Chitirala P, Chang HF, Martzloff P, Harenberg C, Ravichandran K, Abdulreda MH, Berggren PO, Krause E, Schirra C, Leinders-Zufall T, Benseler F, Brose N, Rettig J. Studying the biology of cytotoxic T lymphocytes in vivo with a fluorescent granzyme B-mTFP knock-in mouse.
eLife 2020;
9:e58065. [PMID:
32696761 PMCID:
PMC7375811 DOI:
10.7554/elife.58065]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
Understanding T cell function in vivo is of key importance for basic and translational immunology alike. To study T cells in vivo, we developed a new knock-in mouse line, which expresses a fusion protein of granzyme B, a key component of cytotoxic granules involved in T cell-mediated target cell-killing, and monomeric teal fluorescent protein from the endogenous Gzmb locus. Homozygous knock-ins, which are viable and fertile, have cytotoxic T lymphocytes with endogeneously fluorescent cytotoxic granules but wild-type-like killing capacity. Expression of the fluorescent fusion protein allows quantitative analyses of cytotoxic granule maturation, transport and fusion in vitro with super-resolution imaging techniques, and two-photon microscopy in living knock-ins enables the visualization of tissue rejection through individual target cell-killing events in vivo. Thus, the new mouse line is an ideal tool to study cytotoxic T lymphocyte biology and to optimize personalized immunotherapy in cancer treatment.
Collapse