1
|
Whitman MA, Mantri M, Spanos E, Estroff LA, De Vlaminck I, Fischbach C. Bone mineral density affects tumor growth by shaping microenvironmental heterogeneity. Biomaterials 2025; 315:122916. [PMID: 39490060 DOI: 10.1016/j.biomaterials.2024.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Breast cancer bone metastasis is a major cause of mortality in patients with advanced breast cancer. Although decreased mineral density is a known risk factor for bone metastasis, the underlying mechanisms remain poorly understood because studying the isolated effect of bone mineral density on tumor heterogeneity is challenging with conventional approaches. Moreover, mineralized biomaterials are commonly utilized for clinical bone defect repair, but how mineralized biomaterials affect the foreign body response and wound healing is unclear. Here, we investigate how bone mineral affects tumor growth and microenvironmental complexity in vivo by combining single-cell RNA-sequencing with mineral-containing or mineral-free decellularized bone matrices. We discover that the absence of bone mineral significantly influences fibroblast and immune cell heterogeneity, promoting phenotypes that increase tumor growth and alter the response to injury or disease. Importantly, we observe that the stromal response to bone mineral content depends on the murine tumor model used. While lack of bone mineral induces tumor-promoting microenvironments in both immunocompromised and immunocompetent animals, these changes are mediated by altered fibroblast phenotype in immunocompromised mice and macrophage polarization in immunocompetent mice. Collectively, our findings suggest that bone mineral density affects tumor growth by impacting microenvironmental complexity in an organism-dependent manner.
Collapse
Affiliation(s)
- Matthew A Whitman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Emmanuel Spanos
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14850, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
2
|
Guo Y, Jin L, Shen Z, Fan L, Yu X, Kuang Y, Cai L, Zhou J, Chen Z, Yan F, Zhang J, Tong M, Yuan J, Mao Z, Chen G. Biomimetic Membrane Vesicles Reprogram Microglia Polarization and Remodel the Immunosuppressive Microenvironment of Glioblastoma via PERK/HIF-1α/Glycolysis Pathway. Adv Healthc Mater 2025:e2404782. [PMID: 39757442 DOI: 10.1002/adhm.202404782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 01/07/2025]
Abstract
The malignant interaction between tumor cells and immune cells is one of the important reasons for the rapid progression and refractoriness of glioblastoma (GBM). As an essential metabolic center of M2 macrophages, the inhibition of protein kinase RNA-like endoplasmic reticulum kinase (PERK) leads to the reduction of M2 macrophages. Nevertheless, the restriction of the blood-brain barrier (BBB) and non-specific cell targeting hinder the application of PERK inhibitors in GBM. Herein, the optimal NP-M-M2pep is developed successfully, which has shown the capacity of BBB penetration and specific targeting of M2 microglia. In addition to inhibiting the polarization of M2 microglia, the administration of iPERK@NP-M-M2pep reprogrammed M2 microglia into M1 ones in vitro via PERK/HIF-1α/glycolysis pathway. Efficient brain accumulation of nanoparticles is achieved after tail vein injection, with effective inhibition of GBM progression after one course of treatment. The glioma-associated microglia and macrophages (GAM) with M2 type are induced to M1 and the immunosuppressive TME is remodeled by upregulating immunostimulatory cells and downregulating immunosuppressive cells. In summary, the biomimetic membrane vesicles (BMVs) specifically delivered iPERK to GAMs offer an inspiring strategy to reprogram microglia polarization, re-educate immunosuppressive TME, and inhibit the progression of GBM.
Collapse
Affiliation(s)
- Yinghan Guo
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhipeng Shen
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Linfeng Fan
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Xian Yu
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Yirui Kuang
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Lingxin Cai
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Jiayin Zhou
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Zihang Chen
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Feng Yan
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Minfeng Tong
- Department of Neurosurgery, affiliated Jinhua Hospital, School of Medicine, Zhejiang University, Jinhua, Zhejiang, 321000, China
| | - Jianlie Yuan
- Department of Neurosurgery, affiliated Jinhua Hospital, School of Medicine, Zhejiang University, Jinhua, Zhejiang, 321000, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Gao Chen
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
3
|
Choi JU, Kim Y, Lee DY, Park JS, Jeun M, Lee HK, Park CH. Lentivirus-based production of human chimeric antigen receptor macrophages from peripheral blood. Biomark Res 2025; 13:1. [PMID: 39748414 PMCID: PMC11697635 DOI: 10.1186/s40364-024-00703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Although chimeric antigen receptor (CAR) T cell therapy has shown remarkable efficacy against leukemic cells, it still has critical limitations. CAR macrophage has been regarded as a potential alternative to CAR T cells. However, due to the difficulties in gene transduction into macrophages, the production of primary human CAR macrophages from peripheral blood mononuclear cells (PBMC) using lentivirus is highly challenging. Here, we report on how to generate CAR macrophages from human PBMC with lentiviral particles. Using our lentiviral protocol, we produced functional CAR macrophages to lyse and phagocytose target cancer cells efficiently.
Collapse
Affiliation(s)
- Ji U Choi
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yeongrin Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Da Yeon Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jin Song Park
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Moonjung Jeun
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Heung Kyoung Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Chi Hoon Park
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Rawat S, Moglad E, Afzal M, Goyal A, Roopashree R, Bansal P, Mishra S, Prasad GVS, Pramanik A, Alzarea SI, Ali H, Imran M, Abida. Reprogramming tumor-associated macrophages: The role of MEK-STAT3 inhibition in lung cancer. Pathol Res Pract 2025; 265:155748. [PMID: 39616977 DOI: 10.1016/j.prp.2024.155748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024]
Abstract
Tumor-associated macrophages (TAMs) crucially contribute to lung cancer's advancement and escape from the immune system. TAMs, particularly the M2 phenotype, promote an immunosuppressive microenvironment, facilitating tumor growth and metastasis. The MEK-STAT3 signalling pathway is a critical mediator in this process, driving TAM reprogramming and contributing to lung cancer's resistance to treatment. Inhibiting the MEK and STAT3 pathways disrupts key cancer-promoting mechanisms, including immune evasion, angiogenesis, and metastasis. Preclinical studies have demonstrated the effectiveness of MEK inhibitors, such as trametinib and selumetinib, in synergistic therapies for NSCLC, particularly in modulating the tumor microenvironment. We analyse the present understanding of approaches that can transform TAMs via the inhibition of MEK-STAT3 with either solo or combined treatments in lung cancer therapy.
Collapse
Affiliation(s)
- Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India.
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - R Roopashree
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
5
|
Anandi L, Garcia J, Ros M, Janská L, Liu J, Carmona-Fontaine C. Direct visualization of emergent metastatic features within an ex vivo model of the tumor microenvironment. Life Sci Alliance 2025; 8:e202403053. [PMID: 39419548 PMCID: PMC11487089 DOI: 10.26508/lsa.202403053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Ischemic conditions such as hypoxia and nutrient starvation, together with interactions with stromal cells, are critical drivers of metastasis. These conditions arise deep within tumor tissues, and thus, observing nascent metastases is exceedingly challenging. We thus developed the 3MIC-an ex vivo model of the tumor microenvironment-to study the emergence of metastatic features in tumor cells in a 3-dimensional (3D) context. Here, tumor cells spontaneously create ischemic-like conditions, allowing us to study how tumor spheroids migrate, invade, and interact with stromal cells under different metabolic conditions. Consistent with previous data, we show that ischemia increases cell migration and invasion, but the 3MIC allowed us to directly observe and perturb cells while they acquire these pro-metastatic features. Interestingly, our results indicate that medium acidification is one of the strongest pro-metastatic cues and also illustrate using the 3MIC to test anti-metastatic drugs on cells experiencing different metabolic conditions. Overall, the 3MIC can help dissecting the complexity of the tumor microenvironment for the direct observation and perturbation of tumor cells during the early metastatic process.
Collapse
Affiliation(s)
- Libi Anandi
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Jeremy Garcia
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Manon Ros
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Libuše Janská
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Josephine Liu
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Carlos Carmona-Fontaine
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
6
|
Guo S, Wang L, Bu D, Liu F. Tumors in the setting of dupilumab use: A review of the literature. World Allergy Organ J 2025; 18:101006. [PMID: 39758935 PMCID: PMC11697539 DOI: 10.1016/j.waojou.2024.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/22/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025] Open
Abstract
Dupilumab is the first monoclonal antibody approved for treating moderate-to-severe atopic dermatitis (AD) and has significantly improved the quality of life of AD patients. However, the safety of dupilumab is yet unclear in the context of cancer. Therefore, we aimed to investigate the safety of dupilumab and its relationship with the progression and occurrence of tumors. By reviewing relevant medical records of 90 patients who had pre-existing tumors before dupilumab treatment or presented new tumors after dupilumab treatment, we found that dupilumab probably had no significant negative effects on most tumors, but several patients with Cutaneous T-cell lymphomas (CTCLs) had relatively unfavorable outcomes during dupilumab treatment. Besides, CTCLs and lymphomas accounted for the majority of patients who presented new tumors after dupilumab treatment. Several patients were first diagnosed with presumed AD and probably were the presentations of CTCL at an early stage, and they developed typical CTCL symptoms after dupilumab treatment. Finally we came to the conclusion that dupilumab is safe for most patients with cancer. However, the effect of dupilumab on CTCLs is disputable. The use of dupilumab requires individual evaluation and closely monitored. When the efficacy is poor, re-evaluation of the diagnosis, especially of CTCLs and related diseases, is necessary.
Collapse
Affiliation(s)
- Shumeng Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
| | - Liangchun Wang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
| | - Dingfang Bu
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Fengjie Liu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
| |
Collapse
|
7
|
Yi J, Zhang W, Li Y, Ren H, Xiang Y, Qiao C. Recent advances in crosstalk between immune cells and cancer cells with ferroptosis. Life Sci 2025; 360:123279. [PMID: 39608446 DOI: 10.1016/j.lfs.2024.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Ferroptosis, a regulated form of cell death distinct from apoptosis and necrosis. Key hallmarks include iron-dependent lipid peroxidation, glutathione depletion, and intracellular iron accumulation, all of which are counteracted by specific cellular defenses. However, the immunosuppressive effects of ferroptosis induction in cancer immunotherapy remain unresolved. This review summarizes the recent advancements in ferroptosis research, focusing on its defensive mechanisms. It analyzes how ferroptosis affects both cancer and immune cells, highlighting its potential inhibitory effects on anti-tumor immunity and possible promotion of pro-tumor immune responses. Finally, this review briefly introduces case studies that combined ferroptosis induction with immunotherapy, offering novel perspectives for cancer treatment.
Collapse
Affiliation(s)
- Jinfeng Yi
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wanting Zhang
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - He Ren
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Yuhang Xiang
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Cong Qiao
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
8
|
Jiang W, Xu S, Li P. SLC2A3 is a Potential Factor for Head and Neck Squamous Cancer Development through Tumor Microenvironment Alteration. Curr Gene Ther 2025; 25:157-177. [PMID: 38778609 DOI: 10.2174/0115665232291300240509104344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Tumor immunity has garnered increasing attention in cancer treatment and progression. However, there is still a challenge in understanding the mechanisms of specific molecules affecting the clinical prognosis and tumor microenvironment (TME). METHODS Here, we applied the ESTIMATE algorithm to calculate the immune and stromal scores in 504 HNSC cases from TCGA. Patients were grouped according to the median value of the immune and stromal. Clinicopathological characteristics and differentially expressed genes (DEG) were analyzed. Subsequently, LASSO, COX regression, survival analysis, and clinicopathological characteristics were conducted. Subsequently, SLC2A3 was determined as a predictive factor that high expression of SLC2A3 at the mRNA and protein levels predicted a worse clinical prognosis. GSEA25099 was utilized for external validation of immune infiltration, while tissue PCR, IHC, and Western Blot were used to confirm the expression levels of SLC2A3. RESULTS A series of immune-infiltration analyses showed that SLC2A3 expression was negatively correlated with CD8+ T cells, significantly affecting the survival prognosis of HNSC. In the GSEA analysis, the high expression of SLC2A3 was mainly enriched for immune-related biological processes. Meanwhile, high expression of SLC2A3 possessed higher TIDE scores and was also strongly positively correlated with a series of immune checkpoints affecting survival prognosis, thus causing greater susceptibility to immune escape. CONCLUSION Conclusively, SLC2A3 is a potential oncogene and factor of HNSC development, notably by an altered state of the immune microenvironment, immune-suppressive regulation, and immune escape.
Collapse
Affiliation(s)
- Wei Jiang
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- College of Stomatology, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Sheng Xu
- Department of Dental Laboratory, Guangxi Medical University College of Stomatology, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ping Li
- Department of Pathology, Guangxi Medical University College of Stomatology, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
9
|
Meng W, Li L, Hao Y, Tang M, Cao C, He J, Wang L, Cao B, Zhang Y, Li L, Zhu G. NAD+ Metabolism Reprogramming Mediates Irradiation-Induced Immunosuppressive Polarization of Macrophages. Int J Radiat Oncol Biol Phys 2025; 121:176-190. [PMID: 39127084 DOI: 10.1016/j.ijrobp.2024.07.2327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE Radiation therapy stands as an important complementary treatment for head and neck squamous cell carcinoma (HNSCC), yet it does not invariably result in complete tumor regression. The infiltration of immunosuppressive macrophages is believed to mediate the radiation therapy resistance, whose mechanism remains largely unexplored. This study aimed to elucidate the role of immunosuppressive macrophages during radiation therapy and the associated underlying mechanisms. METHODS AND MATERIALS Male C3H mice bearing syngeneic SCC-VII tumor received irradiation (2 × 8 Gy). The impact of irradiation on tumor-infiltrating macrophages was assessed. Bone marrow-derived macrophages were evaluated in differentiation, proliferation, migration, and inflammatory cytokines after treatment of irradiated tumor culture medium and irradiated tumor-derived extracellular vesicles (irTEVs). A comprehensive metabolomics profiling of the irTEVs was conducted using liquid chromatography-mass spectrometry, whereas key metabolites were investigated for their role in the mechanism of immunosuppression of macrophages in vitro and in vivo. RESULTS Radiation therapy on SCC-VII syngeneic graft tumors increased polarization of both M1 and M2 macrophages in the tumor microenvironment and drove infiltrated macrophages toward an immunosuppressive phenotype. Irradiation-induced polarization and immunosuppression of macrophages were dependent on irTEVs which delivered an increased amount of niacinamide (NAM) to macrophages. NAM directly bound to the nuclear factor kappa-B transcriptional activity regulator USP7, through which NAM reduced translocation of nuclear factor kappa-B into the nucleus, thereby decreasing the release of cytokines interleukin 6 and interleukin 8. Increased enzyme activity of NAM phosphoribosyl transferase which is the rate-limiting enzyme of NAD+ metabolism, contributed to the irradiation-induced accumulation levels of NAM in irradiated HNSCC and irTEVs. Inhibition of NAM phosphoribosyl transferase decreased NAM levels in irTEVs and increased radiation therapy sensitivity by alleviating the immunosuppressive function of macrophages. CONCLUSIONS Radiation therapy could induce NAD+ metabolic reprogramming of HNSCC cells, which regulate macrophages toward an immunosuppressive phenotype. Pharmacologic targeting of NAD+ metabolism might be a promising strategy for radiation therapy sensitization of HNSCC.
Collapse
Affiliation(s)
- Wanrong Meng
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Ling Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yaying Hao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Miaomiao Tang
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Cao
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Jialu He
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Linlin Wang
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Bangrong Cao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, Chengdu, China
| | - Longjiang Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China.
| | - Guiquan Zhu
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Neumeyer S, Tagawa T. The Kaposi sarcoma herpesvirus control of monocytes, macrophages, and the tumour microenvironment. Virology 2025; 601:110286. [PMID: 39541833 DOI: 10.1016/j.virol.2024.110286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Kaposi sarcoma herpesvirus (KSHV) is an oncogenic DNA virus associated with various malignancies, including tumours like Kaposi sarcoma and Primary effusion lymphoma. Recently, the importance of the tumour microenvironment in KSHV-associated tumours is being studied. New studies utilizing human primary cells, co-culture experiments with KSHV-infected cells, and modern techniques like time-resolved single cell analysis, have significantly advanced the understanding of KSHV interactions with monocytes and macrophages. These cells play key roles in shaping the tumour microenvironment. It has become clear that KSHV-infected endothelial cells regulate the growth and the differentiation of monocytes and macrophages. Monocytes and macrophages, in turn, can regulate KSHV-infected cells in tumorigenesis and cytokine secretion, leading to the pro-tumour microenvironment. Further investigations into the viral regulation of monocytes and macrophages thus have potential to lead to the discovery of novel antitumour therapeutics.
Collapse
Affiliation(s)
- Sarah Neumeyer
- The Institute of Quantitative Biology, Biochemistry and Biotechnology (IQB3), School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK; The Institute of Infection and Immunology Research (IIIR), School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Takanobu Tagawa
- The Institute of Quantitative Biology, Biochemistry and Biotechnology (IQB3), School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK; The Institute of Infection and Immunology Research (IIIR), School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
11
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
12
|
Sun C, Cheng Y, Dong J, Hu L, Zhang Y, Shen H, Zhang G, Jiang B, Adam Youssouf S, Min W, Shen Y, Wang L, Deng H, Xiao Y, Yang P. Novel PD-L1/VISTA Dual Inhibitor as Potential Immunotherapy Agents. J Med Chem 2024. [PMID: 39731560 DOI: 10.1021/acs.jmedchem.4c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Inhibiting the activity of immune checkpoint proteins to reignite the antitumor activity of immune cells has emerged as a pivotal strategy. PD-L1 and VISTA, as critical proteins governing immune regulation, are concurrently upregulated under conditions such as hypoxia. Through a rational drug design process, P17, a dual-target inhibitor for PD-L1 and VISTA is identified. This inhibitor blocks the signaling pathways of both PD-L1 and VISTA at the protein and cellular levels, thereby reactivating the antitumor function of T cells. P17 displays encouraging attributes in terms of druggability and safety assessments. Notably, P17 demonstrates superior antitumor efficacy compared to single-target inhibitors at equivalent doses in in vivo experiments. More crucially, P17 significantly enhances the infiltration of immune cells. This study not only validates the effectiveness of a dual-target inhibitor strategy against PD-L1 and VISTA, but also identifies P17 as a promising candidate molecule with significant therapeutic potential.
Collapse
Affiliation(s)
- Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yao Cheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jingwen Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lingrong Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Hao Shen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Guoyu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Binjian Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Salouoi Adam Youssouf
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxia Shen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
13
|
Zhang X, Hu J, Zheng H, Ren J, Mu S, Chen Y, Song G, Chen YA, Zhang G. Development and validation of a prognostic model based on m6A-related lncRNAs to predict prognosis for papillary renal cell cancer patients. Sci Rep 2024; 14:31460. [PMID: 39732963 DOI: 10.1038/s41598-024-83263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
To evaluate the predictive utility of N6-methyladenosine (m6A)-associated long non-coding RNAs (lncRNAs) for the prognosis and immunotherapy response in papillary renal cell carcinoma (pRCC). Transcriptomic data of pRCC samples were extracted from the TCGA database. The m6A-related lncRNAs were identified by Pearson correlation analysis. Univariate and LASSO regression analyses were used to develop a risk model. The discrimination and predictive ability were evaluated through survival analysis, ROC analysis and consensus clustering. Tumor mutation burden (TMB) and immune infiltration of the risk groups were compared. A prognostic nomogram was constructed using six m6A-related lncRNAs, and validated through calibration and decision curve analysis (DCA). The lncRNAs HCG25 and NOP14-AS1 were knocked down in a human pRCC cell line using specific siRNA constructs, and the proliferation and migration rates were assessed by the CCK-8 and transwell assays. We identified a total of 153 m6A-related lncRNAs in pRCC datasets, of which six were selected for constructing a m6A-related lncRNA pRCC prognostic model. Mutations in the SETD2 gene correlated with worse prognosis. Significant differences were observed in immune cell infiltration between the two risk groups. A clinical prognostic nomogram for pRCC was further established based on clinical variables. In vitro assays further showed that HCG25 and NOP14-AS1 regulate the proliferation and migration of pRCC cells. The results validated the discrimination ability of both the m6A-related lncRNA pRCC prognostic model and the pRCC clinical prognostic nomogram. We developed a clinical prognostic nomogram for pRCC using pRCC prognostic-associated m6A-related lncRNAs, which can be utilized for predicting the prognosis and immune landscape of pRCC patients.
Collapse
Affiliation(s)
- Xianlu Zhang
- Department of Urology Surgery, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China
- Institute of Urology, China Medical University, Shenyang, 110000, Liaoning, China
| | - Jiyuan Hu
- Department of Urology Surgery, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China
- Institute of Urology, China Medical University, Shenyang, 110000, Liaoning, China
| | - Haoyuan Zheng
- Department of Urology Surgery, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China
- Institute of Urology, China Medical University, Shenyang, 110000, Liaoning, China
| | - Jiayi Ren
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Siyu Mu
- Department of Neurology, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, 110000, China
| | - Yiming Chen
- Department of Urology Surgery, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China
- Institute of Urology, China Medical University, Shenyang, 110000, Liaoning, China
| | - Guoli Song
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institute for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Ya-Ang Chen
- Department of Urology Surgery, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China
- Institute of Urology, China Medical University, Shenyang, 110000, Liaoning, China
| | - Gejun Zhang
- Department of Urology Surgery, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China.
- Institute of Urology, China Medical University, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
14
|
Zhao J, Wu D, Liu J, Zhang Y, Li C, Zhao W, Cao P, Wu S, Li M, Li W, Liu Y, Huang Y, Cao Y, Sun Y, Yang E, Ji N, Yang J, Chen J. Disease-specific suppressive granulocytes participate in glioma progression. Cell Rep 2024; 43:115014. [PMID: 39630582 DOI: 10.1016/j.celrep.2024.115014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/17/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma represents one of the most aggressive cancers, characterized by severely limited therapeutic options. Despite extensive investigations into this brain malignancy, cellular and molecular components governing its immunosuppressive microenvironment remain incompletely understood. Here, we identify a distinct neutrophil subpopulation, termed disease-specific suppressive granulocytes (DSSGs), present in human glioblastoma and lower-grade gliomas. DSSGs exhibit the concurrent expression of multiple immunosuppressive and immunomodulatory signals, and their abundance strongly correlates with glioma grades and poor clinical outcomes. Genetic disruption of neutrophil recruitment in immunocompetent mouse models of gliomas, achieved through Cxcl1 knockout in glioma cells or host-specific Cxcr2 deletion or diphtheria toxin A-mediated neutrophil depletion, can significantly enhance antitumor immunity and prolong survival. Further, we reveal that the skull bone marrow and meninges can be the primary sources of neutrophils and DSSGs in human and mouse glioma tumors. These findings demonstrate a critical mechanism underlying the establishment of the immunosuppressive microenvironment in gliomas.
Collapse
Affiliation(s)
- Jiarui Zhao
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Di Wu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Jiaqi Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | | | - Penghui Cao
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Shixuan Wu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Mengyuan Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Wenlong Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yiwen Sun
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Ence Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Peking University Third Hospital Cancer Center, Beijing 100191, China.
| | - Jian Chen
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
15
|
Li R, Huang J, Wei Y, Wang Y, Lu C, Liu J, Ma X. Nanotherapeutics for Macrophage Network Modulation in Tumor Microenvironments: Targets and Tools. Int J Nanomedicine 2024; 19:13615-13651. [PMID: 39717515 PMCID: PMC11665441 DOI: 10.2147/ijn.s491573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Macrophage is an important component in the tumor immune microenvironment, which exerts significant influence on tumor development and metastasis. Due to their dual nature of promoting and suppressing inflammation, macrophages can serve as both targets for tumor immunotherapy and tools for treating malignancies. However, the abundant infiltration of tumor-associated macrophages dominated by an immunosuppressive phenotype maintains a pro-tumor microenvironment, and engineering macrophages using nanotechnology to manipulate the tumor immune microenvironment represent a feasible approach for cancer immunotherapy. Additionally, considering the phagocytic and specifically tumor-targeting capabilities of M1 macrophages, macrophages manipulated through cellular engineering and nanotechnology, as well as macrophage-derived exosomes and macrophage membranes, can also become effective tools for cancer treatment. In conclusion, nanotherapeutics targeting macrophages remains immense potential for the development of macrophage-mediated tumor treatment methods and will further enhance our understanding, diagnosis, and treatment of various malignants.
Collapse
Affiliation(s)
- Renwei Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jing Huang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yuhao Wei
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yusha Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Can Lu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Jifeng Liu
- Department of Otolaryngology Head and Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
16
|
Zhang YJN, Xiao Y, Li ZZ, Bu LL. Immunometabolism in head and neck squamous cell carcinoma: Hope and challenge. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167629. [PMID: 39689765 DOI: 10.1016/j.bbadis.2024.167629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Immunotherapy has improved the survival rate of patients with head and neck squamous cell carcinoma (HNSCC), but less than 20 % of them have a durable response to these treatments. Excessive local recurrence and lymph node metastasis ultimately lead to death, making the 5-year survival rate of HNSCC still not optimistic. Cell metabolism has become a key determinant of the viability and function of cancer cells and immune cells. In order to maintain the enormous anabolic demand, tumor cells choose a specialized metabolism different from non-transformed somatic cells, leading to changes in the tumor microenvironment (TME). In recent years, our understanding of immune cell metabolism and cancer cell metabolism has gradually increased, and we have begun to explore the interaction between cancer cell metabolism and immune cell metabolism in a way which is meaningful for treatment. Understanding the different metabolic requirements of different cells that constitute the immune response to HNSCC is beneficial for revealing metabolic heterogeneity and plasticity, thereby enhancing the effect of immunotherapy. In this review, we have concluded that the relevant metabolic processes that affect the function of immune cells in HNSCC TME and proposed our own opinions and prospects on how to use metabolic intervention to enhance anti-tumor immune responses.
Collapse
Affiliation(s)
- Yi-Jia-Ning Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
17
|
Qi D, Zhang H, Xiong F, Zhang G, Tao B, Wang C. Renal cell carcinoma and macrophage research: A bibliometric analysis (2004-2023). Medicine (Baltimore) 2024; 103:e40954. [PMID: 39686418 DOI: 10.1097/md.0000000000040954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
To analyze hotspots and trends in renal cell carcinoma (RCC)-macrophage research using bibliometric analysis, although numerous studies on macrophages in RCC have been recently reported, understanding the progressive trends in this field remains challenging. Publications focused on macrophages in RCC were extracted from the Web of Science Core Collection. VOSviewer, Citespace, and Bibliometrics online platforms were used to visualize hot topics and global trends in RCC-macrophage research. In total, 778 papers were collected. China produced the most articles; however, the United States accounted for the largest number of citations. Oncology journals published the most articles, and these were cited most frequently. Based on keyword analysis, "prognosis," "immunotherapy," "tumor microenvironment," and "immune infiltration" represented the primary research hotspots. In summary, RCC-macrophage studies have emerged as a key research focus; particularly, incorporating multiomics data and applying artificial intelligence for predictive modeling have demonstrated significant potential. Our study suggests that the resistance mechanism of immune checkpoint inhibitors and the interaction between macrophages and immune checkpoint inhibitors will be pivotal areas for future research.
Collapse
Affiliation(s)
- Dingtian Qi
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
18
|
Wang L, Hu Z, Zhang W, Wang Z, Cao M, Cao X. Promoting macrophage phagocytosis of cancer cells for effective cancer immunotherapy. Biochem Pharmacol 2024; 232:116712. [PMID: 39675588 DOI: 10.1016/j.bcp.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Cancer therapy has been revolutionized by immunotherapeutic agents exploiting adaptive antitumor immunity in the past two decades. However, the overall response rate of these immunotherapies is limited, and patients also develop resistance upon treatment, promoting a rapidly growing exploration of anti-tumor innate immunity for effective cancer therapy. Among these, macrophage immunotherapy through harnessing macrophage phagocytosis has been thrust into the spotlight due to its potential for simultaneously inducing cancer cell killing effect and mobilizing adaptive antitumor responses. Here in this review, we summarize the current macrophage immunotherapy such as therapeutic antibodies, phagocytosis checkpoint blockades, and CAR-macrophages with a particular emphasis on the resistant mechanisms limiting their therapeutic effects. Moreover, we further survey the efforts being placed to seek synergistic mechanisms and combination strategies for promoting macrophage phagocytosis which might stand as next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Lei Wang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyi Hu
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Wencan Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhixin Wang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Cao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Cao
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Cheung EC, Strathdee D, Stevenson D, Coomes J, Blyth K, Vousden KH. Regulation of ROS signaling by TIGAR induces cancer-modulating responses in the tumor microenvironment. Proc Natl Acad Sci U S A 2024; 121:e2416076121. [PMID: 39636862 DOI: 10.1073/pnas.2416076121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/03/2024] [Indexed: 12/07/2024] Open
Abstract
The consequences of reactive oxygen species (ROS) in cancer cells are complex and have been shown to both promote and retard tumorigenesis in different models. In mouse models of pancreatic ductal adenocarcinoma (PDAC), loss of the antioxidant defense gene Tigar results in both a reduction in the development of early pancreatic intraepithelial neoplasia and an increase in invasive and metastatic capacity, accompanied by decreased survival of mice lacking pancreatic TIGAR. We previously demonstrated that increased ROS following loss of TIGAR promotes various cancer cell-intrinsic changes that contribute to metastatic capacity, including epithelial to mesenchymal transition, enhanced migration and invasion, and an increase in ERK signaling. In this study, we show that pancreatic overexpression of TIGAR decreases metastatic capacity and migratory phenotypes in an aggressive model of PDAC, consistent with the concept that dynamic modulation of TIGAR in PDAC contributes to the development and progression of these tumors. Using TIGAR deficient and overexpressing mouse models, we find that the impact of modulation of TIGAR and ROS in PDAC cells also has a profound effect on the normal stromal cells surrounding the tumor. Loss of TIGAR promotes the production of cytokines by cancer cells that induce changes in the surrounding fibroblasts to adopt a tumor-supportive phenotype. Furthermore, these cytokines also attract macrophages that support PDAC dissemination and metastasis. Taken together our work shows that TIGAR-modulated ROS in PDAC can control cell intrinsic and extrinsic changes to impact tumor aggression.
Collapse
Affiliation(s)
- Eric C Cheung
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Douglas Strathdee
- Cancer Research UK Scotland Institute Scotland Institute, Glasgow G61 1BD, Scotland
| | - David Stevenson
- Cancer Research UK Scotland Institute Scotland Institute, Glasgow G61 1BD, Scotland
| | - Jack Coomes
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Karen Blyth
- Cancer Research UK Scotland Institute Scotland Institute, Glasgow G61 1BD, Scotland
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, Scotland
| | | |
Collapse
|
20
|
Xie H, Xi X, Lei T, Liu H, Xia Z. CD8 + T cell exhaustion in the tumor microenvironment of breast cancer. Front Immunol 2024; 15:1507283. [PMID: 39717767 PMCID: PMC11663851 DOI: 10.3389/fimmu.2024.1507283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
CD8+ T cells are crucial cytotoxic components of the tumor immune system. In chronic inflammation, they become low-responsive, a state known as T cell exhaustion (TEX). The aim of immune checkpoint blockade is to counteract TEX, yet its dynamics in breast cancer remain poorly understood. This review defines CD8+ TEX and outlines its features and underlying mechanisms. It also discusses the primary mechanisms of CD8+ TEX in breast cancer, covering inhibitory receptors, immunosuppressive cells, cytokines, transcriptomic and epigenetic alterations, metabolic reprogramming, and exosome pathways, offering insights into potential immunotherapy strategies for breast cancer.
Collapse
Affiliation(s)
- Hanghang Xie
- Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Xiaowei Xi
- Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Ting Lei
- Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Hongli Liu
- Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
21
|
Cui G, Liu W, Sun X, Bai Y, Ding M, Zhao N, Guo J, Qu D, Wang S, Qin L, Yang Y. RNA-seq shows Angiopoietin-like 4 promotes hepatocellular carcinoma progression by inducing M2 polarization of tumor-associated macrophages. Int J Biol Macromol 2024; 287:138523. [PMID: 39653221 DOI: 10.1016/j.ijbiomac.2024.138523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a particularly aggressive form of cancer, characterized by its rapid progression and a complex interplay with the surrounding immune cellular environment. The primary objective of this study was to comprehensively investigate the role of ANGPTL4 in the context of HCC, utilizing RNA sequencing (RNA-seq) techniques to explore its impact on the M2 polarization of tumor-associated macrophages (TAM) and to uncover potential mechanisms driving HCC progression. To achieve this, we performed a transcriptome analysis of HCC cell lines, alongside cells obtained after co-culturing these lines with macrophages. By comparing gene expression profiles between the experimental groups exposed to ANGPTL4 and control groups, we aimed to identify specific molecular pathways associated with ANGPTL4's function. In addition to gene expression analysis, we employed flow cytometry to assess the polarization status of TAM. Furthermore, we utilized immunohistochemistry to evaluate the distribution of macrophages within HCC tissues and to quantify the expression levels of M2 macrophage markers. The results derived from RNA-seq analysis were particularly revealing; treatment with ANGPTL4 led to a significant upregulation of genes linked to M2 polarization, notably including CD206 and Arg1. In subsequent experimental observations, it became evident that ANGPTL4 not only facilitated the M2 polarization of macrophages but also enhanced the proliferation and migratory capacity of HCC cells through the upregulation of these same cytokines.
Collapse
Affiliation(s)
- Guanghua Cui
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Wei Liu
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China
| | - Xiaoke Sun
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Yun Bai
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Meijuan Ding
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Ning Zhao
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Jialu Guo
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Di Qu
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Song Wang
- Department of Oncology, Mudanjiang Oncology Hospital, Mudanjiang 157041, China
| | - Luyao Qin
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Yu Yang
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, 150081 Harbin, Heilongjiang, China.
| |
Collapse
|
22
|
Zhao X, Li W, Sun Y, Ma J. Oncolytic senecavirus A in tumor immunotherapy: Mechanisms, progress, and future directions. Virology 2024; 603:110338. [PMID: 39667099 DOI: 10.1016/j.virol.2024.110338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Oncolytic virotherapy has emerged as a promising immunotherapy strategy against cancer. As the first picornavirus tested in humans for its oncolytic potential, Senecavirus A (SVA) possesses several advantageous features, including its small size, rapid replication, and ability to penetrate the vascular system of solid tumors, allowing for the specific targeting and lysis of tumor cells. Additionally, SVA does not integrate into the host genome, thus avoiding potential genomic damage, and it lacks oncogenes or other virulence genes. Importantly, no significant pathogenic effects have been observed in humans or companion animals. Due to its simple genetic structure, SVA is amenable to various genetic modifications, allowing it to carry exogenous genes to further enhance tumor therapy. This review summarizes current knowledge of SVA's mechanisms of action and its progress in oncolytic therapy research, while also addressing the challenges and future directions.
Collapse
Affiliation(s)
- Xiaoya Zhao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Wenjie Li
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yuan Sun
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
23
|
Murphy B, Miyamoto T, Manning BS, Mirji G, Ugolini A, Kannan T, Hamada K, Zhu YP, Claiborne DT, Huang L, Zhang R, Nefedova Y, Kossenkov A, Veglia F, Shinde R, Zhang N. Myeloid activation clears ascites and reveals IL27-dependent regression of metastatic ovarian cancer. J Exp Med 2024; 221:e20231967. [PMID: 39570374 PMCID: PMC11586802 DOI: 10.1084/jem.20231967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/14/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Patients with metastatic ovarian cancer (OvCa) have a 5-year survival rate of <30% due to the persisting dissemination of chemoresistant cells in the peritoneal fluid and the immunosuppressive microenvironment in the peritoneal cavity. Here, we report that intraperitoneal administration of β-glucan and IFNγ (BI) induced robust tumor regression in clinically relevant models of metastatic OvCa. BI induced tumor regression by controlling fluid tumor burden and activating localized antitumor immunity. β-glucan alone cleared ascites and eliminated fluid tumor cells by inducing intraperitoneal clotting in the fluid and Dectin-1-Syk-dependent NETosis in the omentum. In omentum tumors, BI expanded a novel subset of immunostimulatory IL27+ macrophages and neutralizing IL27 impaired BI efficacy in vivo. Moreover, BI directly induced IL27 secretion in macrophages where single agent treatment did not. Finally, BI extended mouse survival in a chemoresistant model and significantly improved chemotherapy response in a chemo-sensitive model. In summary, we propose a new therapeutic strategy for the treatment of metastatic OvCa.
Collapse
Affiliation(s)
- Brennah Murphy
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Taito Miyamoto
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Bryan S. Manning
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
- Cancer Biology Graduate Program, Saint Joseph’s University, Philadelphia,PA, USA
| | - Gauri Mirji
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Alessio Ugolini
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Toshitha Kannan
- Gene Expression and Regulation Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Kohei Hamada
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yanfang P. Zhu
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Daniel T. Claiborne
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - Yulia Nefedova
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Andrew Kossenkov
- Gene Expression and Regulation Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Filippo Veglia
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Rahul Shinde
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Nan Zhang
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
24
|
Bates SM, Evans KV, Delsing L, Wong R, Cornish G, Bahjat M. Immune safety challenges facing the preclinical assessment and clinical progression of cell therapies. Drug Discov Today 2024; 29:104239. [PMID: 39521331 DOI: 10.1016/j.drudis.2024.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The promise of curative outcomes for life-limiting diseases using cell therapies is starting to become a reality, not only for patients with end-stage cancer, but also increasingly for regenerative therapies, including dentistry, ocular, neurodegenerative, and cardiac diseases. The introduction of often genetically modified cells into a patient can come with an extensive range of safety considerations. From an immune perspective, cell-based therapies carry inherent consequences and consideration of factors, such as the cell source (donor-derived autologous cells versus allogeneic cells), the intrinsic cellular nature of the therapy, and engineering/manufacturing methods, all of which influence the likelihood of inducing unwanted immune responses. Here, we provide an overview of the potential immune safety risks associated with cell therapies and explore possible mitigation approaches.
Collapse
Affiliation(s)
- Stephanie M Bates
- Safety Innovation, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Kelly V Evans
- Safety Innovation, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Louise Delsing
- Cell and Gene Therapy Safety, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ryan Wong
- Cell and Gene Therapy Safety, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Georgina Cornish
- Oncology Safety, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mahnoush Bahjat
- Safety Innovation, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
25
|
Pan S, Yuan H, Zhai Q, Zhang Y, He H, Yin T, Tang X, Gou J. The journey of nanoparticles in the abdominal cavity: Exploring their in vivo fate and impact factors. J Control Release 2024; 376:266-285. [PMID: 39396710 DOI: 10.1016/j.jconrel.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Peritoneal carcinomatosis (PC) is caused by metastasis of primary tumor cells from intra-abdominal organs to the peritoneal surface. Intraperitoneal (IP) chemotherapy allows close contact of high concentrations of therapeutic agents with cancer cells in the peritoneal cavity to prolong patient survival. However, conventional IP chemotherapy is prone to rapid elimination from the peritoneal cavity and lacks specificity towards cancer cells. To address these challenges, there is an imperative demand for exploiting novel drug delivery systems to enhance drug retention in the peritoneal cavity and target PC cells. Therefore, in this review, we first recapitulate the physiological structures and barriers associated with IP drug delivery, highlighting the in vivo fate of nanoparticles (NPs) after IP administration. Furthermore, the influence of physicochemical properties (particle size, charge, surface modification, and carrier composition) on the in vivo fate of NPs is discussed. Perspectives on the rational design of NPs for IP therapy and recent clinical progress are also provided.
Collapse
Affiliation(s)
- Shu Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Qiyao Zhai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
26
|
Tong S, Huang K, Xing W, Chu Y, Nie C, Ji L, Wang W, Tian G, Wang B, Yang J. Unveiling the distinctive variations in multi-omics triggered by TP53 mutation in lung cancer subtypes: An insight from interaction among intratumoral microbiota, tumor microenvironment, and pathology. Comput Biol Chem 2024; 113:108274. [PMID: 39531992 DOI: 10.1016/j.compbiolchem.2024.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The TP53 mutation is one of the most common gene mutations in non-small cell lung cancer (NSCLC) and plays a significant role in the occurrence, development, and prognosis of both lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Recent studies have also suggested the predictive value of TP53 mutations in the response to immunotherapy for NSCLC. It is known that intratumoral microbiota, tumor immune microenvironment (TIME) and histology are associated with the roles of TP53 mutation in NSCLC. However, the intrinsic associations among these three factors and their underlying interaction with TP53 mutation are not well understood. Additionally, the potential of predicting TP53 mutations using deep learning methods has not yet been fully evaluated. In this paper, we comprehensively evaluated the tissue microbiome, host gene expression characteristics, and histopathological slides of 992 NSCLC patients obtained from the cancer genome atlas (TCGA) and validated the findings using multi-omics data of 332 NSCLC patients from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Compared to LUSC, LUAD exhibited more substantial differences between patients with and without TP53 mutation in all three aspects. In LUAD, our results imply underlying links between the tissue microbiome and immune cell components in the TIME, and show that the abundance of immune cells is reflected in histology slides. Furthermore, we propose a novel multimodal deep learning model that focuses on histopathology images, which achieves an area under the curve (AUC) of 0.84 in LUAD. In summary, TP53 mutation of LUAD resulted more significant changes in intratumoral microbiota, TIME and histology than that of LUSC. And histopathology images can be used to predict TP53 mutation in LUAD with reasonable accuracy.
Collapse
Affiliation(s)
- Shanhe Tong
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui 243002, China; Geneis Beijing Co., Ltd., Beijing 100102, China
| | - Kenan Huang
- Department of Thoracic Surgery, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, China; Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Weipeng Xing
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui 243002, China; Geneis Beijing Co., Ltd., Beijing 100102, China
| | - Yuwen Chu
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui 243002, China; Geneis Beijing Co., Ltd., Beijing 100102, China
| | - Chuanqi Nie
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui 243002, China; Geneis Beijing Co., Ltd., Beijing 100102, China
| | - Lei Ji
- Geneis Beijing Co., Ltd., Beijing 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| | - Wenyan Wang
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui 243002, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| | - Bing Wang
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui 243002, China.
| | - Jialiang Yang
- Geneis Beijing Co., Ltd., Beijing 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China.
| |
Collapse
|
27
|
Hasan S, Awasthi P, Malik S, Dwivedi M. Immunotherapeutic strategies to induce inflection in the immune response: therapy for cancer and COVID-19. Biotechnol Genet Eng Rev 2024; 40:3571-3610. [PMID: 36411974 DOI: 10.1080/02648725.2022.2147661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
Abstract
Cancer has agonized the human race for millions of years. The present decade witnesses biological therapeutics to combat cancer effectively. Cancer Immunotherapy involves the use of therapeutics for manipulation of the immune system by immune agents like cytokines, vaccines, and transfection agents. Recently, this therapeutic approach has got vast attention due to the current pandemic COVID-19 and has been very effective. Concerning cancer, immunotherapy is based on the activation of the host's antitumor response by enhancing effector cell number and the production of soluble mediators, thereby reducing the host's suppressor mechanisms by induction of a tumour killing environment and by modulating immune checkpoints. In the present era, immunotherapies have gained traction and momentum as a pedestal of cancer treatment, improving the prognosis of many patients with a wide variety of haematological and solid malignancies. Food supplements, natural immunomodulatory drugs, and phytochemicals, with recent developments, have shown positive trends in cancer treatment by improving the immune system. The current review presents the systematic studies on major immunotherapeutics and their development for the effective treatment of cancers as well as in COVID-19. The focus of the review is to highlight comparative analytics of existing and novel immunotherapies in cancers, concerning immunomodulatory drugs and natural immunosuppressants, including immunotherapy in COVID-19 patients.
Collapse
Affiliation(s)
- Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University, Ranchi, Jharkhand, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
28
|
Zheng J, Meng W, Cui Z, Tian J, Zhang W. A dual-enzyme-like photosensitive nanozyme for remodeling the tumor immunosuppressive microenvironment to enhance immunotherapy. Biomaterials 2024; 311:122660. [PMID: 38865911 DOI: 10.1016/j.biomaterials.2024.122660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
In "immune-cold" tumors, the upregulation of immunosuppressive cells and insufficient infiltration of lymphocytes contribute to the resistance against immune therapy. Herein, we have developed a dual-enzyme-like photosensitive nanozyme (PBAF) to remodel the tumor immunosuppressive microenvironment (TIME) and induce the tumor infiltration of cytotoxic T lymphocytes (CTLs). Specifically, PBAF exhibits peroxidase (POD)-like activity and glutathione oxidase (GSHOx)-like activity and can be stimulated by 750 nm laser, promoting oxidative stress at the tumor site. Consequently, this process further leads to the reconstruction of TIME in animal experiments, inducing tumor-associated macrophages (TAMs) toward the immunostimulatory M1 phenotype, eliminating myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). Simultaneously, PBAF also promotes dendritic cells (DCs) maturation to enhance CTLs infiltration into the tumor. The remodeled TIME and enhanced immune responses by PBAF demonstrate significant post-administration inhibition of recurrence and metastasis in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Jiahao Zheng
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Wangyang Meng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
29
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024; 21:1376-1409. [PMID: 39516356 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
30
|
Chao PH, Chan V, Li SD. Nanomedicines modulate the tumor immune microenvironment for cancer therapy. Expert Opin Drug Deliv 2024; 21:1719-1733. [PMID: 39354745 DOI: 10.1080/17425247.2024.2412245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION In recent years, the evolution of immunotherapy as a means to trigger a robust antitumor immune response has revolutionized cancer treatment. Despite its potential, the effectiveness of cancer immunotherapy is hindered by low response rates and significant systemic side effects. Nanotechnology emerges as a promising frontier in shaping the future of cancer immunotherapy. AREAS COVERED This review elucidates the pivotal role of nanomedicine in reshaping the immune tumor microenvironment and explores innovative strategies pursued by diverse research groups to enhance the therapeutic efficacy of cancer immunotherapy. It discusses the hurdles encountered in cancer immunotherapy and the application of nanomedicine for small molecule immune modulators and nucleic acid therapeutics. It also highlights the advancements in DNA and mRNA vaccines facilitated by nanotechnology and outlines future trajectories in this evolving field. EXPERT OPINION Collectively, the integration of nanomedicine into cancer immunotherapy stands as a promising avenue to tackle the intricacies of the immune tumor microenvironment. Innovations such as immune checkpoint inhibitors and cancer vaccines have shown promise. Future developments will likely optimize nanoparticle design through artificial intelligence and create biocompatible, multifunctional nanoparticles, promising more effective, personalized, and durable cancer treatments, potentially transforming the field in the foreseeable future.
Collapse
Affiliation(s)
- Po-Han Chao
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Vanessa Chan
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Liu Y, Xiao H, Zeng H, Xiang Y. Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review). Int J Oncol 2024; 65:117. [PMID: 39513610 PMCID: PMC11575928 DOI: 10.3892/ijo.2024.5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Ovarian cancer (OC) is the most common and deadly malignant tumor of the female reproductive system. When OC cells detach from the primary tumor and enter the ascitic microenvironment, they are present as individual cells or multicellular spheroids in ascites. These spheroids, composed of cancer and non‑malignant cells, are metastatic units and play a crucial role in the progression of OC. However, little is known about the mechanism of spheroid formation and dissemination. Tumor‑associated macrophages (TAMs) in the center of spheroids are key in spheroid formation and metastasis and provide a potential target for OC therapy. The present review summarizes the key biological features of spheroids, focusing on the role of TAMs in spheroid formation, survival and peritoneal metastasis, and the strategies targeting TAMs to provide new insights in treating OC.
Collapse
Affiliation(s)
- Yuchen Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Haoyue Xiao
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hai Zeng
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
32
|
Tobe-Nishimoto A, Morita Y, Nishimura J, Kitahira Y, Takayama S, Kishimoto S, Matsumiya-Matsumoto Y, Matsunaga K, Imai T, Uzawa N. Tumor microenvironment dynamics in oral cancer: unveiling the role of inflammatory cytokines in a syngeneic mouse model. Clin Exp Metastasis 2024; 41:891-908. [PMID: 39126553 PMCID: PMC11607012 DOI: 10.1007/s10585-024-10306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The process of cervical lymph node metastasis is dependent on the phenotype of the tumor cells and their interaction with the host microenvironment and immune system; conventional research methods that focus exclusively on tumor cells are limited in their ability to elucidate the metastatic mechanism. In cancer tissues, a specialized environment called the tumor microenvironment (TME) is established around tumor cells, and inflammation in the TME has been reported to be closely associated with the development and progression of many types of cancer and with the response to anticancer therapy. In this study, to elucidate the mechanism of metastasis establishment, including the TME, in the cervical lymph node metastasis of oral cancer, we established a mouse-derived oral squamous cell carcinoma cervical lymph node highly metastatic cell line and generated a syngeneic orthotopic transplantation mouse model. In the established highly metastatic cells, epithelial-mesenchymal transition (EMT) induction was enhanced compared to that in parental cells. In the syngeneic mouse model, lymph node metastasis was observed more frequently in tumors of highly metastatic cells than in parental cells, and Cyclooxygenase-2 (COX-2) expression and lymphatic vessels in primary tumor tissues were increased, suggesting that this model is highly useful. Moreover, in the established highly metastatic cells, EMT induction was enhanced compared to that in the parent cell line, and CCL5 and IL-6 secreted during inflammation further enhanced EMT induction in cancer cells. This suggests the possibility of a synergistic effect between EMT induction and inflammation. This model, which allows for the use of two types of cells with different metastatic and tumor growth potentials, is very useful for oral cancer research involving the interaction between cancer cells and the TME in tumor tissues and for further searching for new therapeutic agents.
Collapse
Affiliation(s)
- Ayano Tobe-Nishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yoshihiro Morita
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| | - Junya Nishimura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yukiko Kitahira
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Shun Takayama
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Satoko Kishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yuka Matsumiya-Matsumoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Kazuhide Matsunaga
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Tomoaki Imai
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| |
Collapse
|
33
|
Wang H, Wang T, Yan S, Tang J, Zhang Y, Wang L, Xu H, Tu C. Crosstalk of pyroptosis and cytokine in the tumor microenvironment: from mechanisms to clinical implication. Mol Cancer 2024; 23:268. [PMID: 39614288 PMCID: PMC11607834 DOI: 10.1186/s12943-024-02183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
In the realm of cancer research, the tumor microenvironment (TME) plays a crucial role in tumor initiation and progression, shaped by complex interactions between cancer cells and surrounding non-cancerous cells. Cytokines, as essential immunomodulatory agents, are secreted by various cellular constituents within the TME, including immune cells, cancer-associated fibroblasts, and cancer cells themselves. These cytokines facilitate intricate communication networks that significantly influence tumor initiation, progression, metastasis, and immune suppression. Pyroptosis contributes to TME remodeling by promoting the release of pro-inflammatory cytokines and sustaining chronic inflammation, impacting processes such as immune escape and angiogenesis. However, challenges remain due to the complex interplay among cytokines, pyroptosis, and the TME, along with the dual effects of pyroptosis on cancer progression and therapy-related complications like cytokine release syndrome. Unraveling these complexities could facilitate strategies that balance inflammatory responses while minimizing tissue damage during therapy. This review delves into the complex crosstalk between cytokines, pyroptosis, and the TME, elucidating their contribution to tumor progression and metastasis. By synthesizing emerging therapeutic targets and innovative technologies concerning TME, this review aims to provide novel insights that could enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tao Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shuxiang Yan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410011, China.
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Shenzhen Research Institute of Central South University, Guangdong, 518063, China.
- Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
34
|
Lutz R, Grünschläger F, Simon M, Awwad MHS, Bauer M, Yousefian S, Beumer N, Jopp-Saile L, Sedlmeier A, Solé-Boldo L, Avanesyan B, Vonficht D, Stelmach P, Steinbuss G, Boch T, Steiger S, Baertsch MA, Prokoph N, Rippe K, Durie BGM, Wickenhauser C, Trumpp A, Müller-Tidow C, Hübschmann D, Weinhold N, Raab MS, Brors B, Goldschmidt H, Imbusch CD, Hundemer M, Haas S. Multiple myeloma long-term survivors exhibit sustained immune alterations decades after first-line therapy. Nat Commun 2024; 15:10396. [PMID: 39613747 DOI: 10.1038/s41467-024-54543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
The long-term consequences of cancer and its therapy on the patients' immune system years after cancer-free survival remain poorly understood. Here, we present an in-depth characterization of the bone marrow immune ecosystem of multiple myeloma long-term survivors, from initial diagnosis up to 17 years following a single therapy line and cancer-free survival. Using comparative single-cell analyses combined with molecular, genomic, and functional approaches, we demonstrate that multiple myeloma long-term survivors exhibit pronounced alterations in their bone marrow microenvironment associated with impaired immunity. These immunological alterations were frequently linked to an inflammatory immune circuit fueled by the long-term persistence or resurgence of residual myeloma cells. Notably, even in the complete absence of any detectable residual disease for decades, sustained changes in the immune system were observed, suggesting an irreversible 'immunological scarring' caused by the initial exposure to the cancer and therapy. Collectively, our study provides key insights into the molecular and cellular bone marrow ecosystem of long-term survivors of multiple myeloma, revealing both reversible and irreversible alterations in the immune compartment.
Collapse
Affiliation(s)
- Raphael Lutz
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- Oncology Center Speyer, Speyer, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Florian Grünschläger
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Malte Simon
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Mohamed H S Awwad
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcus Bauer
- Institute of Pathology, University Hospital Halle, Martin Luther University Halle-, Wittenberg, Germany
| | - Schayan Yousefian
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité Universitätsmedizin, Berlin, Germany
| | - Niklas Beumer
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lea Jopp-Saile
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Anastasia Sedlmeier
- Computational Oncology, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Llorenç Solé-Boldo
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité Universitätsmedizin, Berlin, Germany
| | - Bogdan Avanesyan
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité Universitätsmedizin, Berlin, Germany
| | - Dominik Vonficht
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Patrick Stelmach
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Georg Steinbuss
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Tobias Boch
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Simon Steiger
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and BioQuant, Heidelberg, Germany
| | - Marc-Andrea Baertsch
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Prokoph
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and BioQuant, Heidelberg, Germany
| | | | - Claudia Wickenhauser
- Institute of Pathology, University Hospital Halle, Martin Luther University Halle-, Wittenberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit EMBL and University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel Hübschmann
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Computational Oncology, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Innovation and Service Unit for Bioinformatics and Precision Medicine (BPM), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Niels Weinhold
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc S Raab
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Medical Faculty and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.
| | - Hartmut Goldschmidt
- Department of Medicine V, Hematology, Oncology and Rheumatology, GMMG Studygroup, Heidelberg University Hospital, Heidelberg, Germany.
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany.
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Mainz, Germany.
| | - Michael Hundemer
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin, Berlin, Germany.
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Charité Universitätsmedizin, Berlin, Germany.
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
35
|
Tang Y, Shi T, Lin S, Fang T. Current status of research on the mechanisms of tumor-associated macrophages in esophageal cancer progression. Front Oncol 2024; 14:1450603. [PMID: 39678502 PMCID: PMC11638059 DOI: 10.3389/fonc.2024.1450603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/27/2024] [Indexed: 12/17/2024] Open
Abstract
Esophageal carcinoma (EC) is one of the most common tumors in China and seriously affects patient survival and quality of life. In recent years, increasing studies have shown that the tumor microenvironment is crucial in promoting tumor progression and metastasis. Tumor-associated macrophages (TAM) are key components of the tumor immune microenvironment and promote both tumor growth and antitumor immunity. Much evidence suggests that TAMs are closely associated with esophageal tumors. However, understanding of the clinical value and mechanism of action of TAM in esophageal cancer remains limited. Therefore, we reviewed the status of research on the role and mechanism of action of TAM in EC progression and summarized its potential clinical application value to provide a theoretical basis for the clinical treatment of EC.
Collapse
Affiliation(s)
- Yuchao Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Tingting Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
36
|
Liu Y, Xiao L, Yang M, Chen X, Liu H, Wang Q, Guo M, Luo J. CAR-armored-cell therapy in solid tumor treatment. J Transl Med 2024; 22:1076. [PMID: 39609705 PMCID: PMC11603843 DOI: 10.1186/s12967-024-05903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Over the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a revolutionary immunotherapeutic approach to combat cancer. This therapy constructs a CAR on the surface of T cells through genetic engineering techniques. The CAR is formed from a combination of antibody-derived or ligand-derived domains and T-cell receptor (TCR) domains. This enables T cells to specifically bind to and activate against tumor cells. However, the efficacy of CAR-T cells in solid tumors remains inconclusive due to several challenges such as poor tumor trafficking, infiltration, and the immunosuppressive tumor microenvironment (TME). In response, CAR natural killer (CAR-NK) and CAR macrophages (CAR-M) have been developed as complementary strategies for solid tumors. CAR-NK cells do not require HLA compatibility, demonstrate reduced toxicity, and are thus seen as potential substitutes for CAR-T cells. Furthermore, CAR-M immunotherapy is also being researched and has shown phagocytic capabilities and tumor-antigen presentation. This study discusses the features, advantages, and limitations of CAR-T, CAR-NK, and CAR-M cells in the treatment of solid tumors and suggests prospective solutions for enhancing the efficacy of CAR host-cell-based immunotherapy.
Collapse
Affiliation(s)
- Yan Liu
- Navy Medical University, Shanghai, 200433, China
| | - Lin Xiao
- Navy Medical University, Shanghai, 200433, China
| | | | - Xuemei Chen
- Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Hongyue Liu
- Navy Medical University, Shanghai, 200433, China
| | - Quanxing Wang
- Navy Medical University, Shanghai, 200433, China
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, China
| | - Meng Guo
- Navy Medical University, Shanghai, 200433, China.
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, China.
| | - Jianhua Luo
- Navy Medical University, Shanghai, 200433, China.
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, China.
| |
Collapse
|
37
|
Lenart NA, Rao SS. Cell-cell interactions mediating primary and metastatic breast cancer dormancy. Cancer Metastasis Rev 2024; 44:6. [PMID: 39585533 DOI: 10.1007/s10555-024-10223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
Breast cancer remains one of the leading causes of death in women around the world. A majority of deaths from breast cancer occur due to cancer cells colonizing distant organ sites. When colonizing these distant organ sites, breast cancer cells have been known to enter into a state of dormancy for extended periods of time. However, the mechanisms that promote dormancy as well as dormant-to-proliferative switch are not fully understood. The tumor microenvironment plays a key role in mediating cancer cell phenotype including regulation of the dormant state. In this review, we highlight cell-cell interactions in the tumor microenvironment mediating breast cancer dormancy at the primary and metastatic sites. Specifically, we describe how immune cells from the lymphoid lineage, tumor-associated myeloid lineage cells, and stromal cells of non-hematopoietic origin as well as tissue resident stromal cells impact dormancy vs. proliferation in breast cancer cells as well as the associated mechanisms. In addition, we highlight the importance of developing model systems and the associated considerations that will be critical in unraveling the mechanisms that promote primary and metastatic breast cancer dormancy mediated via cell-cell interactions.
Collapse
Affiliation(s)
- Nicholas A Lenart
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487-0203, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487-0203, USA.
| |
Collapse
|
38
|
Ruiz-Lorente I, Gimeno L, López-Abad A, López Cubillana P, Fernández Aparicio T, Asensio Egea LJ, Moreno Avilés J, Doñate Iñiguez G, Guzmán Martínez-Valls PL, Server G, Escudero-Bregante JF, Ferri B, Campillo JA, Pons-Fuster E, Martínez Hernández MD, Martínez-Sánchez MV, Ceballos D, Minguela A. Exploring the Immunoresponse in Bladder Cancer Immunotherapy. Cells 2024; 13:1937. [PMID: 39682686 DOI: 10.3390/cells13231937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Bladder cancer (BC) represents a wide spectrum of diseases, ranging from recurrent non-invasive tumors to advanced stages that require intensive treatments. BC accounts for an estimated 500,000 new cases and 200,000 deaths worldwide every year. Understanding the biology of BC has changed how this disease is diagnosed and treated. Bladder cancer is highly immunogenic, involving innate and adaptive components of the immune system. Although little is still known of how immune cells respond to BC, immunotherapy with bacillus Calmette-Guérin (BCG) remains the gold standard in high-risk non-muscle invasive BC. For muscle-invasive BC and metastatic stages, immune checkpoint inhibitors targeting CTLA-4, PD-1, and PD-L1 have emerged as potent therapies, enhancing immune surveillance and tumor cell elimination. This review aims to unravel the immune responses involving innate and adaptive immune cells in BC that will contribute to establishing new and promising therapeutic options, while reviewing the immunotherapies currently in use in bladder cancer.
Collapse
Affiliation(s)
- Inmaculada Ruiz-Lorente
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Lourdes Gimeno
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
- Human Anatomy Department, Universidad de Murcia and Campus Mare Nostrum, 30071 Murcia, Spain
| | - Alicia López-Abad
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Pedro López Cubillana
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | | | | | | | | | | | - Gerardo Server
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - José Félix Escudero-Bregante
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Belén Ferri
- Pathology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - José Antonio Campillo
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Eduardo Pons-Fuster
- Human Anatomy Department, Universidad de Murcia and Campus Mare Nostrum, 30071 Murcia, Spain
| | - María Dolores Martínez Hernández
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - María Victoria Martínez-Sánchez
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Diana Ceballos
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| |
Collapse
|
39
|
Wang T, Wang S, Li Z, Xie J, Chen H, Hou J. Machine learning-informed liquid-liquid phase separation for personalized breast cancer treatment assessment. Front Immunol 2024; 15:1485123. [PMID: 39628476 PMCID: PMC11611825 DOI: 10.3389/fimmu.2024.1485123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024] Open
Abstract
Background Breast cancer, characterized by its heterogeneity, is a leading cause of mortality among women. The study aims to develop a Machine Learning-Derived Liquid-Liquid Phase Separation (MDLS) model to enhance the prognostic accuracy and personalized treatment strategies for breast cancer patients. Methods The study employed ten machine learning algorithms to construct 108 algorithm combinations for the MDLS model. The robustness of the model was evaluated using multi-omics and single-cell data across 14 breast cancer cohorts, involving 9,723 patients. Genetic mutation, copy number alterations, and single-cell RNA sequencing were analyzed to understand the molecular mechanisms and predictive capabilities of the MDLS model. Immunotherapy targets were predicted by evaluating immune cell infiltration and immune checkpoint expression. Chemotherapy targets were identified through correlation analysis and drug responsiveness prediction. Results The MDLS model demonstrated superior prognostic power, with a mean C-index of 0.649, outperforming 69 published signatures across ten cohorts. High-MDLS patients exhibited higher tumor mutation burden and distinct genomic alterations, including significant gene amplifications and deletions. Single-cell analysis revealed higher MDLS activity in tumor-aneuploid cells and identified key regulatory factors involved in MDLS progression. Cell-cell communication analysis indicated stronger interactions in high-MDLS groups, and immunotherapy response evaluation showed better outcomes for low-MDLS patients. Conclusion The MDLS model offers a robust and precise tool for predicting breast cancer prognosis and tailoring personalized treatment strategies. Its integration of multi-omics and machine learning highlights its potential clinical applications, particularly in improving the effectiveness of immunotherapy and identifying therapeutic targets for high-MDLS patients.
Collapse
Affiliation(s)
- Tao Wang
- Research Laboratory Center, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Shu Wang
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zhuolin Li
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jie Xie
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Huan Chen
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jing Hou
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
40
|
Maity S, Bhuyan T, Jewell C, Kawakita S, Sharma S, Nguyen HT, Hassani Najafabadi A, Ermis M, Falcone N, Chen J, Mandal K, Khorsandi D, Yilgor C, Choroomi A, Torres E, Mecwan M, John JV, Akbari M, Wang Z, Moniz-Garcia D, Quiñones-Hinojosa A, Jucaud V, Dokmeci MR, Khademhosseini A. Recent Developments in Glioblastoma-On-A-Chip for Advanced Drug Screening Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405511. [PMID: 39535474 DOI: 10.1002/smll.202405511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/08/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GBM) is an aggressive form of cancer, comprising ≈80% of malignant brain tumors. However, there are no effective treatments for GBM due to its heterogeneity and the presence of the blood-brain barrier (BBB), which restricts the delivery of therapeutics to the brain. Despite in vitro models contributing to the understanding of GBM, conventional 2D models oversimplify the complex tumor microenvironment. Organ-on-a-chip (OoC) models have emerged as promising platforms that recapitulate human tissue physiology, enabling disease modeling, drug screening, and personalized medicine. There is a sudden increase in GBM-on-a-chip models that can significantly advance the knowledge of GBM etiology and revolutionize drug development by reducing animal testing and enhancing translation to the clinic. In this review, an overview of GBM-on-a-chip models and their applications is reported for drug screening and discussed current challenges and potential future directions for GBM-on-a-chip models.
Collapse
Affiliation(s)
- Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Orthopedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, 27705, USA
| | - Tamanna Bhuyan
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Meghalaya, 793101, India
| | - Christopher Jewell
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Junjie Chen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Can Yilgor
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Emily Torres
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Johnson V John
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland
| | - Zhaohui Wang
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Diogo Moniz-Garcia
- Department of Neurosurgery, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | | | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
41
|
Song L, Yu X, Wu Y, Zhang W, Zhang Y, Shao Y, Hou Z, Yang C, Gao Y, Zhao Y. Integrin β8 Facilitates Macrophage Infiltration and Polarization by Regulating CCL5 to Promote LUAD Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406865. [PMID: 39535362 DOI: 10.1002/advs.202406865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/21/2024] [Indexed: 11/16/2024]
Abstract
The tumor microenvironment (TME) influences cancer progression and metastasis. Integrin β8 (ITGβ8), a member of the integrin family, is upregulated in various cancers. In this study, it is determined as a key factor that mediates the interaction between lung adenocarcinoma (LUAD) cells and macrophages. Increased expression levels of ITGβ8 are associated with increased numbers of CD163+ macrophages and poor prognosis in LUAD patients. The overexpression of ITGβ8 in LUAD cells promotes the polarization of THP-1 macrophages toward the M2 phenotype. In contrast, TCM (conditioned medium from the co-culture system) from THP-1 macrophages and ITGβ8-overexpressing A549 cells promoted the proliferation and invasion of A549 cells. Mechanistically, chemokine (C-C motif) ligand 5 (CCL5) plays an important role in mediating ITGβ8-induced macrophage polarization, and the phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase (AKT)/interferon regulatory factor 9 (IRF9) pathway is involved in this process. Moreover, interleukin 8 (IL8) and interleukin 10 (IL10) produced by M2-like macrophages regulate the expression of ITGβ8 in LUAD cells through the spi-1 proto-oncogene (SPI1). This study elucidates the feedback mechanism of ITGβ8 between LUAD cells and macrophages.
Collapse
Affiliation(s)
- Lei Song
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Yang Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Wenwen Zhang
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Yu Zhang
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Yanchi Shao
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Zhenxin Hou
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Chen Yang
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yanbin Zhao
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| |
Collapse
|
42
|
Liu S, Liu Z, Lei H, Miao YB, Chen J. Programmable Nanomodulators for Precision Therapy, Engineering Tumor Metabolism to Enhance Therapeutic Efficacy. Adv Healthc Mater 2024:e2403019. [PMID: 39529548 DOI: 10.1002/adhm.202403019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Tumor metabolism is crucial in the continuous advancement and complex growth of cancer. The emerging field of nanotechnology has made significant strides in enhancing the understanding of the complex metabolic intricacies inherent to tumors, offering potential avenues for their strategic manipulation to achieve therapeutic goals. This comprehensive review delves into the interplay between tumor metabolism and various facets of cancer, encompassing its origins, progression, and the formidable challenges posed by metastasis. Simultaneously, it underscores the classification of programmable nanomodulators and their transformative impact on enhancing cancer treatment, particularly when integrated with modalities such as chemotherapy, radiotherapy, and immunotherapy. This review also encapsulates the mechanisms by which nanomodulators modulate tumor metabolism, including the delivery of metabolic inhibitors, regulation of oxidative stress, pH value modulation, nanoenzyme catalysis, nutrient deprivation, and RNA interference technology, among others. Additionally, the review delves into the prospects and challenges of nanomodulators in clinical applications. Finally, the innovative concept of using nanomodulators to reprogram metabolic pathways is introduced, aiming to transform cancer cells back into normal cells. This review underscores the profound impact that tailored nanomodulators can have on tumor metabolic, charting a path toward pioneering precision therapies for cancer.
Collapse
Affiliation(s)
- Siwei Liu
- Women & Children's Molecular Medicine Center, Department of Gynecology, Guangyuan Central Hospital, No. 16, Jingxiangzi, Lizhou District, Guangyuan, 628000, P. R. China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Huajiang Lei
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Jiao Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| |
Collapse
|
43
|
Ma Y, Yi C, Cai N, Chen J. Integration of single-cell and spatial transcriptome sequencing identifies CDKN2A as a senescent biomarker in endothelial cells implicating hepatocellular carcinoma malignancy. J Cancer Res Clin Oncol 2024; 150:487. [PMID: 39503880 PMCID: PMC11541268 DOI: 10.1007/s00432-024-06017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/25/2024] [Indexed: 11/09/2024]
Abstract
PURPOSE Highly complex tumor microenvironment makes hepatocellular carcinoma (HCC) as one of the most malignant tumors worldwide. The role of cellular senescence in HCC has been gradually recognized. The present study aimed to comprehensively elucidate the senescence-related features of HCC in single-cell and spatial dimension. METHODS Single-cell RNA sequencing (scRNA-Seq) data was used to clarify the heterogeneity of senescence-related genes (SRGs) among multiple cell types within HCC. Spatial transcriptome RNA sequencing (stRNA-Seq) data was used for depicting SRGs features in spatial dimension. A prognostic model based on SRGs was constructed by using of bulk sequencing (bulk-Seq) data of HCC. The cell-cell interaction of senescent endothelial cells (ECs) in tumor microenvironment was analyzed. Then, the role of senescent ECs was verified through in vitro and in vivo experiments. RESULTS The level of senescence demonstrated substantial heterogeneity among different cell types within tumor microenvironment of HCC, where ECs exhibited the most prominent senescent phenotype. Senescent ECs activated specific regulatory pathways through communicating with other cell types, with a potential impact on tumor progression. Spatial analysis revealed senescent ECs mainly located in the core region of HCC. The interaction of senescent ECs and immune cells implicated their role in tumor progression and immunotherapeutic response. In addition, CDKN2A was identified as an independent risk factor for HCC prognosis by constructing a prognostic model. Patients with high risk displayed an even worse outcome. The experimental verification indicated senescence of ECs determined by CDKN2A exhibited a secretory phenotype. Furthermore, senescent ECs with CDKN2A overexpression promote the proliferation and migration of HCC. CONCLUSION The present study recognizes the critical effect of senescent ECs defined by CDKN2A in the promotion of tumor progression, which sheds new light on the investigation of ECs senescence in HCC.
Collapse
Affiliation(s)
- Yue Ma
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, P.R. China
| | - Chenhe Yi
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, P.R. China
| | - Ning Cai
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Jinhong Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, P.R. China.
| |
Collapse
|
44
|
Gan J, Zhang Y, Lei D, Zhou Y, Zhao H, Wang L. Exploring the Role of Inflammatory Genes and Immune Infiltration in Vestibular Schwannomas Pathogenesis. J Inflamm Res 2024; 17:8335-8353. [PMID: 39525307 PMCID: PMC11550687 DOI: 10.2147/jir.s476745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Vestibular schwannomas (VSs) exhibit a range of tumor behaviors, such as growth patterns and auditory dysfunction. Recent research has offered insights into the inflammatory microenvironment in modulating tumor dynamics. This study investigates the role of inflammatory genes and immune infiltration in VS pathogenesis. Methods We retrieved mRNA microarray data of VSs and normal nerves from the GEO database (GSE141801, GSE108524, and GSE56597), focusing on bioinformatic analysis of inflammatory response genes. Based on the evidence provided by bioinformatics analysis, we assessed the expression levels of Iba-1, IL-10, IL-10RA, and IL-18 in 31 VS patients via immunohistochemistry and delved into their association with tumor size and auditory dysfunction. Results We identified 1117 differentially expressed genes (DEGs) in VSs compared to normal nerves, showing an upregulation in inflammatory pathways. Intersection with inflammatory response genes (IRG) yielded 41 significant IRG-DEGs. Network analysis identified a core module of 10 IRG-DEGs and 11 hub genes, most of which were inflammatory cytokines. Immune infiltration analysis showed macrophage activation and M2 polarization. These findings were validated in an independent dataset (GSE39645). To further explore the association between inflammation and tumor behaviors, immunohistochemistry analysis was conducted on VS samples and the results exhibited notable associations between the macrophage marker (Iba1) and inflammatory cytokines (IL-10, IL-10RA, and IL-18) with both tumor size and auditory dysfunction. In particular, the multiple regression analysis of inflammatory cytokines demonstrated that IL-10 and IL-10RA were statistically significant predictors of tumor size, while IL-18 was associated with hearing loss. Conclusion Our study underscores the role of inflammation in VS pathogenesis, showing that macrophage activation with M2 polarization and the expression of inflammatory cytokines, especially IL-10/IL-10RA and IL-18, are linked to tumor size and auditory function. This study highlights the inflammatory landscape's impact on VS behaviors, providing a basis for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jinlu Gan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yanling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Deqiang Lei
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yingchun Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Lei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
45
|
Sun X, Zhang J, Dong B, Xiong Q, Wang X, Gu Y, Wang Z, Liu H, Zhang J, He X, Liu H, Zhong Y, Yi C, Chi X, Liu Z, Pang X, Cui Y. Targeting SLITRK4 Restrains Proliferation and Liver Metastasis in Colorectal Cancer via Regulating PI3K/AKT/NFκB Pathway and Tumor-Associated Macrophage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2400367. [PMID: 39499724 DOI: 10.1002/advs.202400367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 10/28/2024] [Indexed: 11/07/2024]
Abstract
Liver metastasis is the major cause of death in colorectal cancer (CRC) due to the lack of effective treatment. To explore novel drivers of CRC liver metastasis, the transcriptomes of primary paracancerous, colorectal tumors and metastases from human patients are profiled. It is found that SLIT- and NTRK-like family member 4 (SLITRK4) is the top upregulated gene in liver metastases and is associated with worse overall survival of CRC patients. Multiple in vitro and in vivo models suggested SLITRK4 promoted CRC tumorigenesis, invasion, migration, and angiogenesis, and inhibition of it restrained CRC tumor growth and liver metastasis with a more profound effect on the tumor microenvironment (TME). Mechanistically, SLITRK4 overexpression significantly activated the PI3K/AKT/NFκB pathway, regulated extracellular matrix organization, and multiple cytokines expression. Furthermore, the results from coculture models and single-cell RNA sequencing analyses suggested SLITRK4 promoted tumor-associated macrophages (TAMs) infiltration and polarization. In addition, macrophage depletion significantly inhibited SLITRK4-induced liver metastasis in CRC. Finally, pharmacological inhibition of SLITRK4 by using lipid-polymer hybrid nanoparticles (NPs) for systemic siRNA delivery can effectively inhibit CRC liver metastasis. Taken together, these results pinpoint that SLITRK4 regulates CRC tumorigenesis and liver metastasis, and siRNA delivering NPs agents validate the therapeutic potential of targeting SLITRK4 in CRC.
Collapse
Affiliation(s)
- Xiaojiao Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Junling Zhang
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
| | - Bingqi Dong
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
| | - Qingqing Xiong
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute, Tianjin, 300060, China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
| | - Yanlun Gu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
- Institute of Clinical Pharmacology, Peking University, Xueyuan Road 38, Beijing, Haidian, 100191, China
| | - Zhiqi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Huiyu Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jixin Zhang
- Department of Pathology, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
| | - Xu He
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
- Institute of Clinical Pharmacology, Peking University, Xueyuan Road 38, Beijing, Haidian, 100191, China
| | - Hongjin Liu
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
| | - Yi Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chuxiao Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaowei Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaocong Pang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
- Institute of Clinical Pharmacology, Peking University, Xueyuan Road 38, Beijing, Haidian, 100191, China
| | - Yimin Cui
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
- Institute of Clinical Pharmacology, Peking University, Xueyuan Road 38, Beijing, Haidian, 100191, China
| |
Collapse
|
46
|
Jiang S, Cui Y, Wang B, Fu Z, Dong C. Acidic polysaccharides from Cistanche deserticola and their effects on the polarization of tumor-associated macrophages. Int J Biol Macromol 2024; 282:137207. [PMID: 39491707 DOI: 10.1016/j.ijbiomac.2024.137207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Three purified polysaccharides, CDAP-1, CDAP-2, and CDAP-3, were prepared from the rhizome of Cistanche deserticola and characterized. Structural analysis revealed that CDAP-1 and CDAP-2 are highly branched RG-I-type polysaccharides with side chains, including arabinans, galactans, and/or AGs, whereas CDAP-3 is a typical HG-type polysaccharide. In vivo tests revealed that treatment with the crude polysaccharide fraction (CDCP) significantly prolonged the survival of H22 tumor-bearing mice and exhibited antitumor effects. In vitro experiments demonstrated that all three polysaccharides could polarize M2-like TAMs toward the M1 phenotype. As a major component of CDCP, CDAP-2 could act on M2 macrophages through the TLR4 receptor-mediated NF-κB signaling pathway. An in vitro cell model verified that CDAP-2 could inhibit cell proliferation by reversing the polarization of M2-like TAMs to the cytotoxic M1 phenotype. Overall, we found that CDCP showed a clear antitumor effect and that its major component, CDAP-2, could reverse the suppressive TAM phenotype in the microenvironment, providing a scientific basis for the clinical application and development of C. deserticola.
Collapse
Affiliation(s)
- Siliang Jiang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yongsheng Cui
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Bo Wang
- College of Pharmacy, Ningxia Medical University, No.692 Sheng-Li Street, Xing-Qing District, Yinchuan 750004, China
| | - Zheng Fu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Kangzhe Pharmaceutical Technology Development Company, Ltd., Tianjin, China
| | - Caixia Dong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
47
|
Zhou X, Wang Y, Dou Z, Delfanti G, Tsahouridis O, Pellegry CM, Zingarelli M, Atassi G, Woodcock MG, Casorati G, Dellabona P, Kim WY, Guo L, Savoldo B, Tsagaratou A, Milner JJ, Metelitsa LS, Dotti G. CAR-redirected natural killer T cells demonstrate superior antitumor activity to CAR-T cells through multimodal CD1d-dependent mechanisms. NATURE CANCER 2024; 5:1607-1621. [PMID: 39354225 DOI: 10.1038/s43018-024-00830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2024] [Indexed: 10/03/2024]
Abstract
Human natural killer T (NKT) cells have been proposed as a promising cell platform for chimeric antigen receptor (CAR) therapy in solid tumors. Here we generated murine CAR-NKT cells and compared them with CAR-T cells in immune-competent mice. Both CAR-NKT cells and CAR-T cells showed similar antitumor effects in vitro, but CAR-NKT cells showed superior antitumor activity in vivo via CD1d-dependent immune responses in the tumor microenvironment. Specifically, we show that CAR-NKT cells eliminate CD1d-expressing M2-like macrophages. In addition, CAR-NKT cells promote epitope spreading and activation of endogenous T cell responses against tumor-associated neoantigens. Finally, we observed that CAR-NKT cells can co-express PD1 and TIM3 and show an exhaustion phenotype in a model of high tumor burden. PD1 blockade as well as vaccination augmented the antitumor activity of CAR-NKT cells. In summary, our results demonstrate the multimodal function of CAR-NKT cells in solid tumors, further supporting the rationale for developing CAR-NKT therapies in the clinic.
Collapse
Affiliation(s)
- Xin Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ying Wang
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zhangqi Dou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ourania Tsahouridis
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Manuela Zingarelli
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Gatphan Atassi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Linjie Guo
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - J Justin Milner
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Leonid S Metelitsa
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
48
|
Liu Z, Li S, Xiao Y, Liu X, Zhang B, Zeng Q, Ao Q, Zhang X. A Multi-Functional Nanoadjuvant Coupling Manganese with Toll-Like 9 Agonist Stimulates Potent Innate and Adaptive Anti-Tumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402678. [PMID: 39258810 PMCID: PMC11538688 DOI: 10.1002/advs.202402678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Indexed: 09/12/2024]
Abstract
The effectiveness of Toll-like 9 agonists (CpG) as an adjuvant for tumor immunotherapy is restricted due to their insufficient ability to activate anti-tumor immunity. To address that, the common nutrient metal ions are explored (Mn2+, Cu2+, Ca2+, Mg2+, Zn2+, Fe3+, and Al3+), identifying Mn2+ as a key enhancer of CpG to mediate immune activation by augmenting the STING-NF-κB pathway. Mn2+ and CpG are then self-assembled with epigallocatechin gallate (EGCG) into a nanoadjuvant MPN/CpG. Local delivery of MPN/CpG effectively inhibits tumor growth in a B16 melanoma-bearing mouse model, reshaping the tumor microenvironment (TME) by repolarizing M2-type tumor-associated macrophages (TAMs) to an M1-type and boosting intra-tumoral infiltration of CD8+/CD4+ T lymphocytes and DCs. Furthermore, compared to free CpG, MPN/CpG exhibits heightened accumulation in lymph nodes, enhancing CpG uptake and DC activation, consequently inducing significant antigen-specific cytotoxic CD8+ T cell immune response and humoral immunity. In a prophylactic tumor-bearing mouse model, MPN/CpG vaccination with OVA antigen significantly delays B16-OVA melanoma growth and extends mouse survival. These findings underscore the potential of MPN/CpG as a multifunctional adjuvant platform to drive powerful innate and adaptive immunity and regulate TME against tumors.
Collapse
Affiliation(s)
- Zhongjie Liu
- College of Biomedical EngineeringSichuan UniversityChengdu610064China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064China
| | - Shu Li
- College of Biomedical EngineeringSichuan UniversityChengdu610064China
| | - Yang Xiao
- College of Biomedical EngineeringSichuan UniversityChengdu610064China
| | - Xiaoyang Liu
- Orthopedic Research Institution, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengdu610041China
| | - Bin Zhang
- College of Biomedical EngineeringSichuan UniversityChengdu610064China
| | - Qin Zeng
- College of Biomedical EngineeringSichuan UniversityChengdu610064China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064China
| | - Qiang Ao
- College of Biomedical EngineeringSichuan UniversityChengdu610064China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064China
| | - Xingdong Zhang
- College of Biomedical EngineeringSichuan UniversityChengdu610064China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064China
| |
Collapse
|
49
|
Shen Q, Murakami K, Sotov V, Butler M, Ohashi PS, Reedijk M. Inhibition of Notch enhances efficacy of immune checkpoint blockade in triple-negative breast cancer. SCIENCE ADVANCES 2024; 10:eado8275. [PMID: 39475614 PMCID: PMC11524187 DOI: 10.1126/sciadv.ado8275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Aberrant Notch, which is a defining feature of triple-negative breast cancer (TNBC) cells, regulates intercellular communication in the tumor immune microenvironment (TIME). This includes tumor-associated macrophage (TAM) recruitment through Notch-dependent cytokine secretion, contributing to an immunosuppressive TIME. Despite the low response rate of TNBC to immune checkpoint blockade (ICB), here, we report that inhibition of Notch-driven cytokine-mediated programs reduces TAMs and induces responsiveness to sequentially delivered ICB. This is characterized by the emergence of GrB+ cytotoxic T lymphocytes (CTLs) in the primary tumor. A more impressive effect of sequential treatment is observed in the lung where TAM depletion and increased CTLs are accompanied by near-complete abolition of metastases. This is due to (i) therapeutic reduction in Notch-dependent, prometastatic circulating factors released by the primary tumor, and (ii) elevated PD ligand 1 (PD-L1) in lung metastases, rendering them profoundly sensitive to ICB. These findings highlight the potential of combination cytokine inhibition and ICB as an immunotherapeutic strategy in TNBC.
Collapse
Affiliation(s)
- Qiang Shen
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Kiichi Murakami
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Valentin Sotov
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Marcus Butler
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Room 7205, Toronto, Ontario M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Room 15-701, Toronto, Ontario M5G 2M9, Canada
| | - Michael Reedijk
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Room 15-701, Toronto, Ontario M5G 2M9, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 8-411, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
50
|
Katoh H, Okamoto R, Yokota M, Naito K, Kikuchi M, Tokito T, Sangai T, Yamashita K. CD163 + Tumor-Associated Macrophage Recruitment Predicts Papillary Thyroid Cancer Recurrence. J Surg Res 2024; 303:532-544. [PMID: 39426065 DOI: 10.1016/j.jss.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/20/2024] [Accepted: 09/14/2024] [Indexed: 10/21/2024]
Abstract
INTRODUCTION Skewed immune response plays a pivotal role in tumor progression. Systemic inflammatory responses represented by combined peripheral leukocyte fractions are prognostic predictors of multiple cancers, including thyroid cancer. We previously reported the prognostic significance of lymphocyte-to-monocyte ratio (LMR) in curatively resected papillary thyroid cancer (PTC). Therefore, this study aimed to analyze immune cell profiles in the tumor microenvironment and their association with LMR in curatively resected PTC. MATERIALS AND METHODS The immune cell profiles of primary tumors in 162 patients with curatively resected PTC were analyzed clinicopathologically. Immunohistochemistry of tumor-associated macrophages (TAMs), myeloid-derived suppressor cells, and lymphocytes was performed using CD163, CD33, and CD3 antibodies, respectively. Prognostic analysis and correlation assays were performed using the immunocyte profiles. The gene expression of tumor-derived chemokines was assessed using a The Cancer Genome Atlas database. RESULTS Patients with a higher density of CD163+ TAMs exhibited a significantly worse prognosis than their counterparts (10-y recurrence-free survival: 80.9% versus 91.2%, P = 0.011). Multivariate prognostic analyses revealed that high CD163+ cell density (P = 0.011), low preoperative LMR (P = 0.003), pN1b (P = 0.005), and high thyroglobulin level (P = 0.038) were independent predictors of recurrence. High CD163+ cell density had a prognostic impact on stage II and III PTC. Interestingly, high CD163+ cell density correlated with low LMR and high monocyte fraction in peripheral blood. Indeed, the expression of TAM-inducible, tumor-derived chemokines is increased in the The Cancer Genome Atlas database. CONCLUSIONS A high density of infiltrated CD163+ TAMs predicts recurrence in correlation with low LMR and circulating monocyte accumulation. Thus, TAMs should be considered when assessing advanced PTC.
Collapse
MESH Headings
- Humans
- Male
- Female
- Antigens, Differentiation, Myelomonocytic/analysis
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, CD/analysis
- Antigens, CD/metabolism
- Receptors, Cell Surface/analysis
- Receptors, Cell Surface/metabolism
- Thyroid Cancer, Papillary/surgery
- Thyroid Cancer, Papillary/immunology
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/diagnosis
- Middle Aged
- Thyroid Neoplasms/immunology
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/surgery
- Thyroid Neoplasms/diagnosis
- Thyroid Neoplasms/mortality
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/immunology
- Adult
- Tumor Microenvironment/immunology
- Tumor-Associated Macrophages/immunology
- Prognosis
- Aged
- Thyroidectomy
- Monocytes/immunology
- Monocytes/metabolism
Collapse
Affiliation(s)
- Hiroshi Katoh
- Department of Breast and Thyroid Surgery, Kitasato University Hospital, Sagamihara, Kanagawa, Japan.
| | - Riku Okamoto
- Department of Breast and Thyroid Surgery, Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - Mitsuo Yokota
- Department of Breast and Thyroid Surgery, Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - Kanako Naito
- Department of Breast and Thyroid Surgery, Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - Mariko Kikuchi
- Department of Breast and Thyroid Surgery, Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - Takaaki Tokito
- Department of Breast and Thyroid Surgery, Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - Takafumi Sangai
- Department of Breast and Thyroid Surgery, Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - Keishi Yamashita
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|