap in the healthy CD4+ and CD8+ repertoires, with shared TCR sequences possessing significantly shorter CDR3 sequences corresponding to higher generation probabilities. We further utilized tools from information theory and machine learning to show that while α and β chains are only weakly associated with lineage, αβ pairings appear to synergistically drive TCR-MHC interactions. Vαβ gene pairings were found to be the TCR feature most informative of T cell lineage, supporting the existence of germline-encoded paired αβ TCR-MHC interaction motifs. Finally, annotating our TCR pairs using a database of sequences with known antigen specificities, we demonstrate that approximately a third of the T cells possess α and β chains that each recognize different known antigens, suggesting that αβ pairing is critical for the accurate inference of repertoire functionality. Together, these findings provide biological insight into the functional implications of αβ pairing and highlight the utility of single-cell sequencing in immunogenomics.
Collapse
Affiliation(s)
- Jason A. Carter
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | | | - Kristina Grigaityte
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | | | | | | | | | - Gurinder S. Atwal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| |
Collapse
|
26
|
A temporal thymic selection switch and ligand binding kinetics constrain neonatal Foxp3 + T reg cell development. Nat Immunol 2019; 20:1046-1058. [PMID: 31209405 DOI: 10.1038/s41590-019-0414-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Abstract
The neonatal thymus generates Foxp3+ regulatory T (tTreg) cells that are critical in controlling immune homeostasis and preventing multiorgan autoimmunity. The role of antigen specificity on neonatal tTreg cell selection is unresolved. Here we identify 17 self-peptides recognized by neonatal tTreg cells, and reveal ligand specificity patterns that include self-antigens presented in an age- and inflammation-dependent manner. Fate-mapping studies of neonatal peptidyl arginine deiminase type IV (Padi4)-specific thymocytes reveal disparate fate choices. Neonatal thymocytes expressing T cell receptors that engage IAb-Padi4 with moderate dwell times within a conventional docking orientation are exported as tTreg cells. In contrast, Padi4-specific T cell receptors with short dwell times are expressed on CD4+ T cells, while long dwell times induce negative selection. Temporally, Padi4-specific thymocytes are subject to a developmental stage-specific change in negative selection, which precludes tTreg cell development. Thus, a temporal switch in negative selection and ligand binding kinetics constrains the neonatal tTreg selection window.
Collapse
|
27
|
Deletion of self-reactive CCR7- thymocytes in the absence of MHC expression on thymic epithelial cells. Cell Death Differ 2019; 26:2727-2739. [PMID: 31019259 DOI: 10.1038/s41418-019-0331-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/18/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
The selection of αβ T cells in the thymus is punctuated by checkpoints at which thymocytes differentiate or undergo apoptosis. Wave 1 deletion is defined as apoptosis within nascent αβ T-cell antigen receptor (TCR)-signalled thymocytes that lack CCR7 expression. The antigen-presenting cell (APC) types that mediate wave 1 deletion are unclear. To measure wave 1 deletion, we compared the frequencies of TCRβ + CD5 + Helios + CCR7- cells in nascent thymocyte cohorts in mice with normal or defective apoptosis. This thymocyte population is small in mice lacking major histocompatibility complex (MHC) expression. The scale of wave 1 deletion was increased by transgenic expression of the self-reactive Yae62 TCRβ chain, was almost halved when haemopoietic APCs lacked MHC expression and, surprisingly, was unchanged when epithelial cells lacked MHC expression. These findings demonstrate efficiency, and some redundancy, in the APC types that mediate wave 1 deletion in the normal mouse thymus.
Collapse
|
28
|
Wirasinha RC, Singh M, Archer SK, Chan A, Harrison PF, Goodnow CC, Daley SR. αβ T-cell receptors with a central CDR3 cysteine are enriched in CD8αα intraepithelial lymphocytes and their thymic precursors. Immunol Cell Biol 2018; 96:553-561. [PMID: 29726044 DOI: 10.1111/imcb.12047] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/09/2018] [Accepted: 03/23/2018] [Indexed: 01/04/2023]
Abstract
The thymus plays a crucial role in immune tolerance by exposing developing T cells (thymocytes) to a myriad of self-antigens. Strong T-cell receptor (TCR) engagement induces tolerance in self-reactive thymocytes by stimulating apoptosis or selection into specialized T-cell lineages, including intestinal TCRαβ+ CD8αα+ intraepithelial lymphocytes (IEL). TCR-intrinsic amino acid motifs that can be used to predict whether a TCR will be strongly self-reactive remain elusive. Here, a novel TCR sequence alignment approach revealed that T-cell lineages in C57BL/6 mice had divergent usage of cysteine within two positions of the amino acid at the apex of the complementarity-determining region 3 (CDR3) of the TCRα or TCRβ chain. Compared to pre-selection thymocytes, central CDR3 cysteine usage was increased in IEL and Type A IEL precursors (IELp) and markedly decreased in Foxp3+ regulatory T cells (T-reg) and naïve T cells. These findings reveal a TCR-intrinsic motif that distinguishes Type A IELp and IEL from T-reg and naïve T cells.
Collapse
Affiliation(s)
- Rushika C Wirasinha
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Mandeep Singh
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Stuart K Archer
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC, 3800, Australia
| | - Anna Chan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Paul F Harrison
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher C Goodnow
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Stephen R Daley
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| |
Collapse
|
29
|
|
30
|
Schmitt TM, Aggen DH, Ishida-Tsubota K, Ochsenreither S, Kranz DM, Greenberg PD. Generation of higher affinity T cell receptors by antigen-driven differentiation of progenitor T cells in vitro. Nat Biotechnol 2017; 35:1188-1195. [PMID: 29106410 PMCID: PMC5722674 DOI: 10.1038/nbt.4004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/13/2017] [Indexed: 01/19/2023]
Abstract
Many promising targets for T-cell-based cancer immunotherapies are self-antigens. During thymic selection, T cells bearing T cell receptors (TCRs) with high affinity for self-antigen are eliminated. The affinity of the remaining low-avidity TCRs can be improved to increase their antitumor efficacy, but conventional saturation mutagenesis approaches are labor intensive, and the resulting TCRs may be cross-reactive. Here we describe the in vitro maturation and selection of mouse and human T cells on antigen-expressing feeder cells to develop higher-affinity TCRs. The approach takes advantage of natural Tcrb gene rearrangement to generate diversity in the length and composition of CDR3β. In vitro differentiation of progenitors transduced with a known Tcra gene in the presence of antigen drives differentiation of cells with a distinct agonist-selected phenotype. We purified these cells to generate TCRβ chain libraries pre-enriched for target antigen specificity. Several TCRβ chains paired with a transgenic TCRα chain to produce a TCR with higher affinity than the parental TCR for target antigen, without evidence of cross-reactivity.
Collapse
Affiliation(s)
- Thomas M Schmitt
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - David H Aggen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Sebastian Ochsenreither
- Department of Hematology, Oncology, and Tumor Immunology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - David M Kranz
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Philip D Greenberg
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Immunology and Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
31
|
Tsuchiya Y, Namiuchi Y, Wako H, Tsurui H. A study of CDR3 loop dynamics reveals distinct mechanisms of peptide recognition by T-cell receptors exhibiting different levels of cross-reactivity. Immunology 2017; 153:466-478. [PMID: 28992359 DOI: 10.1111/imm.12849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023] Open
Abstract
T-cell receptors (TCRs) can productively interact with many different peptides bound within the MHC binding groove. This property varies with the level of cross-reactivity of TCRs; some TCRs are particularly hyper cross-reactive while others exhibit greater specificity. To elucidate the mechanism behind these differences, we studied five TCRs in complex with the same class II MHC (1Ab )-peptide (3K), that are known to exhibit different levels of cross-reactivity. Although these complexes have similar binding affinities, the interface areas between the TCR and the peptide-MHC (pMHC) differ significantly. We investigated static and dynamic structural features of the TCR-pMHC complexes and of TCRs in a free state, as well as the relationship between binding affinity and interface area. It was found that the TCRs known to exhibit lower levels of cross-reactivity bound to pMHC using an induced-fitting mechanism, forming large and tight interfaces rich in specific hydrogen bonds. In contrast, TCRs known to exhibit high levels of cross-reactivity used a more rigid binding mechanism where non-specific π-interactions involving the bulky Trp residue in CDR3β dominated. As entropy loss upon binding in these highly degenerate and rigid TCRs is smaller than that in less degenerate TCRs, they can better tolerate changes in residues distal from the major contacts with MHC-bound peptide. Hence, our dynamics study revealed that differences in the peptide recognition mechanisms by TCRs appear to correlate with the levels of T-cell cross-reactivity.
Collapse
Affiliation(s)
- Yuko Tsuchiya
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | | | - Hiroshi Wako
- School of Social Sciences, Waseda University, Tokyo, Japan
| | - Hiromichi Tsurui
- Department of Pathology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
32
|
Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8 + T cell response. Nat Immunol 2017; 18:1228-1237. [PMID: 28945243 DOI: 10.1038/ni.3850] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
Abstract
Adaptive immune responses protect against infection with dengue virus (DENV), yet cross-reactivity with distinct serotypes can precipitate life-threatening clinical disease. We found that clonotypes expressing the T cell antigen receptor (TCR) β-chain variable region 11 (TRBV11-2) were 'preferentially' activated and mobilized within immunodominant human-leukocyte-antigen-(HLA)-A*11:01-restricted CD8+ T cell populations specific for variants of the nonstructural protein epitope NS3133 that characterize the serotypes DENV1, DENV3 and DENV4. In contrast, the NS3133-DENV2-specific repertoire was largely devoid of such TCRs. Structural analysis of a representative TRBV11-2+ TCR demonstrated that cross-serotype reactivity was governed by unique interplay between the variable antigenic determinant and germline-encoded residues in the second β-chain complementarity-determining region (CDR2β). Extensive mutagenesis studies of three distinct TRBV11-2+ TCRs further confirmed that antigen recognition was dependent on key contacts between the serotype-defined peptide and discrete residues in the CDR2β loop. Collectively, these data reveal an innate-like mode of epitope recognition with potential implications for the outcome of sequential exposure to heterologous DENVs.
Collapse
|
33
|
Yang X, Chen G, Weng NP, Mariuzza RA. Structural basis for clonal diversity of the human T-cell response to a dominant influenza virus epitope. J Biol Chem 2017; 292:18618-18627. [PMID: 28931605 DOI: 10.1074/jbc.m117.810382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/08/2017] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) causes an acute infection in humans that is normally eliminated by CD8+ cytotoxic T lymphocytes. Individuals expressing the MHC class I molecule HLA-A2 produce cytotoxic T lymphocytes bearing T-cell receptors (TCRs) that recognize the immunodominant IAV epitope GILGFVFTL (GIL). Most GIL-specific TCRs utilize α/β chain pairs encoded by the TRAV27/TRBV19 gene combination to recognize this relatively featureless peptide epitope (canonical TCRs). However, ∼40% of GIL-specific TCRs express a wide variety of other TRAV/TRBV combinations (non-canonical TCRs). To investigate the structural underpinnings of this remarkable diversity, we determined the crystal structure of a non-canonical GIL-specific TCR (F50) expressing the TRAV13-1/TRBV27 gene combination bound to GIL-HLA-A2 to 1.7 Å resolution. Comparison of the F50-GIL-HLA-A2 complex with the previously published complex formed by a canonical TCR (JM22) revealed that F50 and JM22 engage GIL-HLA-A2 in markedly different orientations. These orientations are distinguished by crossing angles of TCR to peptide-MHC of 29° for F50 versus 69° for JM22 and by a focus by F50 on the C terminus rather than the center of the MHC α1 helix for JM22. In addition, F50, unlike JM22, uses a tryptophan instead of an arginine to fill a critical notch between GIL and the HLA-A2 α2 helix. The F50-GIL-HLA-A2 complex shows that there are multiple structurally distinct solutions to recognizing an identical peptide-MHC ligand with sufficient affinity to elicit a broad anti-IAV response that protects against viral escape and T-cell clonal loss.
Collapse
Affiliation(s)
- Xinbo Yang
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850.,the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Guobing Chen
- the Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Nan-Ping Weng
- the Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Roy A Mariuzza
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, .,the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| |
Collapse
|
34
|
Gunnarsen KS, Høydahl LS, Risnes LF, Dahal-Koirala S, Neumann RS, Bergseng E, Frigstad T, Frick R, du Pré MF, Dalhus B, Lundin KE, Qiao SW, Sollid LM, Sandlie I, Løset GÅ. A TCRα framework-centered codon shapes a biased T cell repertoire through direct MHC and CDR3β interactions. JCI Insight 2017; 2:95193. [PMID: 28878121 DOI: 10.1172/jci.insight.95193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022] Open
Abstract
Selection of biased T cell receptor (TCR) repertoires across individuals is seen in both infectious diseases and autoimmunity, but the underlying molecular basis leading to these shared repertoires remains unclear. Celiac disease (CD) occurs primarily in HLA-DQ2.5+ individuals and is characterized by a CD4+ T cell response against gluten epitopes dominated by DQ2.5-glia-α1a and DQ2.5-glia-α2. The DQ2.5-glia-α2 response recruits a highly biased TCR repertoire composed of TRAV26-1 paired with TRBV7-2 harboring a semipublic CDR3β loop. We aimed to unravel the molecular basis for this signature. By variable gene segment exchange, directed mutagenesis, and cellular T cell activation studies, we found that TRBV7-3 can substitute for TRBV7-2, as both can contain the canonical CDR3β loop. Furthermore, we identified a pivotal germline-encoded MHC recognition motif centered on framework residue Y40 in TRAV26-1 engaging both DQB1*02 and the canonical CDR3β. This allowed prediction of expanded DQ2.5-glia-α2-reactive TCR repertoires, which were confirmed by single-cell sorting and TCR sequencing from CD patient samples. Our data refine our understanding of how HLA-dependent biased TCR repertoires are selected in the periphery due to germline-encoded residues.
Collapse
Affiliation(s)
- Kristin Støen Gunnarsen
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Lene Støkken Høydahl
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Louise Fremgaard Risnes
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Shiva Dahal-Koirala
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ralf Stefan Neumann
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Elin Bergseng
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | | | - Rahel Frick
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - M Fleur du Pré
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Bjørn Dalhus
- Department of Microbiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Knut Ea Lundin
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre and Department of Immunology, University of Oslo, Oslo, Norway.,Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Shuo-Wang Qiao
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre and Department of Immunology, University of Oslo, Oslo, Norway
| | - Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre and Department of Immunology, University of Oslo, Oslo, Norway
| | - Inger Sandlie
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Geir Åge Løset
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway.,Nextera AS, Oslo, Norway
| |
Collapse
|
35
|
Conserved Vδ1 Binding Geometry in a Setting of Locus-Disparate pHLA Recognition by δ/αβ T Cell Receptors (TCRs): Insight into Recognition of HIV Peptides by TCRs. J Virol 2017; 91:JVI.00725-17. [PMID: 28615212 DOI: 10.1128/jvi.00725-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/02/2017] [Indexed: 11/20/2022] Open
Abstract
Given the limited set of T cell receptor (TCR) V genes that are used to create TCRs that are reactive to different ligands, such as major histocompatibility complex (MHC) class I, MHC class II, and MHC-like proteins (for example, MIC molecules and CD1 molecules), the Vδ1 segment can be rearranged with Dδ-Jδ-Cδ or Jα-Cα segments to form classical γδTCRs or uncommon αβTCRs using a Vδ1 segment (δ/αβTCR). Here we have determined two complex structures of the δ/αβTCRs (S19-2 and TU55) bound to different locus-disparate MHC class I molecules with HIV peptides (HLA-A*2402-Nef138-10 and HLA-B*3501-Pol448-9). The overall binding modes resemble those of classical αβTCRs but display a strong tilt binding geometry of the Vδ1 domain toward the HLA α1 helix, due to a conserved extensive interaction between the CDR1δ loop and the N-terminal region of the α1 helix (mainly in position 62). The aromatic amino acids of the CDR1δ loop exploit different conformations ("aromatic ladder" or "aromatic hairpin") to accommodate distinct MHC helical scaffolds. This tolerance helps to explain how a particular TCR V region can similarly dock onto multiple MHC molecules and thus may potentially explain the nature of TCR cross-reactivity. In addition, the length of the CDR3δ loop could affect the extent of tilt binding of the Vδ1 domain, and adaptively, the pairing Vβ domains adjust their mass centers to generate differential MHC contacts, hence probably ensuring TCR specificity for a certain peptide-MHC class I (pMHC-I). Our data have provided further structural insights into the TCR recognition of classical pMHC-I molecules, unifying cross-reactivity and specificity.IMPORTANCE The specificity of αβ T cell recognition is determined by the CDR loops of the αβTCR, and the general mode of binding of αβTCRs to pMHC has been established over the last decade. Due to the intrinsic genomic structure of the TCR α/δ chain locus, some Vδ segments can rearrange with the Cα segment, forming a hybrid VδCαVβCβ TCR, the δ/αβTCR. However, the basis for the molecular recognition of such TCRs of their ligands is elusive. Here an αβTCR using the Vδ1 segment, S19-2, was isolated from an HIV-infected patient in an HLA-A*24:02-restricted manner. We then solved the crystal structures of the S19-2 TCR and another δ/αβTCR, TU55, bound to their respective ligands, revealing a conserved Vδ1 binding feature. Further binding kinetics analysis revealed that the S19-2 and TU55 TCRs bind pHLA very tightly and in a long-lasting manner. Our results illustrate the mode of binding of a TCR using the Vδ1 segment to its ligand, virus-derived pHLA.
Collapse
|
36
|
Baker BM, Evavold BD. MHC Bias by T Cell Receptors: Genetic Evidence for MHC and TCR Coevolution. Trends Immunol 2016; 38:2-4. [PMID: 27939452 DOI: 10.1016/j.it.2016.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 01/15/2023]
Abstract
Major histocompatibility complex (MHC) restriction is a fundamental tenet of T cell biology, but the underlying mechanisms have remained controversial. The extent to which T cell receptors (TCRs) are biased towards MHC proteins in particular has been widely discussed. In a recent paper, Sharon et al. report direct evidence for coevolution between TCR and MHC genes, helping to explain how MHC compatibility and bias can be encoded within TCRs.
Collapse
Affiliation(s)
- Brian M Baker
- Department of Chemistry and Biochemistry, and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Brian D Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
37
|
Wyss L, Stadinski BD, King CG, Schallenberg S, McCarthy NI, Lee JY, Kretschmer K, Terracciano LM, Anderson G, Surh CD, Huseby ES, Palmer E. Affinity for self antigen selects Treg cells with distinct functional properties. Nat Immunol 2016; 17:1093-101. [PMID: 27478940 PMCID: PMC4994872 DOI: 10.1038/ni.3522] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/27/2016] [Indexed: 12/30/2022]
Abstract
The manner in which regulatory T cells (Treg cells) control lymphocyte homeostasis is not fully understood. We identified two Treg cell populations with differing degrees of self-reactivity and distinct regulatory functions. We found that GITR(hi)PD-1(hi)CD25(hi) (Triple(hi)) Treg cells were highly self-reactive and controlled lympho-proliferation in peripheral lymph nodes. GITR(lo)PD-1(lo)CD25(lo) (Triple(lo)) Treg cells were less self-reactive and limited the development of colitis by promoting the conversion of CD4(+) Tconv cells into induced Treg cells (iTreg cells). Although Foxp3-deficient (Scurfy) mice lacked Treg cells, they contained Triple(hi)-like and Triple(lo)-like CD4(+) T cells zsuper> T cells infiltrated the skin, whereas Scurfy Triple(lo)CD4(+) T cells induced colitis and wasting disease. These findings indicate that the affinity of the T cell antigen receptor for self antigen drives the differentiation of Treg cells into distinct subsets with non-overlapping regulatory activities.
Collapse
Affiliation(s)
- Lena Wyss
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Nephrology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Brian D Stadinski
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Carolyn G King
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sonja Schallenberg
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Nicholas I McCarthy
- MRC Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Jun Young Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Luigi M Terracciano
- Institute of Pathology, Molecular Pathology Division, University Hospital of Basel, Basel, Switzerland
| | - Graham Anderson
- MRC Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Charles D Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ed Palmer
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Nephrology, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
38
|
Stadinski BD, Shekhar K, Gómez-Touriño I, Jung J, Sasaki K, Sewell AK, Peakman M, Chakraborty AK, Huseby ES. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol 2016; 17:946-55. [PMID: 27348411 PMCID: PMC4955740 DOI: 10.1038/ni.3491] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022]
Abstract
Studies of individual T cell antigen receptors (TCRs) have shed some light on structural features that underlie self-reactivity. However, the general rules that can be used to predict whether TCRs are self-reactive have not been fully elucidated. Here we found that the interfacial hydrophobicity of amino acids at positions 6 and 7 of the complementarity-determining region CDR3β robustly promoted the development of self-reactive TCRs. This property was found irrespective of the member of the β-chain variable region (Vβ) family present in the TCR or the length of the CDR3β. An index based on these findings distinguished Vβ2(+), Vβ6(+) and Vβ8.2(+) regulatory T cells from conventional T cells and also distinguished CD4(+) T cells selected by the major histocompatibility complex (MHC) class II molecule I-A(g7) (associated with the development of type 1 diabetes in NOD mice) from those selected by a non-autoimmunity-promoting MHC class II molecule I-A(b). Our results provide a means for distinguishing normal T cell repertoires versus autoimmunity-prone T cell repertoires.
Collapse
Affiliation(s)
- Brian D. Stadinski
- Department of Pathology, University of Massachusetts Medical School Worcester, MA 01605, USA
| | - Karthik Shekhar
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Jonathan Jung
- Department of Pathology, University of Massachusetts Medical School Worcester, MA 01605, USA
| | - Katsuhiro Sasaki
- Department of Pathology, University of Massachusetts Medical School Worcester, MA 01605, USA
| | - Andrew K. Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Mark Peakman
- Department of Immunobiology, King's College London, London, UK
| | - Arup K. Chakraborty
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139., USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School Worcester, MA 01605, USA
| |
Collapse
|
39
|
Stadinski BD, Obst R, Huseby ES. A "hotspot" for autoimmune T cells in type 1 diabetes. J Clin Invest 2016; 126:2040-2. [PMID: 27183386 PMCID: PMC4887178 DOI: 10.1172/jci88165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability of a single T cell antigen receptor (TCR) to cross-react with multiple antigens allows the finite number of T cells within an organism to respond to the compendium of pathogen challenges faced during a lifetime. Effective immune surveillance, however, comes at a price. TCR cross-reactivity can allow molecular mimics to spuriously activate autoimmune T cells; it also underlies T cell rejection of organ transplants and drives graft-versus-host disease. In this issue of the JCI, Cole and colleagues provide insight into how an insulin-reactive T cell cross-reacts with pathogen-derived antigens by focusing on a limited portion of the peptides to provide a hotspot for binding. These findings dovetail with recent studies of alloreactive and autoimmune TCRs and suggest that the biochemical principles that govern conventional protein-protein interactions may allow the specificity and cross-reactivity profiles of T cells to be predicted.
Collapse
Affiliation(s)
- Brian D. Stadinski
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Reinhard Obst
- Institute for Immunology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
40
|
Differential utilization of binding loop flexibility in T cell receptor ligand selection and cross-reactivity. Sci Rep 2016; 6:25070. [PMID: 27118724 PMCID: PMC4846865 DOI: 10.1038/srep25070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/11/2016] [Indexed: 12/27/2022] Open
Abstract
Complementarity determining region (CDR) loop flexibility has been suggested to play an important role in the selection and binding of ligands by T cell receptors (TCRs) of the cellular immune system. However, questions remain regarding the role of loop motion in TCR binding, and crystallographic structures have raised questions about the extent to which generalizations can be made. Here we studied the flexibility of two structurally well characterized αβ TCRs, A6 and DMF5. We found that the two receptors utilize loop motion very differently in ligand binding and cross-reactivity. While the loops of A6 move rapidly in an uncorrelated fashion, those of DMF5 are substantially less mobile. Accordingly, the mechanisms of binding and cross-reactivity are very different between the two TCRs: whereas A6 relies on conformational selection to select and bind different ligands, DMF5 uses a more rigid, permissive architecture with greater reliance on slower motions or induced-fit. In addition to binding site flexibility, we also explored whether ligand-binding resulted in common dynamical changes in A6 and DMF5 that could contribute to TCR triggering. Although binding-linked motional changes propagated throughout both receptors, no common features were observed, suggesting that changes in nanosecond-level TCR structural dynamics do not contribute to T cell signaling.
Collapse
|
41
|
How structural adaptability exists alongside HLA-A2 bias in the human αβ TCR repertoire. Proc Natl Acad Sci U S A 2016; 113:E1276-85. [PMID: 26884163 DOI: 10.1073/pnas.1522069113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How T-cell receptors (TCRs) can be intrinsically biased toward MHC proteins while simultaneously display the structural adaptability required to engage diverse ligands remains a controversial puzzle. We addressed this by examining αβ TCR sequences and structures for evidence of physicochemical compatibility with MHC proteins. We found that human TCRs are enriched in the capacity to engage a polymorphic, positively charged "hot-spot" region that is almost exclusive to the α1-helix of the common human class I MHC protein, HLA-A*0201 (HLA-A2). TCR binding necessitates hot-spot burial, yielding high energetic penalties that must be offset via complementary electrostatic interactions. Enrichment of negative charges in TCR binding loops, particularly the germ-line loops encoded by the TCR Vα and Vβ genes, provides this capacity and is correlated with restricted positioning of TCRs over HLA-A2. Notably, this enrichment is absent from antibody genes. The data suggest a built-in TCR compatibility with HLA-A2 that biases receptors toward, but does not compel, particular binding modes. Our findings provide an instructional example for how structurally pliant MHC biases can be encoded within TCRs.
Collapse
|
42
|
Structural interplay between germline interactions and adaptive recognition determines the bandwidth of TCR-peptide-MHC cross-reactivity. Nat Immunol 2016; 17:87-94. [PMID: 26523866 PMCID: PMC4684756 DOI: 10.1038/ni.3310] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023]
Abstract
The T cell antigen receptor (TCR)-peptide-major histocompatibility complex (MHC) interface is composed of conserved and diverse regions, yet the relative contribution of each in shaping recognition by T cells remains unclear. Here we isolated cross-reactive peptides with limited homology, which allowed us to compare the structural properties of nine peptides for a single TCR-MHC pair. The TCR's cross-reactivity was rooted in highly similar recognition of an apical 'hot-spot' position in the peptide with tolerance of sequence variation at ancillary positions. Furthermore, we found a striking structural convergence onto a germline-mediated interaction between the TCR CDR1α region and the MHC α2 helix in twelve TCR-peptide-MHC complexes. Our studies suggest that TCR-MHC germline-mediated constraints, together with a focus on a small peptide hot spot, might place limits on peptide antigen cross-reactivity.
Collapse
|
43
|
Attaf M, Legut M, Cole DK, Sewell AK. The T cell antigen receptor: the Swiss army knife of the immune system. Clin Exp Immunol 2015; 181:1-18. [PMID: 25753381 PMCID: PMC4469151 DOI: 10.1111/cei.12622] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 01/01/2023] Open
Abstract
The mammalian T cell receptor (TCR) orchestrates immunity by responding to many billions of different ligands that it has never encountered before and cannot adapt to at the protein sequence level. This remarkable receptor exists in two main heterodimeric isoforms: αβ TCR and γδ TCR. The αβ TCR is expressed on the majority of peripheral T cells. Most αβ T cells recognize peptides, derived from degraded proteins, presented at the cell surface in molecular cradles called major histocompatibility complex (MHC) molecules. Recent reports have described other αβ T cell subsets. These 'unconventional' T cells bear TCRs that are capable of recognizing lipid ligands presented in the context of the MHC-like CD1 protein family or bacterial metabolites bound to the MHC-related protein 1 (MR1). γδ T cells constitute a minority of the T cell pool in human blood, but can represent up to half of total T cells in tissues such as the gut and skin. The identity of the preferred ligands for γδ T cells remains obscure, but it is now known that this receptor can also functionally engage CD1-lipid, or immunoglobulin (Ig) superfamily proteins called butyrophilins in the presence of pyrophosphate intermediates of bacterial lipid biosynthesis. Interactions between TCRs and these ligands allow the host to discriminate between self and non-self and co-ordinate an attack on the latter. Here, we describe how cells of the T lymphocyte lineage and their antigen receptors are generated and discuss the various modes of antigen recognition by these extraordinarily versatile receptors.
Collapse
Affiliation(s)
- M Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - M Legut
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - D K Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - A K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
44
|
Indoctrinating T cells to attack pathogens through homeschooling. Trends Immunol 2015; 36:337-43. [PMID: 25979654 DOI: 10.1016/j.it.2015.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 12/14/2022]
Abstract
Adaptive immunity is predicated on the ability of the T cell repertoire to have pre-existing specificity for the universe of potential pathogens. Recent findings suggest that T cell receptor (TCR)-self-major histocompatibility protein (pMHC) interactions limit autoimmune responses while enhancing T cell response to foreign antigens. We review these findings here, placing them in context of the current understanding of how TCR-self-pMHC interactions regulate T cell activation thresholds, and suggest that TCR-self-pMHC interactions increase the efficiency of the T cell repertoire by giving a competitive advantage to peptide cross-reactive T cells. We propose that self-reactivity and peptide cross-reactivity are controlled by particular CDR3 sequence motifs, which would allow thymic selection to contribute to solving the feat of broad pathogen specificity by exporting T cells that are pre-screened by positive and negative selection for the ability to be 'moderately' peptide cross-reactive.
Collapse
|
45
|
Ochi T, Nakatsugawa M, Chamoto K, Tanaka S, Yamashita Y, Guo T, Fujiwara H, Yasukawa M, Butler MO, Hirano N. Optimization of T-cell Reactivity by Exploiting TCR Chain Centricity for the Purpose of Safe and Effective Antitumor TCR Gene Therapy. Cancer Immunol Res 2015; 3:1070-81. [PMID: 25943533 DOI: 10.1158/2326-6066.cir-14-0222] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/15/2015] [Indexed: 11/16/2022]
Abstract
Adoptive transfer of T cells redirected by a high-affinity antitumor T-cell receptor (TCR) is a promising treatment modality for cancer patients. Safety and efficacy depend on the selection of a TCR that induces minimal toxicity and elicits sufficient antitumor reactivity. Many, if not all, TCRs possess cross-reactivity to unrelated MHC molecules in addition to reactivity to target self-MHC/peptide complexes. Some TCRs display chain centricity, in which recognition of MHC/peptide complexes is dominated by one of the TCR hemi-chains. In this study, we comprehensively studied how TCR chain centricity affects reactivity to target self-MHC/peptide complexes and alloreactivity using the TCR, clone TAK1, which is specific for human leukocyte antigen-A*24:02/Wilms tumor 1(235-243) (A24/WT1(235)) and cross-reactive with B*57:01 (B57). The TAK1β, but not the TAK1α, hemi-chain possessed chain centricity. When paired with multiple clonotypic TCRα counter-chains encoding TRAV12-2, 20, 36, or 38-2, the de novo TAK1β-containing TCRs showed enhanced, weakened, or absent reactivity to A24/WT1(235) and/or to B57. T cells reconstituted with these TCRα genes along with TAK1β possessed a very broad range (>3 log orders) of functional and structural avidities. These results suggest that TCR chain centricity can be exploited to enhance desired antitumor TCR reactivity and eliminate unwanted TCR cross-reactivity. TCR reactivity to target MHC/peptide complexes and cross-reactivity to unrelated MHC molecules are not inextricably linked and are separable at the TCR sequence level. However, it is still mandatory to carefully monitor for possible harmful toxicities caused by adoptive transfer of T cells redirected by thymically unselected TCRs.
Collapse
Affiliation(s)
- Toshiki Ochi
- Immune Therapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Munehide Nakatsugawa
- Immune Therapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kenji Chamoto
- Immune Therapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shinya Tanaka
- Immune Therapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. Takara Bio, Inc., Otsu, Shiga, Japan
| | - Yuki Yamashita
- Immune Therapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tingxi Guo
- Immune Therapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Hiroshi Fujiwara
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Masaki Yasukawa
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Marcus O Butler
- Immune Therapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. Department of Immunology, University of Toronto, Toronto, Ontario, Canada. Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Naoto Hirano
- Immune Therapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
46
|
Clemens EB, Doherty PC, La Gruta NL, Turner SJ. Fixed expression of single influenza virus-specific TCR chains demonstrates the capacity for TCR α- and β-chain diversity in the face of peptide-MHC class I specificity. THE JOURNAL OF IMMUNOLOGY 2014; 194:898-910. [PMID: 25535284 DOI: 10.4049/jimmunol.1401792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The characteristics of the TCR repertoire expressed by epitope-specific CD8(+) T cells can be an important determinant of the quality of immune protection against virus infection. Most studies of epitope-specific TCR repertoires focus solely on an analysis of TCR β-chains, rather than the combined TCRαβ heterodimers that confer specificity. Hence, the importance of complementary α- and β-chain pairing in determining TCR specificity and T cell function is not well understood. Our earlier study of influenza-specific TCR repertoires in a C57BL/6J mouse model described a structural basis for preferred TCRαβ pairing that determined exquisite specificity for the D(b)PA224 epitope from influenza A virus. We have now extended this analysis using retrogenic mice engineered to express single TCR α- or β-chains specific for the D(b)NP366 or D(b)PA224 epitopes derived from influenza A virus. We found that particular TCRαβ combinations were selected for recognition of these epitopes following infection, indicating that pairing of certain α- and β-chain sequences is key for determining TCR specificity. Furthermore, we demonstrated that some TCRαβ heterodimers were preferentially expanded from the naive repertoire in response to virus infection, suggesting that appropriate αβ pairing confers optimal T cell responsiveness to Ag.
Collapse
Affiliation(s)
- E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| |
Collapse
|
47
|
Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol 2014; 33:169-200. [PMID: 25493333 DOI: 10.1146/annurev-immunol-032414-112334] [Citation(s) in RCA: 535] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Major Histocompatibility Complex (MHC) locus encodes classical MHC class I and MHC class II molecules and nonclassical MHC-I molecules. The architecture of these molecules is ideally suited to capture and present an array of peptide antigens (Ags). In addition, the CD1 family members and MR1 are MHC class I-like molecules that bind lipid-based Ags and vitamin B precursors, respectively. These Ag-bound molecules are subsequently recognized by T cell antigen receptors (TCRs) expressed on the surface of T lymphocytes. Structural and associated functional studies have been highly informative in providing insight into these interactions, which are crucial to immunity, and how they can lead to aberrant T cell reactivity. Investigators have determined over thirty unique TCR-peptide-MHC-I complex structures and twenty unique TCR-peptide-MHC-II complex structures. These investigations have shown a broad consensus in docking geometry and provided insight into MHC restriction. Structural studies on TCR-mediated recognition of lipid and metabolite Ags have been mostly confined to TCRs from innate-like natural killer T cells and mucosal-associated invariant T cells, respectively. These studies revealed clear differences between TCR-lipid-CD1, TCR-metabolite-MR1, and TCR-peptide-MHC recognition. Accordingly, TCRs show remarkable structural and biological versatility in engaging different classes of Ag that are presented by polymorphic and monomorphic Ag-presenting molecules of the immune system.
Collapse
Affiliation(s)
- Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; ,
| | | | | | | | | | | |
Collapse
|
48
|
Templeton DM, Moehle K. Structural aspects of molecular recognition in the immune system. Part I: Acquired immunity (IUPAC Technical Report). PURE APPL CHEM 2014. [DOI: 10.1515/pac-2013-1020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Humoral immunity allows the body to mount a defense against pathogens and foreign substances, and to respond with memory to subsequent exposures. The molecular participants may also recognize self-structures, leading to attack on the body and autoimmune disease. The main players in humoral immunity are antibody-producing B lymphocytes, and several classes of T lymphocytes. This review deals with the molecular details of recognition of antigens by soluble antibodies, and of substances presented to receptors on the surfaces of T cells (TCRs). The prototype antibody consists of a dimer of dimers, two heavy (H) chains and two light (L) chains, with antigen recognition capacity lying in variable “head” regions of an H-L pair. Most crystallographic studies are done with this substructure, called a Fab fragment, bound in a soluble antigen complex. Homologous to this arrangement, the prototype TCR consists of two chains (α and β) that complex not soluble antigen, but usually a short peptide or other small molecule presented by proteins of the major histocompatibility complex. In each case a general background on the historical development of understanding the molecular recognition interface is given, followed by a number of examples of crystal structures from the recent literature that have allowed us to refine our understanding of the complex recognition process. Variations on the prototypical structures are also considered. The spectrum of recognition strategies involves interplay of lock-and-key with flexibility, varying degrees of entropic and enthalpic contributions, surface shaping by entrapped water molecules, and combinations of stabilizing hydrogen bonding, electrostatic interactions, salt bridging, and van der Waals forces. Preeminent in the recent literature are details of antibody binding to influenza A and human immunodeficiency viral antigens. Both viral antigens and attempts to understand autoimmunity are prominent in the recent TCR literature.
Collapse
|
49
|
Pierce BG, Weng Z. A flexible docking approach for prediction of T cell receptor-peptide-MHC complexes. Protein Sci 2014; 22:35-46. [PMID: 23109003 DOI: 10.1002/pro.2181] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/15/2012] [Indexed: 11/10/2022]
Abstract
T cell receptors (TCRs) are immune proteins that specifically bind to antigenic molecules, which are often foreign peptides presented by major histocompatibility complex proteins (pMHCs), playing a key role in the cellular immune response. To advance our understanding and modeling of this dynamic immunological event, we assembled a protein-protein docking benchmark consisting of 20 structures of crystallized TCR/pMHC complexes for which unbound structures exist for both TCR and pMHC. We used our benchmark to compare predictive performance using several flexible and rigid backbone TCR/pMHC docking protocols. Our flexible TCR docking algorithm, TCRFlexDock, improved predictive success over the fixed backbone protocol, leading to near-native predictions for 80% of the TCR/pMHC cases among the top 10 models, and 100% of the cases in the top 30 models. We then applied TCRFlexDock to predict the two distinct docking modes recently described for a single TCR bound to two different antigens, and tested several protein modeling scoring functions for prediction of TCR/pMHC binding affinities. This algorithm and benchmark should enable future efforts to predict, and design of uncharacterized TCR/pMHC complexes.
Collapse
Affiliation(s)
- Brian G Pierce
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
50
|
Stadinski BD, Trenh P, Duke B, Huseby PG, Li G, Stern LJ, Huseby ES. Effect of CDR3 sequences and distal V gene residues in regulating TCR-MHC contacts and ligand specificity. THE JOURNAL OF IMMUNOLOGY 2014; 192:6071-82. [PMID: 24813203 DOI: 10.4049/jimmunol.1303209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mature T cell repertoire has the ability to orchestrate immunity to a wide range of potential pathogen challenges. This ability stems from thymic development producing individual T cell clonotypes that express TCRs with unique patterns of Ag reactivity. The Ag specificity of TCRs is created from the combinatorial pairing of one of a set of germline encoded TCR Vα and Vβ gene segments with randomly created CDR3 sequences. How the amalgamation of germline encoded and randomly created TCR sequences results in Ag receptors with unique patterns of ligand specificity is not fully understood. Using cellular, biophysical, and structural analyses, we show that CDR3α residues can modulate the geometry in which TCRs bind peptide-MHC (pMHC), governing whether and how germline encoded TCR Vα and Vβ residues interact with MHC. In addition, a CDR1α residue that is positioned distal to the TCR-pMHC binding interface is shown to contribute to the peptide specificity of T cells. These findings demonstrate that the specificity of individual T cell clonotypes arises not only from TCR residues that create direct contacts with the pMHC, but also from a collection of indirect effects that modulate how TCR residues are used to bind pMHC.
Collapse
Affiliation(s)
- Brian D Stadinski
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Peter Trenh
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Brian Duke
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Priya G Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Guoqi Li
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| |
Collapse
|