1
|
Rajkumari S, Singh J, Agrawal U, Agrawal S. Myeloid-derived suppressor cells in cancer: Current knowledge and future perspectives. Int Immunopharmacol 2024; 142:112949. [PMID: 39236460 DOI: 10.1016/j.intimp.2024.112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
MDSCs (myeloid-derived suppressor cells) are crucial for immune system evasion in cancer. They accumulate in peripheral blood and tumor microenvironment, suppressing immune cells like T-cells, natural killer cells and dendritic cells. They promote tumor angiogenesis and metastasis by secreting cytokines and growth factors and contribute to a tumor-promoting environment. The accumulation of MDSCs in cancer patients has been linked to poor prognosis and resistance to various cancer therapies. Targeting MDSCs and their immunosuppressive mechanisms may improve treatment outcomes and enhance immune surveillance by developing drugs that inhibit MDSC function, by preventing their accumulation and by disrupting the tumor-promoting environment. This review presents a detailed overview of the MDSC research in cancer with regulation of their development and function. The relevance of MDSC as a prognostic and predictive biomarker in different types of cancers, along with recent advancements on the therapeutic approaches to target MDSCs are discussed in detail.
Collapse
Affiliation(s)
- Sunanda Rajkumari
- ICMR National Institute of Medical Statistics, Ansari Nagar, New Delhi 110029, India
| | - Jaspreet Singh
- ICMR National Institute of Pathology, Safdarjung Hospital Campus, Ansari Nagar, New Delhi 110029, India
| | - Usha Agrawal
- Asian Institute of Public Health University (AIPH) University, 1001 Haridamada, Jatani, Near IIT Bhubaneswar, Bhubaneswar 751002, India
| | - Sandeep Agrawal
- Discovery Research Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
2
|
Aliazis K, Yenyuwadee S, Phikulsod P, Boussiotis VA. Emergency myelopoiesis in solid cancers. Br J Haematol 2024; 205:798-811. [PMID: 39044285 DOI: 10.1111/bjh.19656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
Cells of the innate and adaptive immune systems are the progeny of haematopoietic stem and progenitor cells (HSPCs). During steady-state myelopoiesis, HSPC undergo differentiation and proliferation but are called to respond directly and acutely to various signals that lead to emergency myelopoiesis, including bone marrow ablation, infections, and sterile inflammation. There is extensive evidence that many solid tumours have the potential to secrete classical myelopoiesis-promoting growth factors and other products able to mimic emergency haematopoiesis, and to aberrantly re-direct myeloid cell development into immunosuppressive cells with tumour promoting properties. Here, we summarize the current literature regarding the effects of solid cancers on HSPCs function and discuss how these effects might shape antitumour responses via a mechanism initiated at a site distal from the tumour microenvironment.
Collapse
Affiliation(s)
- Konstantinos Aliazis
- Department of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sasitorn Yenyuwadee
- Department of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ployploen Phikulsod
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vassiliki A Boussiotis
- Department of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Kang W, Wang C, Wang M, Liu M, Hu W, Liang X, Zhang Y. The CXCR2 chemokine receptor: A new target for gastric cancer therapy. Cytokine 2024; 181:156675. [PMID: 38896956 DOI: 10.1016/j.cyto.2024.156675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the world, and current treatments are still based on surgery and drug therapy. However, due to the complexity of immunosuppression and drug resistance, the treatment of gastric cancer still faces great challenges. Chemokine receptor 2 (CXCR2) is one of the most common therapeutic targets in targeted therapy. As a G protein-coupled receptor, CXCR2 and its ligands play important roles in tumorigenesis and progression. The abnormal expression of these genes in cancer plays a decisive role in the recruitment and activation of white blood cells, angiogenesis, and cancer cell proliferation, and CXCR2 is involved in various stages of tumor development. Therefore, interfering with the interaction between CXCR2 and its ligands is considered a possible target for the treatment of various tumors, including gastric cancer.
Collapse
Affiliation(s)
- Wenyan Kang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Chengkun Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Minhui Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Meiqi Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Wei Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China.
| | - Yang Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China.
| |
Collapse
|
4
|
Mooradian MJ, Fintelmann FJ, LaSalle TJ, Simon J, Graur A, Muzikansky A, Mino-Kenudson M, Shalhout S, Kaufman HL, Jenkins RW, Lawrence D, Lawless A, Sharova T, Uppot RN, Fang J, Blaum EM, Gonye ALK, Gushterova I, Boland GM, Azzoli C, Hacohen N, Sade-Feldman M, Sullivan RJ. Cryoablation and post-progression immune checkpoint inhibition in metastatic melanoma: a phase II trial. Nat Commun 2024; 15:7357. [PMID: 39191779 PMCID: PMC11349953 DOI: 10.1038/s41467-024-51722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Image-guided percutaneous cryoablation is an established minimally invasive oncologic treatment. We hypothesized that cryoablation may modify the immune microenvironment through direct modulation of the tumor, thereby generating an anti-tumor response in tumors refractory to immune checkpoint inhibition (ICI). In this non-randomized phase II single-center study (NCT03290677), subjects with unresectable melanoma progressing on ICI underwent cryoablation of an enlarging metastasis, and ICI was continued for a minimum of two additional cycles. The primary endpoints were safety, feasibility and tumor response in non-ablated lesions. From May 2018 through July 2020, 17 patients were treated on study. The study met its primary endpoints with the combination strategy found to be safe and feasible with an objective response rate of 23.5% and disease control rate of 41% (4 partial response, 3 stable disease). Our data support further study of this synergistic therapeutic approach.
Collapse
Affiliation(s)
- Meghan J Mooradian
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Florian J Fintelmann
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas J LaSalle
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology, Boston, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
| | - Judit Simon
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Alexander Graur
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Alona Muzikansky
- Biostatics Department, Massachusetts General Hospital, Boston, MA, USA
| | - Mari Mino-Kenudson
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Sophia Shalhout
- Division of Surgical Oncology, Department of Otolaryngology-Head and Neck Surgery, Mass Eye and Ear, Boston, MA, USA
| | - Howard L Kaufman
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Russell W Jenkins
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Donald Lawrence
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aleigha Lawless
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Tatyana Sharova
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Raul N Uppot
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jacy Fang
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology, Boston, MA, USA
| | - Emily M Blaum
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology, Boston, MA, USA
| | - Anna L K Gonye
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology, Boston, MA, USA
| | - Irena Gushterova
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology, Boston, MA, USA
| | - Genevieve M Boland
- Harvard Medical School, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher Azzoli
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Lifespan Cancer Institute, Brown University, Providence, RI, USA
| | - Nir Hacohen
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology, Boston, MA, USA
| | - Moshe Sade-Feldman
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Broad Institute of the Massachusetts Institute of Technology, Boston, MA, USA
| | - Ryan J Sullivan
- Division of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
6
|
Zhou LX, Jiang YZ, Li XQ, Zhang JM, Li SP, Wei L, Zhang HM, Zhou GP, Chen XJ, Sun LY, Zhu ZJ. Myeloid-derived suppressor cells-induced exhaustion of CD8 + T-cell participates in rejection after liver transplantation. Cell Death Dis 2024; 15:507. [PMID: 39013845 PMCID: PMC11252260 DOI: 10.1038/s41419-024-06834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024]
Abstract
Liver transplantation (LT) rejection remains the most pervasive problem associated with this procedure, while the mechanism involved is still complicated and undefined. One promising solution may involve the use of myeloid-derived suppressor cells (MDSC). However, the immunological mechanisms underlying the effects of MDSC after LT remain unclear. This study is meant to clarify the role MDSCs play after liver transplantation. In this study, we collected liver tissue and peripheral blood mononuclear cells (PBMC) from LT patients showing varying degrees of rejection, as well as liver and spleen tissue samples from mice LT models. These samples were then analyzed using flow cytometry, immunohistochemistry and multiple immunofluorescence. M-MDSCs and CD8 + T-cells extracted from C57/BL6 mice were enriched and cocultured for in vitro experiments. Results, as obtained in both LT patients and LT mice model, revealed that the proportion and frequency of M-MDSC and PD-1 + T-cells increased significantly under conditions associated with a high degree of LT rejection. Within the LT rejection group, our immunofluorescence results showed that a close spatial contiguity was present between PD-1 + T-cells and M-MDSCs in these liver tissue samples and the proportion of CD84/PD-L1 double-positive M-MDSC was greater than that of G-MDSC. There was a positive correlation between the activity of CD84 and immunosuppressive function of M-MDSCs including PD-L1 expression and reactive oxygen species (ROS) production, as demonstrated in our in vitro model. M-MDSCs treated with CD84 protein were able to induce co-cultured CD8 + T-cells to express high levels of exhaustion markers. We found that CD84 regulated M-MDSC function via expression of PD-L1 through activation of the Akt/Stat3 pathway. These results suggest that the capacity for CD84 to regulate M-MDSC induction of CD8 + T-cell exhaustion may play a key role in LT rejection. Such findings provide important, new insights into the mechanisms of tolerance induction in LT.
Collapse
Affiliation(s)
- Liu-Xin Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing, China
| | - Yi-Zhou Jiang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing, China
- Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xin-Qiang Li
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jin-Ming Zhang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing, China
| | - Shi-Peng Li
- Department of Hepatopancreaticobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Lin Wei
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing, China
| | - Hai-Ming Zhang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing, China
| | - Guang-Peng Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing, China
| | - Xiao-Jie Chen
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing, China
| | - Li-Ying Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing, China
- Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- State Key Lab of Digestive Health, Beijing, China.
| |
Collapse
|
7
|
Wang H, Yang H, Zhang X, Zhou X. Triptolide promotes differentiation of human monocytes into immunosuppressive MDSCs. Cell Immunol 2024; 401-402:104836. [PMID: 38776753 DOI: 10.1016/j.cellimm.2024.104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) negatively modulate immune activity. Prior investigations have shown much promise in using MDSCs-assisted immunotherapy for organ transplantation patients. Additionally, owing to its immunosuppressive activity, MDSCs can also be used to manage immune-associated disorders. METHODS Granulocyte-macrophage colony-stimulating factor (GM-CSF) was employed to stimulate myeloid progenitor cell differentiation. Triptolide (PG490) was introduced toward the later phases of in vitro MDSCs induction. Lastly, real-time PCR (RT-PCR) and flow cytometry were used to assess transcript expression and cell phenotype, and a mouse skin transplantation model was established to evaluate the MDSCs-mediated immune suppression in vivo. RESULTS Co-stimulation with PG490 and GM-CSF potently induced myeloid-derived monocytes to form MDSCs, with remarkable immune-suppressive activity. The underlying mechanism involved downregulation of T cell proliferation, activation, enhancement of inflammatory cytokine release, as well as T cell conversion to Treg cells. PG490 strongly enhanced iNOS expression in MDSCs, and iNOS inhibition successfully reversed the immune-suppression. The PG490- and GM-CSF-induced MDSCs substantially extended survival duration of murine skin grafts, thereby validating their strong immune-suppressive activity in vivo. CONCLUSIONS Herein, we presented a new approach involving MDSCs-based immunosuppression in vitro. PG490 and GM-CSF co-treatment strongly induced immuno-suppressive activity in MDSCs both in vitro and in vivo. Our findings highlight the promise of applying MDSCs-based therapy in clinical organ transplantation treatment.
Collapse
Affiliation(s)
- Haozhou Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hui Yang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoguang Zhou
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Wang H, Guo Y, Zhang X, Zhou X. Bexarotene Induce Differentiation of Myeloid-Derived Suppressor Cells through Arg-1 Signalling Pathway. Transplant Proc 2024; 56:1469-1477. [PMID: 38981763 DOI: 10.1016/j.transproceed.2024.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Cellular therapy has emerged as a promising strategy to minimize the use of conventional immunosuppressive drugs and ultimately induce long-term graft survival. Myeloid-derived suppressor cells (MDSCs) can be used for immunosuppressive treatment of solid organ transplants. METHODS Granular macrophage colony-stimulating factor (GM-CSF) and bexarotene, an X receptor-selective retinoid, were used for in vitro MDSC induction. Cell phenotypes were detected using flow cytometry, while mRNA was detected via real-time PCR. A mouse skin transplantation model was used to verify the inhibitory effects of this treatment. RESULTS The combination of GM-CSF and bexarotene-induced MDSC differentiation. MDSCs induce immune tolerance by inhibiting T-cell proliferation, influencing cytokine secretion, and inducing T-cell transformation into Treg cells. Combination treatment significantly up-regulated Arg-1 expression in MDSCs. The Arg-1 inhibitor nor-NOHA neutralized the immunosuppressive activity of MDSCs, suggesting the involvement of Arg-1 in MDSC-mediated immunosuppression. GM-CSF and bexarotene-induced MDSCs prolong graft survival in mouse skin transplants, exhibiting in vivo immunosuppressive effects. CONCLUSIONS A new method for inducing MDSCs is presented. The combination of GM-CSF and bexarotene induces MDSCs with remarkable regulatory functions. Adoptive transfer of the induced MDSCs extended allograft survival. These results suggest that MDSCs can potentially be used in future clinical transplants to inhibit rejection, reduce adverse events, and induce operative tolerance.
Collapse
Affiliation(s)
- Haozhou Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yinan Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoguang Zhou
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Wang M, Han Y, Yao X, Duan X, Wan J, Lou X, Yan Y, Zheng P, Wang F, Zhu L, Ni C, Pan Z, Wang Z, Chen L, Wang Z, Qin Z. Hyperexpression of tumor necrosis factor receptor 2 inhibits differentiation of myeloid-derived suppressor cells by instigating apolarity during ageing. MedComm (Beijing) 2024; 5:e605. [PMID: 38868328 PMCID: PMC11167233 DOI: 10.1002/mco2.605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/09/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
During the ageing process, TNF-α can promote the expansion of myeloid-derived suppressor cells (MDSCs). However, it remains unclear which receptor(s) of TNF-α are involved in and how they modulate this process. Here, we report that TNFR2 hyperexpression induced by either TNF-α or IL-6, two proinflammatory factors of senescence-associated secretory phenotype (SASP), causes cellular apolarity and differentiation inhibition in aged MDSCs. Ex vivo overexpression of TNFR2 in young MDSCs inhibited their polarity and differentiation, whereas in vivo depletion of Tnfr2 in aged MDSCs promotes their differentiation. Consequently, the age-dependent increase of TNFR2 versus unaltered TNFR1 expression in aged MDSCs significantly shifts the balance of TNF-α signaling toward the TNFR2-JNK axis, which accounts for JNK-induced impairment of cell polarity and differentiation failure of aged MDSCs. Consistently, inhibiting JNK attenuates apolarity and partially restores the differentiation capacity of aged MDSCs, suggesting that upregulated TNFR2/JNK signaling is a key factor limiting MDSC differentiation during organismal ageing. Therefore, abnormal hyperexpression of TNFR2 represents a general mechanism by which extrinsic SASP signals disrupt intrinsic cell polarity behavior, thereby arresting mature differentiation of MDSCs with ageing, suggesting that TNFR2 could be a potential therapeutic target for intervention of ageing through rejuvenation of aged MDSCs.
Collapse
Affiliation(s)
- Ming Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Yijie Han
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Xixi Duan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Jiajia Wan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Xiaohan Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Yan Yan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Peiguo Zheng
- Clinical Laboratorythe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Fazhan Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Linyu Zhu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Chen Ni
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Zhenzhen Pan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Zihao Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Lin Chen
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
| | - Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| |
Collapse
|
10
|
Wang Z, Chang Y, Sun H, Li Y, Tang T. Advances in molecular mechanisms of inflammatory bowel disease‑associated colorectal cancer (Review). Oncol Lett 2024; 27:257. [PMID: 38646499 PMCID: PMC11027113 DOI: 10.3892/ol.2024.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
The link between inflammation and cancer is well documented and colonic inflammation caused by inflammatory bowel disease (IBD) is thought to be a high-risk factor for the development of colorectal cancer (CRC). The complex crosstalk between epithelial and inflammatory cells is thought to underlie the progression from inflammation to cancer. The present review collates and summarises recent advances in the understanding of the pathogenesis of IBD-associated CRC (IBD-CRC), including the oncogenic mechanisms of the main inflammatory signalling pathways and genetic alterations induced by oxidative stress during colonic inflammation, and discusses the crosstalk between the tumour microenvironment, intestinal flora and host immune factors during inflammatory oncogenesis in colitis-associated CRC. In addition, the therapeutic implications of anti-inflammatory therapy for IBD-CRC were discussed, intending to provide new insight into improve clinical practice.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Haibo Sun
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yuqin Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
11
|
Hassan S, Shetty M, Shetty S, Naik R. Assessment of salivary tumor necrosis factor-alpha level in the initial stages of treatment with fixed appliances and clear aligners. J Orthod Sci 2024; 13:15. [PMID: 38784076 PMCID: PMC11114450 DOI: 10.4103/jos.jos_81_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/01/2023] [Accepted: 01/26/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVES To assess and compare the tumor necrosis factor-alpha (TNF-α) levels in saliva samples during the initial stages of orthodontic treatment with fixed orthodontic appliances (FAs) and clear aligners (CAs). MATERIALS AND METHODS This longitudinal study comprised 40 patients (22 males, 18 females, mean age 22 ± 7 years) who were categorized into two equal-sized groups. Group A comprised 20 patients treated with FA, and Group B comprised 20 patients treated with CA. Unstimulated saliva was collected before the intiation of treatment and then collected again after the placement of the FA/CA at 24 hrs, 7th day, and on the 21st day in both groups. TNF-α levels were determined through ELISA. STATISTICAL ANALYSIS The data were subjected to statistical analysis. For intragroup comparison of TNF-α at different time points, the Wilcoxon matched-pairs signed-rank test was used, and for intergroup comparison of FAs and CAs at different time points, the Mann-Whitney U test was used. RESULTS TNF-α levels in the saliva increased significantly at 24 hours, followed by a decline on the 7th day and 21st day in both groups. Changes in TNF-α levels were significantly higher in the FA group than those in the CA group at different time points. CONCLUSION This study showed that the salivary TNF-α levels increased significantly during the initial stages of FA and CA treatment at different time points. The mean salivary TNF-α level in both FA and CA groups increased significantly at 24 hours, followed by a decline on the 7th day and then on the 21st day. There was a significant difference between the FA and CA treatment, where the CAs showed a significantly low level of TNF-α in saliva at different intervals of time when compared to the FAs.
Collapse
Affiliation(s)
- Sarfraz Hassan
- Orthodontics and Dentofacial Orthopaedics, Private Clinic, Mangalore, Karnataka, India
| | - Mukul Shetty
- Department of Orthodontics and Dentofacial Orthopaedics, AB Shetty Memorial Institute of Dental Sciences, NITTE (Deemed to be University), Derlakatte, Karnataka, India
| | - Shravan Shetty
- Department of Orthodontics and Dentofacial Orthopaedics, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Roopak Naik
- Department of Orthodontics and Dentofacial Orthopaedics, SDM College of Dental Sciences and Hospital, A Constituent Unit of Shree Dharmasthala Manjunatheswara University, Dharwad, Karnataka, India
| |
Collapse
|
12
|
Ashkenazi-Preiser H, Reuven O, Uzan-Yulzari A, Komisarov S, Cirkin R, Turjeman S, Even C, Twaik N, Ben-Meir K, Mikula I, Cohen-Daniel L, Meirow Y, Pikarsky E, Louzoun Y, Koren O, Baniyash M. The Cross-talk Between Intestinal Microbiota and MDSCs Fuels Colitis-associated Cancer Development. CANCER RESEARCH COMMUNICATIONS 2024; 4:1063-1081. [PMID: 38506672 PMCID: PMC11017962 DOI: 10.1158/2767-9764.crc-23-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/24/2023] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Intestinal chronic inflammation is associated with microbial dysbiosis and accumulation of various immune cells including myeloid-derived suppressor cells (MDSC), which profoundly impact the immune microenvironment, perturb homeostasis and increase the risk to develop colitis-associated colorectal cancer (CAC). However, the specific MDSCs-dysbiotic microbiota interactions and their collective impact on CAC development remain poorly understood. In this study, using a murine model of CAC, we demonstrate that CAC-bearing mice exhibit significantly elevated levels of highly immunosuppressive MDSCs, accompanied by microbiota alterations. Both MDSCs and bacteria that infiltrate the colon tissue and developing tumors can be found in close proximity, suggesting intricate MDSC-microbiota cross-talk within the tumor microenvironment. To investigate this phenomenon, we employed antibiotic treatment to disrupt MDSC-microbiota interactions. This intervention yielded a remarkable reduction in intestinal inflammation, decreased MDSC levels, and alleviated immunosuppression, all of which were associated with a significant reduction in tumor burden. Furthermore, we underscore the causative role of dysbiotic microbiota in the predisposition toward tumor development, highlighting their potential as biomarkers for predicting tumor load. We shed light on the intimate MDSCs-microbiota cross-talk, revealing how bacteria enhance MDSC suppressive features and activities, inhibit their differentiation into mature beneficial myeloid cells, and redirect some toward M2 macrophage phenotype. Collectively, this study uncovers the role of MDSC-bacteria cross-talk in impairing immune responses and promoting tumor growth, providing new insights into potential therapeutic strategies for CAC. SIGNIFICANCE MDSCs-dysbiotic bacteria interactions in the intestine play a crucial role in intensifying immunosuppression within the CAC microenvironment, ultimately facilitating tumor growth, highlighting potential therapeutic targets for improving the treatment outcomes of CAC.
Collapse
Affiliation(s)
- Hadas Ashkenazi-Preiser
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | - Or Reuven
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | | | - Sharon Komisarov
- Department of mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Roy Cirkin
- Department of mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Carmel Even
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Nira Twaik
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | - Kerem Ben-Meir
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | - Ivan Mikula
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | - Leonor Cohen-Daniel
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | - Yaron Meirow
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | - Eli Pikarsky
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | - Yoram Louzoun
- Department of mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Michal Baniyash
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| |
Collapse
|
13
|
Yu X, Li C, Wang Z, Xu Y, Shao S, Shao F, Wang H, Liu J. Neutrophils in cancer: dual roles through intercellular interactions. Oncogene 2024; 43:1163-1177. [PMID: 38472320 DOI: 10.1038/s41388-024-03004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play crucial and diverse roles in tumor development. In the tumor microenvironment (TME), cancer cells regulate the recruitment and behaviors of neutrophils, transforming some of them into a pro-tumor phenotype. Pro-tumor neutrophils interact with cancer cells in various ways to promote cancer initiation, growth, and metastasis, while anti-tumor neutrophils interact with cancer cells to induce senescence and death. Neutrophils can also interact with other cells in TME, including T cells, macrophages, stromal cells, etc. to exert anti- or pro-tumor functions. In this review, we will analyze the anti- and pro-tumor intercellular interactions mediated by neutrophils, with a focus on generalizing the mechanisms underlying the interaction of neutrophils with tumor cells and T cells. Furthermore, we will provide an overview of cancer treatment strategies targeting neutrophil-mediated cellular interactions.
Collapse
Affiliation(s)
- Xinyu Yu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Changhui Li
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Zijin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Yaping Xu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Fangwei Shao
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China
- -University of Illinois Urbana-Champaign Institute, Zhejiang University, Haining, 314400, China
- National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou, 310027, China
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China.
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310002, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Bertrand BP, Heim CE, Koepsell SA, Kielian T. Elucidating granulocytic myeloid-derived suppressor cell heterogeneity during Staphylococcus aureus biofilm infection. J Leukoc Biol 2024; 115:620-632. [PMID: 38095415 DOI: 10.1093/jleuko/qiad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 03/02/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are pathologically activated immature myeloid cells with immunosuppressive activity that expand during chronic inflammation, such as cancer and prosthetic joint infection (PJI). Myeloid-derived suppressor cells can be broadly separated into 2 populations based on surface marker expression and function: monocytic myeloid-derived suppressor cells (M-MDSCs) and granulocytic myeloid-derived suppressor cells (G-MDSCs). Granulocytic myeloid-derived suppressor cells are the most abundant leukocyte infiltrate during PJI; however, how this population is maintained in vivo and cellular heterogeneity is currently unknown. In this study, we identified a previously unknown population of Ly6G+Ly6C+F4/80+MHCII+ MDSCs during PJI that displayed immunosuppressive properties ex vivo. We leveraged F4/80 and MHCII expression by these cells for further characterization using cellular indexing of transcriptomes and epitopes by sequencing, which revealed a distinct transcriptomic signature of this population. F4/80+MHCII+ MDSCs displayed gene signatures resembling G-MDSCs, neutrophils, and monocytes but had significantly increased expression of pathways involved in cytokine response/production, inflammatory cell death, and mononuclear cell differentiation. To determine whether F4/80+MHCII+ MDSCs represented an alternate phenotypic state of G-MDSCs, Ly6G+Ly6C+F4/80-MHCII- G-MDSCs from CD45.1 mice were adoptively transferred into CD45.2 recipients using a mouse model of PJI. A small percentage of transferred G-MDSCs acquired F4/80 and MHCII expression in vivo, suggesting some degree of plasticity in this population. Collectively, these results demonstrate a previously unappreciated phenotype of F4/80+MHCII+ MDSCs during PJI, revealing that a granulocytic-to-monocytic transition can occur during biofilm infection.
Collapse
Affiliation(s)
- Blake P Bertrand
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Cortney E Heim
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Scott A Koepsell
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| |
Collapse
|
15
|
Co Soriano JC, Tsutsumi S, Ohara D, Hirota K, Kondoh G, Niwa T, Taguchi H, Kadonosono T, Kizaka-Kondoh S. Identification of Surface Markers and Functional Characterization of Myeloid Derived Suppressor Cell-Like Adherent Cells. Adv Biol (Weinh) 2024; 8:e2300159. [PMID: 37986133 DOI: 10.1002/adbi.202300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/11/2023] [Indexed: 11/22/2023]
Abstract
Myeloid-derived suppressor cell (MDSC)-like adherent cells (MLACs) are a recently identified CD11b+ F4/80- myeloid cell subset that can infiltrate tumors early in development and promote their growth. Because of these functions, MLACs play an important role in establishing an immunosuppressive tumor microenvironment (TME). However, the lack of MLAC-specific markers has hampered further characterization of this cell type. This study identifies the gene signature of MLACs by analyzing RNA-sequencing (RNA-seq) and public single-cell RNA-seq data, revealing that MLACs are an independent cell population that are distinct from other intratumoral myeloid cells. After combining proteome analysis of membrane proteins with RNA-seq data, H2-Ab1 and CD11c are indicated as marker proteins that can support the isolation of MLAC subsets from CD11b+ F4/80- myeloid cells by fluorescence-activated cell sorting. The CD11b+ F4/80- H2-Ab1+ and CD11b+ F4/80- CD11c+ MLAC subsets represent approximately half of the MLAC population that is isolated based on their adhesion properties and possess gene signatures and functional properties similar to those of the MLAC population. Additionally, membrane proteome analysis suggests that MLACs express highly heterogeneous surface proteins. This study facilitates an integrated understanding of heterogeneous intratumoral myeloid cells, as well as the molecular and cellular details of the development of an immunosuppressive TME.
Collapse
Affiliation(s)
- John Clyde Co Soriano
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Shiho Tsutsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Daiya Ohara
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Keiji Hirota
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Gen Kondoh
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tatsuya Niwa
- Institute for Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Hideki Taguchi
- Institute for Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| |
Collapse
|
16
|
Foureau DM, Guo F, Steuerwald NM, Druhan LJ, Avalos BR, Copelan E, Sun D, Hu B, Moyo T, Jacobs R, Park S, Ghosh N. Prognostic significance of myeloid-derived suppressor cells and systemic inflammation in newly diagnosed diffuse large B cell lymphoma treated with chemoimmunotherapy. Exp Hematol 2024; 129:104125. [PMID: 38743005 DOI: 10.1016/j.exphem.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/21/2023] [Accepted: 10/23/2023] [Indexed: 05/16/2024]
Abstract
The revised International Prognostic Index (R-IPI) is an important prognostic tool in diffuse large B cell lymphoma (DLBCL); however, outcomes can vary markedly within R-IPI groups, and additional prognostic markers are needed. We conducted a prospective observational study to evaluate the circulating immature myeloid (IM) cell subsets and cytokine profiles of 31 patients with newly diagnosed DLBCL before and after chemoimmunotherapy. Among circulating IM cells, myeloid-derived suppressor cells (MDSCs) were the predominant cell type (73.8% ± 26%). At baseline, circulating monocytic MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs) were predominantly mutually exclusive. Patients with DLBCL clustered into three distinct immunotypes according to MDSC levels and subtype predominance: M-MDSChigh, PMN-MDSChigh, and MDSClow. The M-MDSChigh immunotype was associated with the germinal center B cell-like (GCB) subtype and elevated serum IL-8 and MIP-1α levels. PMN-MDSChigh was associated with the non-GCB subtype and elevated IL-8, MCP-1, IP-10, TNFα, and IL-1Ra levels. Standard chemoimmunotherapy partially reduced M-MDSC distribution across the MDSClow and M-MDSChigh groups. By contrast, among the MDSClow and PMN-MDSChigh groups, PMN-MDSCs persisted after treatment. Two high-risk patients with non-GCB DLBCL and MDSClow immunotype experienced early disease recurrence within 12 months of treatment completion. This study demonstrates that distinct types of MDSCs are associated with subtypes of DLBCL. MDSC levels are dynamic and may be associated with disease status. Persistence of PMN-MDSCs among high-risk patients with DLBCL may be associated with early relapse.
Collapse
MESH Headings
- Humans
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/pathology
- Myeloid-Derived Suppressor Cells/metabolism
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/blood
- Female
- Male
- Middle Aged
- Aged
- Prognosis
- Inflammation/pathology
- Adult
- Prospective Studies
- Aged, 80 and over
- Cytokines/blood
- Immunotherapy
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
Collapse
Affiliation(s)
- David M Foureau
- Immune Monitoring Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC.
| | - Fei Guo
- Immune Monitoring Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Nury M Steuerwald
- Molecular Biology Core Facility, Levine Cancer Institute, Charlotte, NC
| | - Lawrence J Druhan
- Hematology Oncology Translational Research Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Belinda R Avalos
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Edward Copelan
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Danyu Sun
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Bei Hu
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Tamara Moyo
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Ryan Jacobs
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Steven Park
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Nilanjan Ghosh
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| |
Collapse
|
17
|
Shaw JA, Malherbe ST, Walzl G, du Plessis N. Suppressive myeloid cells in SARS-CoV-2 and Mycobacterium tuberculosis co-infection. Front Immunol 2023; 14:1222911. [PMID: 37545508 PMCID: PMC10399583 DOI: 10.3389/fimmu.2023.1222911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Epidemiologic data show that both current and previous tuberculosis (TB) increase the risk of in-hospital mortality from coronavirus disease-2019 (COVID-19), and there is a similar trend for poor outcomes from Mycobacterium tuberculosis (Mtb) infection after recent SARS-CoV-2. A shared dysregulation of immunity explains the dual risk posed by co-infection, but the specific mechanisms are being explored. While initial attention focused on T cell immunity, more comprehensive analyses revealed a dysfunctional innate immune response in COVID-19, characterized by reduced numbers of dendritic cells, NK cells and a redistribution of mononuclear phagocytes towards intermediate myeloid subsets. During hyper- or chronic inflammatory processes, activation signals from molecules such as growth factors and alarmins lead to the expansion of an immature population of myeloid cells called myeloid-deprived suppressor cells (MDSC). These cells enter a state of pathological activation, lose their ability to rapidly clear pathogens, and instead become broadly immunosuppressive. MDSC are enriched in the peripheral blood of patients with severe COVID-19; associated with mortality; and with higher levels of inflammatory cytokines. In TB, MDSC have been implicated in loss of control of Mtb in the granuloma and ineffective innate and T cell immunity to the pathogen. Considering that innate immune sensing serves as first line of both anti-bacterial and anti-viral defence mechanisms, we propose MDSC as a crucial mechanism for the adverse clinical trajectories of TB-COVID-19 coinfection.
Collapse
|
18
|
Tsilimigras DI, Ntanasis-Stathopoulos I, Pawlik TM. Molecular Mechanisms of Colorectal Liver Metastases. Cells 2023; 12:1657. [PMID: 37371127 DOI: 10.3390/cells12121657] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The liver is the most frequently target for metastasis among patients with colorectal cancer mainly because of the portal vein circulation that directly connects the colon and rectum with the liver. The liver tumor microenvironment consists of different cell types each with unique characteristics and functions that modulate the antigen recognition and immune system activation. Primary tumors from other sites "prime" the liver prior to the seeding of cancer cells, creating a pre-metastatic niche. Following invasion into the liver, four different phases are key to the development of liver metastases: a microvascular phase in which cancer cells infiltrate and become trapped in sinusoidal vessels; an extravascular, pre-angiogenic phase; an angiogenic phase that supplies oxygen and nutrients to cancer cells; and a growth phase in which metastatic cells multiply and enlarge to form detectable tumors. Exosomes carry proteins, lipids, as well as genetic information that can create a pre-metastatic niche in distant sites, including the liver. The complexity of angiogenic mechanisms and the exploitation of the vasculature in situ by cancer cells have limited the efficacy of currently available anti-angiogenic therapies. Delineating the molecular mechanisms implicated in colorectal liver metastases is crucial to understand and predict tumor progression; the development of distant metastases; and resistance to chemotherapy, immunotherapy, and targeted treatment.
Collapse
Affiliation(s)
- Diamantis I Tsilimigras
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, 395 W. 12th Ave., Columbus, OH 43210, USA
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, 395 W. 12th Ave., Columbus, OH 43210, USA
| |
Collapse
|
19
|
Teng F, Yin T, Ju X, Wang P, Wang Y, Yu J. Optimum fractionation of radiation to combine PD-1 blockade. MedComm (Beijing) 2023; 4:e271. [PMID: 37206639 PMCID: PMC10188465 DOI: 10.1002/mco2.271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
The optimum fractionation of radiation to combine with immune checkpoint blockade is controversial. This study aimed to investigate the fractionated radiation to maximize immunity during combination therapy. To evaluate the abscopal effect, C57BL/6 hPD-1 knock-in mice bearing two syngeneic contralateral MC38 murine colon cancer tumors were treated with four distinct regimens of radiotherapy. Three fractions of 8 Gy were chosen as the optimal fractionation to combine with anti-PD-1 as the optimal fractionation for maximizing immunity. Anti-PD-1 administration enhanced both local and systemic antitumor immunity in a cytotoxic T cell-dependent manner. Meanwhile, the spleen exhibited decreased myeloid-derived suppressor cells (MDSCs) under combination treatment. Furthermore, RNA-sequencing revealed significantly increased tumor necrosis factor (TNF) receptors and cytokines associated with lymphocyte infiltration in the combining group. Here we demonstrate that the hypofractionation of 8 Gy × 3f was the optimum-fractionated dosage to maximize immunity, and the combination of anti-PD-1 showed promising results in boosting abscopal effect. Underlying mechanisms may include the activation of T cells and the reduction of MDSCs, which is achieved through the action of TNF and related cytokines. This study indicates a radioimmunotherapy dosage painting method that can be developed to overcome present limitations in tumor immunosuppression.
Collapse
Affiliation(s)
- Feifei Teng
- Department of OncologyTianjin Medical UniversityTianjinChina
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Tianwen Yin
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Xiao Ju
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Peiliang Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Yungang Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
20
|
Hua S, Wang S, Cai J, Wu L, Cao Y. Myeloid-derived suppressor cells: Are they involved in gestational diabetes mellitus? Am J Reprod Immunol 2023:e13711. [PMID: 37157925 DOI: 10.1111/aji.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is currently the most common metabolic complication during pregnancy, with an increasing prevalence worldwide. Maternal immune dysregulation might be partly responsible for the pathophysiology of GDM. Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of cells, emerging as a new immune regulator with potent immunosuppressive capacity. Although the fate and function of these cells were primarily described in pathological conditions such as cancer and infection, accumulating evidences have spotlighted their beneficial roles in homeostasis and physiological conditions. Recently, several studies have explored the roles of MDSCs in the diabetic microenvironment. However, the fate and function of these cells in GDM are still unknown. The current review summarized the existing knowledges about MDSCs and their potential roles in diabetes during pregnancy in an attempt to highlight our current understanding of GDM-related immune dysregulation and identify areas where further study is required.
Collapse
Affiliation(s)
- Siyu Hua
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Shanshan Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyang Cai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lamei Wu
- Department of Perinatal Healthcare, Huai'an District Maternity and Child Health Hospital, Huai'an, Jiangsu, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Zhang MN, Yuan YL, Ao SH. Advances in the study of myeloid-derived suppressor cells in infectious lung diseases. Front Immunol 2023; 14:1125737. [PMID: 37063919 PMCID: PMC10090681 DOI: 10.3389/fimmu.2023.1125737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature cells capable of inhibiting T-cell responses. MDSCs have a crucial role in the regulation of the immune response of the body to pathogens, especially in inflammatory response and pathogenesis during anti-infection. Pathogens such as bacteria and viruses use MDSCs as their infectious targets, and even some pathogens may exploit the inhibitory activity of MDSCs to enhance pathogen persistence and chronic infection of the host. Recent researches have revealed the pathogenic significance of MDSCs in pathogens such as bacteria and viruses, despite the fact that the majority of studies on MDSCs have focused on tumor immune evasion. With the increased prevalence of viral respiratory infections, the resurgence of classical tuberculosis, and the advent of medication resistance in common bacterial pneumonia, research on MDSCs in these illnesses is intensifying. The purpose of this work is to provide new avenues for treatment approaches to pulmonary infectious disorders by outlining the mechanism of action of MDSCs as a biomarker and therapeutic target in pulmonary infectious diseases.
Collapse
Affiliation(s)
- Meng-Nan Zhang
- College of Integrated Chinese and Western Medicine and the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu-Lai Yuan
- The Department of Respirology of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Su-Hua Ao
- The Department of Respirology of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Su-Hua Ao,
| |
Collapse
|
22
|
Ghosh S, Huang J, Inkman M, Zhang J, Thotala S, Tikhonova E, Miheecheva N, Frenkel F, Ataullakhanov R, Wang X, DeNardo D, Hallahan D, Thotala D. Radiation-induced circulating myeloid-derived suppressor cells induce systemic lymphopenia after chemoradiotherapy in patients with glioblastoma. Sci Transl Med 2023; 15:eabn6758. [PMID: 36696484 PMCID: PMC10501302 DOI: 10.1126/scitranslmed.abn6758] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
Severe and prolonged lymphopenia frequently occurs in patients with glioblastoma after standard chemoradiotherapy and has been associated with worse survival, but its underlying biological mechanism is not well understood. To address this, we performed a correlative study in which we collected and analyzed peripheral blood of patients with glioblastoma (n = 20) receiving chemoradiotherapy using genomic and immune monitoring technologies. RNA sequencing analysis of the peripheral blood mononuclear cells (PBMC) showed an elevated concentration of myeloid-derived suppressor cell (MDSC) regulatory genes in patients with lymphopenia when compared with patients without lymphopenia after chemoradiotherapy. Additional analysis including flow cytometry and single-cell RNA sequencing further confirmed increased numbers of circulating MDSC in patients with lymphopenia when compared with patients without lymphopenia after chemoradiotherapy. Preclinical murine models were also established and demonstrated a causal relationship between radiation-induced MDSC and systemic lymphopenia using transfusion and depletion experiments. Pharmacological inhibition of MDSC using an arginase-1 inhibitor (CB1158) or phosphodiesterase-5 inhibitor (tadalafil) during radiation therapy (RT) successfully abrogated radiation-induced lymphopenia and improved survival in the preclinical models. CB1158 and tadalafil are promising drugs in reducing radiation-induced lymphopenia in patients with glioblastoma. These results demonstrate the promise of using these classes of drugs to reduce treatment-related lymphopenia and immunosuppression.
Collapse
Affiliation(s)
- Subhajit Ghosh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew Inkman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jin Zhang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Sukrutha Thotala
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - David DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis Hallahan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Dinesh Thotala
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
23
|
The Immunosuppressive Effect of TNFR2 Expression in the Colorectal Cancer Microenvironment. Biomedicines 2023; 11:biomedicines11010173. [PMID: 36672682 PMCID: PMC9856189 DOI: 10.3390/biomedicines11010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common causes of death among cancers worldwide. Its incidence has been increasing among the young population. Many risk factors contribute to the development and progression of CRC and about 70% of them are sporadic. The CRC microenvironment is highly heterogeneous and represents a very complex immunosuppressive platform. Many cytokines and their receptors are vital participants in this immunosuppressive microenvironment. Tumor necrosis factors (TNFs) and TNF receptor 2 (TNFR2) are critical players in the development of CRC. TNFR2 was observed to have increased the immunosuppressive activity of CRC cells via regulatory T cells (T regs) and myeloid-derived suppressor cells (MDSC) in the CRC microenvironment. However, the exact mechanism of TNFR2 in regulating the CRC prognosis remains elusive. Here, we discuss the role of TNFR2 in immune escape mechanism of CRC in the immunosuppressive cells, including Tregs and MDSCs, and the complex signaling pathways that facilitate the development of CRC. It is suggested that extensive studies on TNFR2 downstream signaling must be done, since TNFR2 has a high potential to be developed into a therapeutic agent and cancer biomarker in the future.
Collapse
|
24
|
Zhu S, Lalani AI, Jin J, Sant’Angelo D, Covey LR, Liu K, Young HA, Ostrand-Rosenberg S, Xie P. The adaptor protein TRAF3 is an immune checkpoint that inhibits myeloid-derived suppressor cell expansion. Front Immunol 2023; 14:1167924. [PMID: 37207205 PMCID: PMC10189059 DOI: 10.3389/fimmu.2023.1167924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are aberrantly expanded in cancer patients and under other pathological conditions. These cells orchestrate the immunosuppressive and inflammatory network to facilitate cancer metastasis and mediate patient resistance to therapies, and thus are recognized as a prime therapeutic target of human cancers. Here we report the identification of the adaptor protein TRAF3 as a novel immune checkpoint that critically restrains MDSC expansion. We found that myeloid cell-specific Traf3-deficient (M-Traf3 -/-) mice exhibited MDSC hyperexpansion during chronic inflammation. Interestingly, MDSC hyperexpansion in M-Traf3 -/- mice led to accelerated growth and metastasis of transplanted tumors associated with an altered phenotype of T cells and NK cells. Using mixed bone marrow chimeras, we demonstrated that TRAF3 inhibited MDSC expansion via both cell-intrinsic and cell-extrinsic mechanisms. Furthermore, we elucidated a GM-CSF-STAT3-TRAF3-PTP1B signaling axis in MDSCs and a novel TLR4-TRAF3-CCL22-CCR4-G-CSF axis acting in inflammatory macrophages and monocytes that coordinately control MDSC expansion during chronic inflammation. Taken together, our findings provide novel insights into the complex regulatory mechanisms of MDSC expansion and open up unique perspectives for the design of new therapeutic strategies that aim to target MDSCs in cancer patients.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Almin I. Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Derek Sant’Angelo
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Lori R. Covey
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, United States
| | - Howard A. Young
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, The University of Maryland, Baltimore County, Baltimore, MD, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
- *Correspondence: Ping Xie,
| |
Collapse
|
25
|
Pang B, Hu C, Li H, Nie X, Wang K, Zhou C, Yi H. Myeloidderived suppressor cells: Escorts at the maternal-fetal interface. Front Immunol 2023; 14:1080391. [PMID: 36817414 PMCID: PMC9932974 DOI: 10.3389/fimmu.2023.1080391] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a novel heterogenous group of immunosuppressive cells derived from myeloid progenitors. Their role is well known in tumors and autoimmune diseases. In recent years, the role and function of MDSCs during reproduction have attracted increasing attention. Improving the understanding of their strong association with recurrent implantation failure, pathological pregnancy, and neonatal health has become a focus area in research. In this review, we focus on the interaction between MDSCs and other cell types (immune and non-immune cells) from embryo implantation to postpartum. Furthermore, we discuss the molecular mechanisms that could facilitate the therapeutic targeting of MDSCs. Therefore, this review intends to encourage further research in the field of maternal-fetal interface immunity in order to identify probable pathways driving the accumulation of MDSCs and to effectively target their ability to promote embryo implantation, reduce pathological pregnancy, and increase neonatal health.
Collapse
Affiliation(s)
- Bo Pang
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Cardiology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Cong Hu
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Huimin Li
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Xinyu Nie
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Keqi Wang
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Cardiology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Zhou
- General Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Huanfa Yi
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
26
|
Du F, Ding Z, Rönnow CF, Rahman M, Schiopu A, Thorlacius H. S100A9 induces reactive oxygen species-dependent formation of neutrophil extracellular traps in abdominal sepsis. Exp Cell Res 2022; 421:113405. [PMID: 36328195 DOI: 10.1016/j.yexcr.2022.113405] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 12/29/2022]
Abstract
Recent evidence suggests that targeting S100A9 reduces pathological inflammation in abdominal sepsis. Herein, we investigated the role of S100A9 in neutrophil extracellular trap (NET) formation in septic lung damage. NETs were detected by electron microscopy in the lung and by confocal microscopy in vitro. Stimulation of isolated mouse bone marrow-derived neutrophils with S100A9 triggered formation of NETs. Blocking TLR4 and RAGE reduced S100A9-induced generation of NETs and DNA-histone complexes. Moreover, S100A9 challenge increased generation of reactive oxygen species (ROS) in bone marrow neutrophils. Co-incubation with the NADPH oxidase inhibitor not only decreased ROS formation but also attenuated induction of DNA-histone complexes in S100A9-stimulated neutrophils. Abdominal sepsis was induced by cecal ligation and puncture (CLP) in male C57BL/6 mice. Administration of the S100A9 inhibitor ABR-238901 decreased CLP-induced formation of NETs in lungs and DNA-histone complexes in plasma. In addition, transmission electron microscopy revealed that S100A9 was abundantly expressed on NETs in the lungs in CLP mice. By use of intravital microscopy, we found that local injection of NETs increased leukocyte adhesion and migration in the mouse cremaster muscle microvasculature. Notably, treatment with ABR-238901 attenuated NET-induced leukocyte adhesion and extravasation in the cremaster muscle, suggesting that NET-associated S100A9 promotes leukocyte recruitment in vivo. Taken together, these novel findings suggest that S100A9 triggers ROS-dependent formation of NETs via TLR4 and RAGE signaling in neutrophils. Moreover, S100A9 regulates both formation of NETs and NET-induced leukocyte recruitment in vivo. Thus, targeting S100A9 might be useful to ameliorate lung damage in abdominal sepsis.
Collapse
Affiliation(s)
- Feifei Du
- Department of Clinical Sciences, Malmö, Section for Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Zhiyi Ding
- Department of Clinical Sciences, Malmö, Section for Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Carl-Fredrik Rönnow
- Department of Clinical Sciences, Malmö, Section for Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Alexandru Schiopu
- Department of Clinical Sciences, Malmö, Lund University, 21428, Malmö, Sweden; Department of Internal Medicine, Skåne University Hospital, 22185, Lund, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Malmö, Section for Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden.
| |
Collapse
|
27
|
The Tumor Microenvironment of Hepatocellular Carcinoma: Untying an Intricate Immunological Network. Cancers (Basel) 2022; 14:cancers14246151. [PMID: 36551635 PMCID: PMC9776867 DOI: 10.3390/cancers14246151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
HCC, the most prevalent form of primary liver cancer, is prototypically an inflammation-driven cancer developing after years of inflammatory insults. Consequently, the hepatic microenvironment is a site of complex immunological activities. Moreover, the tolerogenic nature of the liver can act as a barrier to anti-tumor immunity, fostering cancer progression and resistance to immunotherapies based on immune checkpoint inhibitors (ICB). In addition to being a site of primary carcinogenesis, many cancer types have high tropism for the liver, and patients diagnosed with liver metastasis have a dismal prognosis. Therefore, understanding the immunological networks characterizing the tumor microenvironment (TME) of HCC will deepen our understanding of liver immunity, and it will underpin the dominant mechanisms controlling both spontaneous and therapy-induced anti-tumor immune responses. Herein, we discuss the contributions of the cellular and molecular components of the liver immune contexture during HCC onset and progression by underscoring how the balance between antagonistic immune responses can recast the properties of the TME and the response to ICB.
Collapse
|
28
|
Adipose Tissue-Derived CCL5 Enhances Local Pro-Inflammatory Monocytic MDSCs Accumulation and Inflammation via CCR5 Receptor in High-Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms232214226. [PMID: 36430701 PMCID: PMC9692513 DOI: 10.3390/ijms232214226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The C-C chemokine motif ligand 5 (CCL5) and its receptors have recently been thought to be substantially involved in the development of obesity-associated adipose tissue inflammation and insulin resistance. However, the respective contributions of tissue-derived and myeloid-derived CCL5 to the etiology of obesity-induced adipose tissue inflammation and insulin resistance, and the involvement of monocytic myeloid-derived suppressor cells (MDSCs), remain unclear. This study used CCL5-knockout mice combined with bone marrow transplantation (BMT) and mice with local injections of shCCL5/shCCR5 or CCL5/CCR5 lentivirus into bilateral epididymal white adipose tissue (eWAT). CCL5 gene deletion significantly ameliorated HFD-induced inflammatory reactions in eWAT and protected against the development of obesity and insulin resistance. In addition, tissue (non-hematopoietic) deletion of CCL5 using the BMT method not only ameliorated adipose tissue inflammation by suppressing pro-inflammatory M-MDSC (CD11b+Ly6G-Ly6Chi) accumulation and skewing local M1 macrophage polarization, but also recruited reparative M-MDSCs (CD11b+Ly6G-Ly6Clow) and M2 macrophages to the eWAT of HFD-induced obese mice, as shown by flow cytometry. Furthermore, modulation of tissue-derived CCL5/CCR5 expression by local injection of shCCL5/shCCR5 or CCL5/CCR5 lentivirus substantially impacted the distribution of pro-inflammatory and reparative M-MDSCs as well as macrophage polarization in bilateral eWAT. These findings suggest that an obesity-induced increase in adipose tissue CCL5-mediated signaling is crucial in the recruitment of tissue M-MDSCs and their trans-differentiation to tissue pro-inflammatory macrophages, resulting in adipose tissue inflammation and insulin resistance.
Collapse
|
29
|
Yu K, Yu C, Jiao L, Miao K, Ni L, Rao X, Zhou L, Zhao C. The Function and Therapeutic Implications of TNF Signaling in MDSCs. Biomolecules 2022; 12:1627. [PMID: 36358977 PMCID: PMC9687347 DOI: 10.3390/biom12111627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 09/27/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of immature and heterogeneous myeloid cells with immunosuppressive functions. MDSCs play important roles in the pathogenesis of cancer, chronic inflammatory diseases, and many autoimmune disorders. The accumulation and activation of MDSCs can be regulated by tumor necrosis factor α (TNF-α). In this review, we summarize the roles played by TNF-α in the recruitment, immunosuppressive functions, and chemotaxis of MDSCs, and discuss the potential therapeutic effects of TNF-α upon these cells in tumor growth and some inflammatory disorders.
Collapse
Affiliation(s)
- Kun Yu
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengxin Yu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liping Jiao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Kun Miao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Ni
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoquan Rao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling Zhou
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunxia Zhao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
30
|
Klein Y, Levin-Talmor O, Berkstein JG, Wald S, Meirow Y, Maimon A, Leibovich A, Barenholz Y, Polak D, Chaushu S. Resolvin D1 shows osseous-protection via RANK reduction on monocytes during orthodontic tooth movement. Front Immunol 2022; 13:928132. [PMID: 36275768 PMCID: PMC9585452 DOI: 10.3389/fimmu.2022.928132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
The study aimed to investigate the role of RvD1 in acute and prolonged sterile inflammation and bone remodeling. A mouse model of sterile inflammation that involves bone resorption was used to examine endogenous RvD1 kinetics during inflammation. Application of exogenous RvD1 significantly inhibited bone remodeling via osteoclast reduction, alongside an anti-inflammatory secretome shift, increased macrophages recruitment and reduction of T-cytotoxic cells. In vitro and in vivo, RvD1 led to significant reduction in RANK expression which reduce osteoclastogenesis in a dose-dependent manner. Taken together, the data shows a dual role for RvD1, as a potent immunoresolvent agent alongside an osteoresolvent role, showing a potential therapeutic agent in bone resorption associated inflammatory conditions.
Collapse
Affiliation(s)
- Yehuda Klein
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biochemistry, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offir Levin-Talmor
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jaime Garber Berkstein
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharon Wald
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaron Meirow
- Lautenberg Center for General and Tumor Immunology, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Maimon
- The Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Leibovich
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yechezkel Barenholz
- Department of Biochemistry, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Polak
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Periodontics, Hadassah Medical Center, Jerusalem, Israel
| | - Stella Chaushu
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
31
|
Reuven O, Mikula I, Ashkenazi-Preiser H, Twaik N, Ben-Meir K, Meirow Y, Daniel L, Kariv G, Kurd M, Baniyash M. Phenotypic Characterization and Isolation of Myeloid-Derived Suppressor Cells. Curr Protoc 2022; 2:e561. [PMID: 36214619 DOI: 10.1002/cpz1.561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are heterogenous populations of immature myeloid cells that can be divided into two main subpopulations, polymorphonuclear (PMN) MDSCs and monocytic (M) MDSCs. These cells accumulate during chronic inflammation and induce immunosuppression evident in an array of pathologies such as cancer, inflammatory bowel disease, and infectious and autoimmune diseases. Herein, we describe methods to isolate and characterize MDSCs from various murine tissue, as well as to phenotype blood-derived MDSCs from patients. The protocols describe methods for isolation of total MDSCs and their subpopulations, for characterization, and for evaluation of their distribution within tissue, as well as for assessing their maturation stage by flow cytometry, immunofluorescence analyses, and Giemsa staining. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Single-cell suspension generation from different tissue Alternate Protocol 1: Single-cell suspension generation from subcutaneous melanoma tumors Basic Protocol 2: Characterization of MDSC phenotype Basic Protocol 3: Cell separation using magnetic beads: Separating pan-MDSCs or PMN-MDSC and M-MDSC subpopulations Alternate Protocol 2: Staining and preparing MDSCs for sorting Support Protocol: PMN-MDSC and M-MDSC gating strategy in mouse Basic Protocol 4: Immunofluorescence analysis of MDSCs Basic Protocol 5: Handling human blood samples and characterizing human MDSCs Alternate Protocol 3: Flow cytometry staining of thawed human whole blood samples.
Collapse
Affiliation(s)
- Or Reuven
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ivan Mikula
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Hadas Ashkenazi-Preiser
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Nira Twaik
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Kerem Ben-Meir
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Yaron Meirow
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Leonor Daniel
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Guy Kariv
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Mahdi Kurd
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Michal Baniyash
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
32
|
Ben-Meir K, Twaik N, Meirow Y, Baniyash M. An In Vivo Mouse Model for Chronic Inflammation-Induced Immune Suppression: A "Factory" for Myeloid-Derived Suppressor Cells (MDSCs). Curr Protoc 2022; 2:e558. [PMID: 36239438 DOI: 10.1002/cpz1.558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells known to play a role in perpetuating a wide range of pathologies, such as chronic infections, autoimmune diseases, and cancer. MDSCs were first identified in mice by the markers CD11b+ Gr1+ , and later, based on their morphology, they were classified into two subsets: polymorphonuclear MDSCs, identified by the markers CD11b+ Ly6G+ Ly6CLow , and monocytic MDSCs, detected as being CD11b+ Ly6G- Ly6CHi . MDSCs are studied as immunosuppressive cells in various diseases characterized by chronic inflammation and are associated with disease causes/triggers such as pathogens, autoantigens, and cancer. Therefore, different diseases may diversely affect MDSC metabolism, migration, and differentiation, thus influencing the generated MDSC functional features and ensuing suppressive environment. In order to study MDSCs in a pathology-free environment, we established and calibrated a highly reproducible mouse model that results in the development of chronic inflammation, which is the major cause of MDSC accumulation and immune suppression. The model presented can be used to study MDSC phenotypes, functional diversity, and plasticity. It also permits study of MDSC migration from the bone marrow to peripheral lymphatic and non-lymphatic organs and MDSC crosstalk with extrinsic factors, both in vivo and ex vivo. Furthermore, this model can serve as a platform to assess the effects of anti-MDSC modalities. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Repetitive M.tb immunizations for the induction of chronic inflammation Alternate Protocol 1: Creating a lower grade of inflammation by changing the site of immunization Alternate Protocol 2: In vivo evaluation of immune status Support Protocol 1: Preparation of reconstituted M.tb aliquots and M.tb-IFA emulsions for each of the three injections Support Protocol 2: Preparation of an ovalbumin lentiviral expression vector Support Protocol 3: Fluorescence titering assay for the lentiviral expression vector Support Protocol 4: Spleen excision, tissue dissociation, and preparation of a single-cell suspension Support Protocol 5: Labeling of splenocytes with CFSE proliferation dye.
Collapse
Affiliation(s)
- Kerem Ben-Meir
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Nira Twaik
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Yaron Meirow
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Michal Baniyash
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
33
|
Cao Q, Mertens RT, Sivanathan KN, Cai X, Xiao P. Macrophage orchestration of epithelial and stromal cell homeostasis in the intestine. J Leukoc Biol 2022; 112:313-331. [PMID: 35593111 PMCID: PMC9543232 DOI: 10.1002/jlb.3ru0322-176r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/06/2022] Open
Abstract
The intestinal tract is a complex ecosystem where numerous cell types of epithelial, immune, neuronal, and endothelial origin coexist in an intertwined, highly organized manner. The functional equilibrium of the intestine relies heavily on the proper crosstalk and cooperation among each cell population. Furthermore, macrophages are versatile, innate immune cells that participate widely in the modulation of inflammation and tissue remodeling. Emerging evidence suggest that macrophages are central in orchestrating tissue homeostasis. Herein, we describe how macrophages interact with epithelial cells, neurons, and other types of mesenchymal cells under the context of intestinal inflammation, followed by the therapeutic implications of cellular crosstalk pertaining to the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Randall Tyler Mertens
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kisha Nandini Sivanathan
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Xuechun Cai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Grassi G, Notari S, Gili S, Bordoni V, Casetti R, Cimini E, Tartaglia E, Mariotti D, Agrati C, Sacchi A. Myeloid-Derived Suppressor Cells in COVID-19: The Paradox of Good. Front Immunol 2022; 13:842949. [PMID: 35572540 PMCID: PMC9092297 DOI: 10.3389/fimmu.2022.842949] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/25/2022] [Indexed: 12/26/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Viral replication in the respiratory tract induces the death of infected cells and the release of pathogen- associated molecular patterns (PAMPs). PAMPs give rise to local inflammation, increasing the secretion of pro- inflammatory cytokines and chemokines, which attract immune cells from the blood into the infected lung. In most individuals, lung-recruited cells clear the infection, and the immune response retreats. However, in some cases, a dysfunctional immune response occurs, which triggers a cytokine storm in the lung, leading to acute respiratory distress syndrome (ARDS). Severe COVID-19 is characterized by an impaired innate and adaptive immune response and by a massive expansion of myeloid-derived suppressor cells (MDSCs). MDSCs function as protective regulators of the immune response, protecting the host from over-immunoreactivity and hyper-inflammation. However, under certain conditions, such as chronic inflammation and cancer, MDSCs could exert a detrimental role. Accordingly, the early expansion of MDSCs in COVID-19 is able to predict the fatal outcome of the infection. Here, we review recent data on MDSCs during COVID-19, discussing how they can influence the course of the disease and whether they could be considered as biomarker and possible targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Germana Grassi
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Stefania Notari
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Simona Gili
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Veronica Bordoni
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Rita Casetti
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Eleonora Cimini
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Eleonora Tartaglia
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Davide Mariotti
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Alessandra Sacchi
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
35
|
Sakowska J, Arcimowicz Ł, Jankowiak M, Papak I, Markiewicz A, Dziubek K, Kurkowiak M, Kote S, Kaźmierczak-Siedlecka K, Połom K, Marek-Trzonkowska N, Trzonkowski P. Autoimmunity and Cancer-Two Sides of the Same Coin. Front Immunol 2022; 13:793234. [PMID: 35634292 PMCID: PMC9140757 DOI: 10.3389/fimmu.2022.793234] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Autoimmune disease results from the immune response against self-antigens, while cancer develops when the immune system does not respond to malignant cells. Thus, for years, autoimmunity and cancer have been considered as two separate fields of research that do not have a lot in common. However, the discovery of immune checkpoints and the development of anti-cancer drugs targeting PD-1 (programmed cell death receptor 1) and CTLA-4 (cytotoxic T lymphocyte antigen 4) pathways proved that studying autoimmune diseases can be extremely helpful in the development of novel anti-cancer drugs. Therefore, autoimmunity and cancer seem to be just two sides of the same coin. In the current review, we broadly discuss how various regulatory cell populations, effector molecules, genetic predisposition, and environmental factors contribute to the loss of self-tolerance in autoimmunity or tolerance induction to cancer. With the current paper, we also aim to convince the readers that the pathways involved in cancer and autoimmune disease development consist of similar molecular players working in opposite directions. Therefore, a deep understanding of the two sides of immune tolerance is crucial for the proper designing of novel and selective immunotherapies.
Collapse
Affiliation(s)
- Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Łukasz Arcimowicz
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Martyna Jankowiak
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ines Papak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | | | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
36
|
Specific inflammatory osteoclast precursors induced during chronic inflammation give rise to highly active osteoclasts associated with inflammatory bone loss. Bone Res 2022; 10:36. [PMID: 35396510 PMCID: PMC8993801 DOI: 10.1038/s41413-022-00206-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/12/2021] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
Elevated osteoclast (OC) activity is a major contributor to inflammatory bone loss (IBL) during chronic inflammatory diseases. However, the specific OC precursors (OCPs) responding to inflammatory cues and the underlying mechanisms leading to IBL are poorly understood. We identified two distinct OCP subsets: Ly6ChiCD11bhi inflammatory OCPs (iOCPs) induced during chronic inflammation, and homeostatic Ly6ChiCD11blo OCPs (hOCPs) which remained unchanged. Functional and proteomic characterization revealed that while iOCPs were rare and displayed low osteoclastogenic potential under normal conditions, they expanded during chronic inflammation and generated OCs with enhanced activity. In contrast, hOCPs were abundant and manifested high osteoclastogenic potential under normal conditions but generated OCs with low activity and were unresponsive to the inflammatory environment. Osteoclasts derived from iOCPs expressed higher levels of resorptive and metabolic proteins than those generated from hOCPs, highlighting that different osteoclast populations are formed by distinct precursors. We further identified the TNF-α and S100A8/A9 proteins as key regulators that control the iOCP response during chronic inflammation. Furthermore, we demonstrated that the response of iOCPs but not that of hOCPs was abrogated in tnf-α-/- mice, in correlation with attenuated IBL. Our findings suggest a central role for iOCPs in IBL induction. iOCPs can serve as potential biomarkers for IBL detection and possibly as new therapeutic targets to combat IBL in a wide range of inflammatory conditions.
Collapse
|
37
|
Fakhr Y, Koshti S, Habibyan YB, Webster K, Hemmings DG. Tumor Necrosis Factor-α Induces a Preeclamptic-like Phenotype in Placental Villi via Sphingosine Kinase 1 Activation. Int J Mol Sci 2022; 23:ijms23073750. [PMID: 35409108 PMCID: PMC8998215 DOI: 10.3390/ijms23073750] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Preeclampsia (PE) involves inadequate placental function. This can occur due to elevated pro-inflammatory tumor necrosis factor-α (TNF-α). In other tissues, TNF-α signals via sphingosine kinase 1 (SphK1). SphK1 hinders syncytial formation. Whether this occurs downstream of TNF-α signaling is unclear. We hypothesized that placental SphK1 levels are higher in PE and elevated TNF-α decreases syncytial function, increases syncytial shedding, and increases cytokine/factor release via SphK1 activity. Term placental biopsies were analyzed for SphK1 using immunofluorescence and qRT-PCR. Term placental explants were treated after 4 days of culture, at the start of syncytial regeneration, with TNF-α and/or SphK1 inhibitors, PF-543. Syncytialization was assessed by measuring fusion and chorionic gonadotropin release. Cell death and shedding were measured by lactate dehydrogenase release and placental alkaline phosphatase-positive shed particles. Forty-two cytokines were measured using multiplex assays. Placental SphK1 was increased in PE. Increased cell death, shedding, interferon-α2, IFN-γ-induced protein 10, fibroblast growth factor 2, and platelet-derived growth factor-AA release induced by TNF-α were reversed upon SphK1 inhibition. TNF-α increased the release of 26 cytokines independently of SphK1. TNF-α decreased IL-10 release and inhibiting SphK1 reversed this effect. Inhibiting SphK1 alone decreased TNF-α release. Hence, SphK1 partially mediates the TNF-α-induced PE placental phenotype, primarily through cell damage, shedding, and specific cytokine release.
Collapse
Affiliation(s)
- Yuliya Fakhr
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Saloni Koshti
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Yasaman Bahojb Habibyan
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Kirsten Webster
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Denise G. Hemmings
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
- Department of Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-(780)-492-2098
| |
Collapse
|
38
|
Zhao A, Li F, Wei C, Zhou Z, Luo X, Wu H, Ning C, Liu W, Li D, Lin D, Liu S, Zhang G, Gao J. TNFɑ Antagonist in Combination with PD-1 Blocker to Prevent or Retard Malignant Transformation of B[a]P-induced Chronic Lung Inflammation. Carcinogenesis 2022; 43:445-456. [PMID: 35230387 DOI: 10.1093/carcin/bgac024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/04/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is a typical complete carcinogen in tobacco, but its mechanism of inducing the development of chronic pneumonia and consequent lung cancer is unclear. Here we elucidated the role of myeloid-derived suppressor cells (MDSCs) in developing B[a]P-induced chronic lung inflammation and efficacy of immunotherapy in preventing subsequent malignant transformation. Our study showed that as B[a]P could induce the accumulation of MDSCs in lung tissues and enhance the immunosuppressive effect regulated by cytokines and metabolites, thereby promoting the formation of immunosuppressive microenvironment, where effector T cells were exhausted, NK cells were dysfunctional, regulatory T (Treg) cells were expanded, polarized alveolar macrophages were transformed from M1 to M2. Subsequently, we performed the immunotherapy to block TNFɑ only or both TNFɑ and PD-1 at the early- or middle-stage of B[a]P-induced chronic lung inflammation to ameliorate the immunosuppressive microenvironment. We found that TNFɑ antagonist alone or with PD-1 blocker was shown to exert therapeutic effects on malignant transformation at the early stage of B[a]P-induced chronic lung inflammation. Taken together, our findings demonstrated that B[a]P-induced chronic lung inflammation resulted in the accumulation of MDSCs in lung tissues and exercise their immunosuppressive functions, thereby developing an immunosuppressive microenvironment, thus TNFɑ antagonist alone or with PD-1 blocker could prevent or retard the malignant transformation of B[a]P-induced chronic lung inflammation.
Collapse
Affiliation(s)
- Ai Zhao
- Department of Hematology, Shunde Hospital, Southern Medical University; Foshan, Guangdong, China.,Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China
| | - Fanfan Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China.,Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University; Wenzhou, Zhejiang, China
| | - Cheng Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China
| | - Zhujun Zhou
- Medical laboratory, Tianmen First People's Hospital; Tianmen, Hubei, China
| | - Xianqiang Luo
- Medical laboratory, The First Affiliated Hospital of Nanchang University; Nanchang, Jiangxi, China
| | - Haiming Wu
- Medical laboratory, Xiamen Children's Hospital; Xiamen, Fujian, China
| | - Chunhong Ning
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China
| | - Wanyu Liu
- Medical laboratory, Zhumadian Central Hospital; Zhumadian, Henan, China
| | - Dong Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China
| | - Danni Lin
- Harvard Medical School; Boston, MA, United States
| | - Shuwen Liu
- Department of Hematology, Shunde Hospital, Southern Medical University; Foshan, Guangdong, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University; Guangzhou, Guangdong, China
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University; Hangzhou, Zhejiang, China
| | - Jimin Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China.,Zhejiang Qixin Biotech; Wenzhou, Zhejiang, China
| |
Collapse
|
39
|
Leposavić G, Stojić-Vukanić Z. Biomarkers of aging-associated chronic inflammation as a prognostic factor for human longevity. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-36135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
It has been well-established that age-associated low-grade chronic inflammation contributes to the development of a spectrum of chronic diseases, including diabetes mellitus, ischemic heart disease, stroke, cancer, chronic kidney disease, non-alcoholic fatty liver disease and neurodegenerative diseases, which affect the quality of life of the elderly and influence their life span. This phenomenon is suggested to arise due to the weakening of the regulatory mechanisms of the immune response, and the persistence of exogenous and endogenous (reflecting oxidative cell injury) antigenic challenges, so it is referred to as oxi-inflamm-aging. Considering that the development of age-associated chronic inflammation is "silent", i.e., without clinical signs until the aforementioned complications become apparent, it is important to identify the biomarker(s) or pattern/cluster of biomarkers for this inflammation. It is also important to define new strategies to combat the "silent" damage induced by chronic inflammation. Given that at present there are no reliable biomarkers for chronic inflammation, this review points out the problems in defining biomarker(s) or patterns/clusters of biomarkers for chronic inflammation in order to stimulate further research and points to some possible routes of investigation.
Collapse
|
40
|
El Bakary NM, Alsharkawy AZ, Shouaib ZA, Barakat EMS. Immune Stimulating Outcome of Chrysin and γ-Irradiation via Apoptotic Activation Against Solid Ehrlich Carcinoma Bearing Mice. Integr Cancer Ther 2022; 21:15347354221096668. [PMID: 35543434 PMCID: PMC9102206 DOI: 10.1177/15347354221096668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The rising interest in innovative methods of cancer immunotherapy has prompted research into the immunomodulatory mechanisms of natural and synthetic substances. The goal of this study was to assess chrysin immune-stimulating and pro-apoptotic effects on tumor growth and cell susceptibility to ionizing radiation in order to improve cancer therapy. Chrysin (20 mg/kg/day) was intraperitoneally injected to mice bearing 1 cm3 solid tumor of Ehrlich ascites carcinoma (EAC) for 21 consecutive days. Mice were whole body exposed to 1 Gy of gamma radiation (2 fractionated dose 0.5 Gy each). Treatment with chrysin dramatically reduces tumor proliferation in EAC mice; furthermore, IFN-γ activity is significantly reduced when compared to EAC mice. When compared to EAC mice, the expression of TNF-α, free radicals, and nitric oxide (NO) levels were considerably reduced, along with improvements in apoptotic regulators (caspase-3 activity). Moreover, the histopathological investigation confirms the improvement exerted by chrysin even in the EAC mice group or the EAC + R group. What is more, exposure to gamma radiation sustained the modulatory effect of chrysin on tumor when compared with EAC + Ch mice. Hence, chrysin might represent a potential therapeutic strategy for increasing the radiation response of solid tumor.
Collapse
Affiliation(s)
- Nermeen M El Bakary
- National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | | | | |
Collapse
|
41
|
Zhang Y, Murphy S, Lu X. Cancer-cell-intrinsic mechanisms regulate MDSCs through cytokine networks. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 375:1-31. [PMID: 36967150 DOI: 10.1016/bs.ircmb.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunotherapy has shifted the paradigm of cancer treatment. However, the majority of cancer patients display de novo or acquired resistance to immunotherapy. One of the main mechanisms of immunotherapy resistance is the immunosuppressive microenvironment dominated by the myeloid-derived suppressor cells (MDSCs). Emerging evidence demonstrates that genetic or epigenetic aberrations in cancer cells shape the accumulation and activation of MDSCs. Understanding this genotype-immunophenotype relationship is critical to the rational design of combination immunotherapy. Here, we review the mechanisms of how molecular changes in cancer cells induce recruitment and reprogram the function of tumor-infiltrating myeloid cells, particularly MDSCs. Tumor-infiltrating MDSCs elicit various pro-tumor functions to promote tumor cell fitness, immune evasion, angiogenesis, tissue remodeling, and metastasis. Through understanding the genotype-immunophenotype relationship between neoplastic cells and MDSCs, new approaches can be developed to tailor current immunotherapy strategies to improve cancer patient outcomes.
Collapse
|
42
|
Pullikuth AK, Routh ED, Zimmerman KD, Chifman J, Chou JW, Soike MH, Jin G, Su J, Song Q, Black MA, Print C, Bedognetti D, Howard-McNatt M, O’Neill SS, Thomas A, Langefeld CD, Sigalov AB, Lu Y, Miller LD. Bulk and Single-Cell Profiling of Breast Tumors Identifies TREM-1 as a Dominant Immune Suppressive Marker Associated With Poor Outcomes. Front Oncol 2021; 11:734959. [PMID: 34956864 PMCID: PMC8692779 DOI: 10.3389/fonc.2021.734959] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundTriggering receptor expressed on myeloid cells (TREM)-1 is a key mediator of innate immunity previously associated with the severity of inflammatory disorders, and more recently, the inferior survival of lung and liver cancer patients. Here, we investigated the prognostic impact and immunological correlates of TREM1 expression in breast tumors.MethodsBreast tumor microarray and RNAseq expression profiles (n=4,364 tumors) were analyzed for associations between gene expression, tumor immune subtypes, distant metastasis-free survival (DMFS) and clinical response to neoadjuvant chemotherapy (NAC). Single-cell (sc)RNAseq was performed using the 10X Genomics platform. Statistical associations were assessed by logistic regression, Cox regression, Kaplan-Meier analysis, Spearman correlation, Student’s t-test and Chi-square test.ResultsIn pre-treatment biopsies, TREM1 and known TREM-1 inducible cytokines (IL1B, IL8) were discovered by a statistical ranking procedure as top genes for which high expression was associated with reduced response to NAC, but only in the context of immunologically “hot” tumors otherwise associated with a high NAC response rate. In surgical specimens, TREM1 expression varied among tumor molecular subtypes, with highest expression in the more aggressive subtypes (Basal-like, HER2-E). High TREM1 significantly and reproducibly associated with inferior distant metastasis-free survival (DMFS), independent of conventional prognostic markers. Notably, the association between high TREM1 and inferior DMFS was most prominent in the subset of immunogenic tumors that exhibited the immunologically hot phenotype and otherwise associated with superior DMFS. Further observations from bulk and single-cell RNAseq analyses indicated that TREM1 expression was significantly enriched in polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and M2-like macrophages, and correlated with downstream transcriptional targets of TREM-1 (IL8, IL-1B, IL6, MCP-1, SPP1, IL1RN, INHBA) which have been previously associated with pro-tumorigenic and immunosuppressive functions.ConclusionsTogether, these findings indicate that increased TREM1 expression is prognostic of inferior breast cancer outcomes and may contribute to myeloid-mediated breast cancer progression and immune suppression.
Collapse
Affiliation(s)
- Ashok K. Pullikuth
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Eric D. Routh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Julia Chifman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Mathematics and Statistics, American University, Washington, DC, United States
| | - Jeff W. Chou
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
| | - Michael H. Soike
- Department of Radiation Oncology, University of Alabama-Birmingham, Birmingham, AL, United States
| | - Guangxu Jin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
| | - Jing Su
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Center for Cancer Genomics and Precision Oncology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Michael A. Black
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Cristin Print
- Department of Molecular Medicine and Pathology and Maurice Wilkins Institute, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Davide Bedognetti
- Cancer Program, Sidra Medicine, Doha, Qatar & Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Marissa Howard-McNatt
- Surgical Oncology Service, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Stacey S. O’Neill
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- Department of Pathology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Alexandra Thomas
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- Section of Hematology and Oncology, Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
| | | | - Yong Lu
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Lance D. Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- *Correspondence: Lance D. Miller,
| |
Collapse
|
43
|
Huang J, Zhang J, Guo Z, Li C, Tan Z, Wang J, Yang J, Xue L. Easy or Not-The Advances of EZH2 in Regulating T Cell Development, Differentiation, and Activation in Antitumor Immunity. Front Immunol 2021; 12:741302. [PMID: 34737746 PMCID: PMC8560704 DOI: 10.3389/fimmu.2021.741302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb repressive complex 2 (PRC2), which regulates downstream gene expression by trimethylation of lysine 27 in histone H3 (H3K27me3). EZH2 mutations or overexpressions are associated with many types of cancer. As inhibition of EZH2 activity could upregulate the expression of tumor suppressor genes, EZH2 has recently become an interesting therapeutic target for cancer therapy. Moreover, accumulating evidence has shown that EZH2 may contribute to the regulation of immune cells, especially T cells. EZH2 regulates T cell development, differentiation, and function, suggesting that EZH2 also regulates immune homeostasis in addition to tumor suppressor genes. Moreover, EZH2 can regulate T cell fate by targeting non-T cell factors such as metabolism, cytokines, and myeloid-derived suppressor cells. The role of EZH2 in this process has not been fully addressed. This review discusses up-to-date research on EZH2-mediated regulation of immunological function and the progress of immunological therapeutic strategies based on this regulation.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Jie Zhang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Zhengyang Guo
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Chen Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Jianling Yang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Lixiang Xue
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| |
Collapse
|
44
|
Zheng Q, Duan L, Lou Y, Chao T, Guo G, Lu L, Zhang H, Zhao Y, Liang Y, Wang H. Slfn4 deficiency improves MAPK-mediated inflammation, oxidative stress, apoptosis and abates atherosclerosis progression in apolipoprotein E-deficient mice. Atherosclerosis 2021; 337:42-52. [PMID: 34757313 DOI: 10.1016/j.atherosclerosis.2021.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis, a progressive inflammatory disease characterized by elevated inflammation and lipid accumulation in the aortic endothelium, arises in part from the infiltration of inflammatory cells into the vascular wall. However, it is not fully defined how inflammatory cells, especially macrophages, affect the pathogenesis of atherosclerosis. Schlafen4 (Slfn4) mRNA is remarkably upregulated upon ox-LDL stimulation in macrophages. Nonetheless, the role of Slfn4 in foam cell formation remains unclear. METHODS To determine whether and how Slfn4 regulates lesion macrophage function during atherosclerosis,we engineered ApoE-/-Slfn4-/- double-deficient mice on an ApoE-/- background and evaluated the deficiency of Slfn4 expression in atherosclerotic lesion formation in vivo. RESULTS Our results demonstrate that total absence of SLFN4 and the bone marrow-restricted deletion of Slfn4 in ApoE-/- mice remarkably diminish inflammatory cell numbers within arterial plaques as well as limit development of atherosclerosis in moderate hypercholesterolemia condition. This is linked to a marked reduction in the expression of proinflammatory cytokines, the generation of the reactive oxygen species (ROS) and the apoptosis of cells. Furthermore, the activation of MAPKs and apoptosis signaling pathways is compromised in the absence of Slfn4. CONCLUSIONS These findings demonstrate a novel role of Slfn4 in modulating vascular inflammation and atherosclerosis, highlighting a new target for the related diseases.
Collapse
Affiliation(s)
- Qianqian Zheng
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Liangwei Duan
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yunwei Lou
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Tianzhu Chao
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Guo Guo
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Liaoxun Lu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China; Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Hongxia Zhang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yucong Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yinming Liang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China.
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China.
| |
Collapse
|
45
|
Salemizadeh Parizi M, Salemizadeh Parizi F, Abdolhosseini S, Vanaei S, Manzouri A, Ebrahimzadeh F. Myeloid-derived suppressor cells (MDSCs) in brain cancer: challenges and therapeutic strategies. Inflammopharmacology 2021; 29:1613-1624. [PMID: 34613567 DOI: 10.1007/s10787-021-00878-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
The most fatal malignancy of the central nervous system (CNS) is glioblastoma. Brain cancer is a 'cold' tumor because of fewer immunoregulatory cells and more immunosuppressive cells. Due to the cold nature of brain cancers, conventional treatments which are used to manage glioma patients show little effectiveness. Glioma patients even showed resistance to immune checkpoint blockade (ICB) and no significant efficacy. It has been shown that myeloid-derived suppressor cells (MDSCs) account for approximately 30-50% of the tumor mass in glioma. This study aimed to review MDSC function in brain cancer, as well as possible treatments and related challenges. In brain cancer and glioma, several differences in the context of MDSCs have been reported, including disagreements about the MDSC subtype that has the most inhibitory function in the brain, or inhibitory function of regulatory B cells (Bregs). There are also serious challenges in treating glioma patients. In addition to the cold nature of glioma, there are reports of an increase in MDSCs following conventional chemotherapy treatments. As a result, targeting MDSCs in combination with other therapies, such as ICB, is essential, and recent studies with the combination therapy approach have shown promising therapeutic effects in brain cancer.
Collapse
Affiliation(s)
| | | | | | - Shohreh Vanaei
- Department of Biomedical Engineering, Northeastern University, Boston, MA, USA
| | - Ali Manzouri
- School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
Ye Z, Ai X, Zhao L, Fei F, Wang P, Zhou S. Phenotypic plasticity of myeloid cells in glioblastoma development, progression, and therapeutics. Oncogene 2021; 40:6059-6070. [PMID: 34556813 DOI: 10.1038/s41388-021-02010-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is the most common and malignant type of intracranial tumors with poor prognosis. Accumulating evidence suggests that phenotypic alterations of infiltrating myeloid cells in the tumor microenvironment are important for GBM progression. Conventional tumor immunotherapy commonly targets T-cells, while innate immunity as a therapeutic target is an emerging field. Targeting infiltrating myeloid cells that induce immune suppression in the TME provides a novel direction to improve the prognosis of patients with GBM. The factors released by tumor cells recruit myeloid cells into tumor bed and reprogram infiltrating myeloid cells into immunostimulatory/immunosuppressive phenotypes. Reciprocally, infiltrating myeloid cells, especially microglia/macrophages, regulate GBM progression and affect therapeutic efficacy. Herein, we revisited biological characteristics and functions of infiltrating myeloid cells and discussed the recent advances in immunotherapies targeting infiltrating myeloid cells in GBM. With an evolving understanding of the complex interactions between infiltrating myeloid cells and tumor cells in the tumor microenvironment, we will expand novel immunotherapeutic regimens targeting infiltrating myeloid cells in GBM treatment and improve the outcomes of GBM patients.
Collapse
Affiliation(s)
- Zengpanpan Ye
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xiaolin Ai
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Fan Fei
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital; School of Medicine, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China.
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China.
| |
Collapse
|
47
|
Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021; 10:cells10092486. [PMID: 34572138 PMCID: PMC8465406 DOI: 10.3390/cells10092486] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant immune cell in the circulation of human and act as gatekeepers to discard foreign elements that have entered the body. They are essential in initiating immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils, other immune cells and stromal cells in the microenvironment modulates neutrophil function resulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is seen in other neutrophil properties, including differential secretory repertoire and membrane receptor display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely on the interaction between tumor-surface-expressed receptor for advanced glycation end products (RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils in cancer.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Hadassah Medical School, The Hebrew University of Jerusalem, Ein Kerem Campus, P.O.B. 12272, Jerusalem 9112102, Israel
| |
Collapse
|
48
|
Wang H, Ji J, Zhuang Y, Zhou X, Zhao Y, Zhang X. PMA induces the differentiation of monocytes into immunosuppressive MDSCs. Clin Exp Immunol 2021; 206:216-225. [PMID: 34453319 DOI: 10.1111/cei.13657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
The induction of immune tolerance without the use of immunosuppressive drugs is a crucial problem in organ transplantation. The use of myeloid-derived suppressor cells (MDSCs) as a cell-based adjuvant immunosuppressive therapy is a bright clinical prospect in organ transplantation. MDSCs with stable immunosuppressive activities can be used to treat immune-related diseases. In this study, macrophage colony-stimulating factor (M-CSF) was used to promote myeloid progenitor cell differentiation, and phorbol 12-myristate 13-acetate (PMA) was added to induce MDSCs at the later stage of induction in vitro. Cell phenotypes were detected by flow cytometry and mRNA was detected by real-time-polymerase chain reaction (RT-PCR). A mouse skin transplantation model was used to investigate the cell inhibitory function. The combination of PMA and M-CSF induced the differentiation of myeloid-derived monocytes into MDSCs. MDSCs were found to induce immune tolerance by inhibiting the proliferation and activation of T cells, promoting cytokine secretion and inducing T cell transformation to regulatory T cells (Treg ). PMA significantly up-regulated the expression of Arg-1 and the Arg-1 protein expression in MDSCs and arginase 1 (Arg-1) inhibitor nor-NOHA reversed the MDSC immunosuppressive activity, indicating the involvement of the Arg-1 pathway in MDSC-mediated immunosuppression. M-CSF + PMA-induced MDSCs also significantly prolonged the survival time of skin grafts in mice, showing that MDSCs exert immunosuppressive effects in vivo. We describe a novel scheme to induce immunosuppressive MDSCs in vitro. MDSCs induced by M-CSF with PMA showed stable immunosuppression. MDSCs induced by this protocol may benefit patients with organ transplantation through immune regulation.
Collapse
Affiliation(s)
- Haozhou Wang
- Institute of Uro-Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - JiaWei Ji
- Institute of Uro-Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuan Zhuang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoguang Zhou
- Institute of Uro-Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yong Zhao
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Zhang
- Institute of Uro-Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Insights into the biology and therapeutic implications of TNF and regulatory T cells. Nat Rev Rheumatol 2021; 17:487-504. [PMID: 34226727 DOI: 10.1038/s41584-021-00639-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Treatments that block tumour necrosis factor (TNF) have major beneficial effects in several autoimmune and rheumatic diseases, including rheumatoid arthritis. However, some patients do not respond to TNF inhibitor treatment and rare occurrences of paradoxical disease exacerbation have been reported. These limitations on the clinical efficacy of TNF inhibitors can be explained by the differences between TNF receptor 1 (TNFR1) and TNFR2 signalling and by the diverse effects of TNF on multiple immune cells, including FOXP3+ regulatory T cells. This basic knowledge sheds light on the consequences of TNF inhibitor therapies on regulatory T cells in treated patients and on the limitations of such treatment in the control of diseases with an autoimmune component. Accordingly, the next generation of drugs targeting TNF is likely to be based on agents that selectively block the binding of TNF to TNFR1 and on TNFR2 agonists. These approaches could improve the treatment of rheumatic diseases in the future.
Collapse
|
50
|
Asgarzade A, Ziyabakhsh A, Asghariazar V, Safarzadeh E. Myeloid-derived suppressor cells: Important communicators in systemic lupus erythematosus pathogenesis and its potential therapeutic significance. Hum Immunol 2021; 82:782-790. [PMID: 34272089 DOI: 10.1016/j.humimm.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 01/26/2023]
Abstract
Systemic lupus erythematosus (SLE) is a recognized chronic condition associated with immune system disorders that affect women nine times more commonly than men. SLE is characterized by over-secretion and release of autoantibodies in response to different cellular compartments and self-tolerance breaks to its own antigens. The detailed immunological dysregulation as an associated event that elicits the onset of clinical manifestations of SLE has not been clarified yet. Though, research using several animal models in the last two decades has indicated the role of the immune system in the pathogenesis of this disease. Myeloid-derived suppressor cells (MDSCs) as heterogeneous myeloid cells, are responsible for severe pathological conditions, including infection, autoimmunity, and cancer, by exerting considerable immunosuppressive effects on T-cells responses. It has been reported that these cells are involved in the regulation process of the immune response in several autoimmune diseases, particularly SLE. The function of MDSC is deleterious in infection and cancer diseases, though their role is more complicated in autoimmune diseases. In this review, we summarized the role and function of MDSCs in the pathogenesis and progression of SLE and its possible therapeutic approach.
Collapse
Affiliation(s)
- Ali Asgarzade
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Ziyabakhsh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Microbiology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|