1
|
Sun W, Ma S, Meng D, Wang C, Zhang J. Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review). Mol Med Rep 2025; 31:133. [PMID: 40116116 PMCID: PMC11948985 DOI: 10.3892/mmr.2025.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
The intestinal microbiota represents a diverse population that serves a key role in colorectal cancer (CRC) and its treatment outcomes. Advancements in sequencing have revealed notable shifts in microbial composition and diversity among individuals with CRC. Concurrently, animal models have elucidated the involvement of specific microbes such as Lactobacillus fragilis, Escherichia coli and Fusobacterium nucleatum in the progression of CRC. The present review aimed to highlight contributions of intestinal microbiota to the pathogenesis of CRC, the effects of traditional treatments on intestinal microbiota and the potential for microbiota modulation as a therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Weitong Sun
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Shize Ma
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Dongdong Meng
- Department of Medical Services, Xuzhou Morning Star Women's and Children's Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Jinbo Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| |
Collapse
|
2
|
Caronni N, La Terza F, Frosio L, Ostuni R. IL-1β + macrophages and the control of pathogenic inflammation in cancer. Trends Immunol 2025:S1471-4906(25)00059-6. [PMID: 40169292 DOI: 10.1016/j.it.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025]
Abstract
While highlighting the complexity and heterogeneity of tumor immune microenvironments, the application of single-cell analyses in human cancers has identified recurrent subsets of tumor-associated macrophages (TAMs). Among these, interleukin (IL)-1β+ TAMs - cells with high levels of expression of inflammatory response and tissue repair genes, but with limited capacity to stimulate cytotoxic immunity - are emerging as key drivers of pathogenic inflammation in cancer. In this review we discuss recent literature defining the phenotypical, molecular, and functional properties of IL-1β+ TAMs, as well as their temporal dynamics and spatial organization. Elucidating the biology of these cells across tumor initiation, progression, metastasis, and therapy could inform the design and interpretation of clinical trials targeting IL-1β and/or other inflammatory factors in cancer immunotherapy.
Collapse
Affiliation(s)
- Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Federica La Terza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Frosio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
3
|
Thibaudin M, Roussot N, Burlot C, Schmitt A, Vincent J, Tharin Z, Bengrine L, Bellio H, Bertaut A, Hampe L, Daumoine S, Rederstorff E, Peroz M, Huppe T, Derangère V, Rageot D, Simard J, Truntzer C, Fumet JD, Ghiringhelli F. Safety and efficacy of trifluridine/tipiracil +/- bevacizumab plus XB2001 (anti-IL-1α antibody): a single-center phase 1 trial. Signal Transduct Target Ther 2025; 10:22. [PMID: 39820336 PMCID: PMC11739593 DOI: 10.1038/s41392-024-02116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/26/2024] [Accepted: 12/25/2024] [Indexed: 01/19/2025] Open
Abstract
In the tumour microenvironment, IL-1α promotes neoangiogenesis, matrix remodelling, tumour proliferation, chemoresistance, and metastases. Highly expressed in human colorectal cancers, IL-1α is associated with poor prognosis. XB2001, a fully human monoclonal antibody neutralizing IL-1α, was evaluated for safety and preliminary efficacy with trifluridine/tipiracil (FTD/TPI) and bevacizumab in metastatic colorectal cancer patients previously treated with oxaliplatin- and irinotecan-based chemotherapies. This single institution, phase 1 study used a 3 + 3 design to assess XB2001 at doses of 250 mg, 500 mg and 1000 mg every 14 days, associated with FTD/TPI 35 mg/m² (days 1-5 and 8-12, every 28 days) (NCT05201352). The Maximum Tolerated Dose of XB2001 + FTD/TPI was then associated in combination with bevacizumab (5 mg/kg, days 1 and 15). Safety, efficacy, pharmacokinetics and pharmacodynamics were assessed. Seventeen patients (median age: 67.4 years) were enroled. No patient exhibited dose-limiting toxicity at any dose. The most common treatment-related adverse events (TRAE) of any grade (G) were diarrhoea (35.3%), nausea (47.1%) and anaemia (35.3%). G3-4 TRAE were neutropenia (17.6%) hypertension and infection (5.9% each). The RP2D (recommended phase 2 dose) of XB2001 was 1000 mg. The disease control rate was 76%, with 23% of patients achieving an objective response, including one complete response. Response and longer progression-free survival were associated with a decrease in serum IL-6 levels during therapy. High intratumoral IL-1α expression at baseline and CD8/PD-L1 infiltration are associated with a better progression-free survival. The combination of XB2001 with FTD/TPI and bevacizumab is feasible and safe, and showed encouraging clinical activity in chemotherapy-resistant mCRC.
Collapse
Affiliation(s)
- Marion Thibaudin
- Centre de Recherche INSERM Center for Translational and Molecular Medicine, 21000, Dijon, France.
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc Equipe Labellisée Ligue Contre le Cancer, 21000, Dijon, France.
- University of Bourgogne Franche-Comté, 21000, Dijon, France.
- Genetic and Immunology Medical Institute, Dijon, France.
| | - Nicolas Roussot
- Centre de Recherche INSERM Center for Translational and Molecular Medicine, 21000, Dijon, France
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc Equipe Labellisée Ligue Contre le Cancer, 21000, Dijon, France
- University of Bourgogne Franche-Comté, 21000, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, 1 rue du Professeur Marion, 21000, Dijon, France
| | - Chloé Burlot
- Pharmacy Department, Centre Georges-François Leclerc, 1 rue Pr Marion, 21079, Dijon Cedex, France
| | - Antonin Schmitt
- Pharmacy Department, Centre Georges-François Leclerc, 1 rue Pr Marion, 21079, Dijon Cedex, France
| | - Julie Vincent
- Department of Medical Oncology, Centre Georges-François Leclerc, 1 rue du Professeur Marion, 21000, Dijon, France
| | - Zoé Tharin
- Department of Medical Oncology, Centre Georges-François Leclerc, 1 rue du Professeur Marion, 21000, Dijon, France
| | - Leila Bengrine
- Department of Medical Oncology, Centre Georges-François Leclerc, 1 rue du Professeur Marion, 21000, Dijon, France
| | - Hélène Bellio
- Department of Medical Oncology, Centre Georges-François Leclerc, 1 rue du Professeur Marion, 21000, Dijon, France
| | - Aurélie Bertaut
- Methodolgy and biostatistics unit, GF Leclerc Center, Dijon, France
| | - Léa Hampe
- Centre de Recherche INSERM Center for Translational and Molecular Medicine, 21000, Dijon, France
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc Equipe Labellisée Ligue Contre le Cancer, 21000, Dijon, France
| | - Susy Daumoine
- Centre de Recherche INSERM Center for Translational and Molecular Medicine, 21000, Dijon, France
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc Equipe Labellisée Ligue Contre le Cancer, 21000, Dijon, France
| | - Emilie Rederstorff
- Clinical research center, Centre Georges-François Leclerc, Dijon, France
| | - Morgane Peroz
- Centre de Recherche INSERM Center for Translational and Molecular Medicine, 21000, Dijon, France
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc Equipe Labellisée Ligue Contre le Cancer, 21000, Dijon, France
| | - Titouan Huppe
- Centre de Recherche INSERM Center for Translational and Molecular Medicine, 21000, Dijon, France
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc Equipe Labellisée Ligue Contre le Cancer, 21000, Dijon, France
| | - Valentin Derangère
- Centre de Recherche INSERM Center for Translational and Molecular Medicine, 21000, Dijon, France
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc Equipe Labellisée Ligue Contre le Cancer, 21000, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, 1 rue du Professeur Marion, 21000, Dijon, France
| | - David Rageot
- Centre de Recherche INSERM Center for Translational and Molecular Medicine, 21000, Dijon, France
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc Equipe Labellisée Ligue Contre le Cancer, 21000, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
| | | | - Caroline Truntzer
- Centre de Recherche INSERM Center for Translational and Molecular Medicine, 21000, Dijon, France
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc Equipe Labellisée Ligue Contre le Cancer, 21000, Dijon, France
| | - Jean David Fumet
- Centre de Recherche INSERM Center for Translational and Molecular Medicine, 21000, Dijon, France
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc Equipe Labellisée Ligue Contre le Cancer, 21000, Dijon, France
- University of Bourgogne Franche-Comté, 21000, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, 1 rue du Professeur Marion, 21000, Dijon, France
| | - Francois Ghiringhelli
- Centre de Recherche INSERM Center for Translational and Molecular Medicine, 21000, Dijon, France.
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc Equipe Labellisée Ligue Contre le Cancer, 21000, Dijon, France.
- University of Bourgogne Franche-Comté, 21000, Dijon, France.
- Genetic and Immunology Medical Institute, Dijon, France.
- Department of Medical Oncology, Centre Georges-François Leclerc, 1 rue du Professeur Marion, 21000, Dijon, France.
| |
Collapse
|
4
|
Zhang J, Feng Y, Li D, Shi D. Fungal influence on immune cells and inflammatory responses in the tumor microenvironment (Review). Oncol Lett 2025; 29:50. [PMID: 39564373 PMCID: PMC11574707 DOI: 10.3892/ol.2024.14796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/25/2024] [Indexed: 11/21/2024] Open
Abstract
In recent years, a growing body of research has highlighted the significant influence of the microbiota on tumor immunity within the tumor microenvironment (TME). While much attention has been given to bacteria, emerging evidence suggests that fungi also play crucial roles in tumor development. The present review aimed to consolidate the latest findings on the mechanisms governing the interactions between fungi and the immune system or TME. By elucidating these intricate mechanisms, novel insights into the modulation of tumor immunity and therapeutic strategies may be uncovered. Ultimately, a deeper understanding of the interplay between fungi and the TME holds promise for the development of innovative management strategies and targeted drugs to enhance tumor therapy efficacy.
Collapse
Affiliation(s)
- Jinke Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Yahui Feng
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Dongmei Shi
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
| |
Collapse
|
5
|
Masui H, Kawada K, Obama K. Neutrophil and Colorectal Cancer. Int J Mol Sci 2024; 26:6. [PMID: 39795864 PMCID: PMC11720084 DOI: 10.3390/ijms26010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Colorectal cancer (CRC) is often associated with metastasis and recurrence and is the leading cause of cancer-related mortality. In the progression of CRC, recent studies have highlighted the critical role of neutrophils, particularly tumor-associated neutrophils (TANs). TANs have both tumor-promoting and tumor-suppressing activities, contributing to metastasis, immunosuppression, angiogenesis, and epithelial-to-mesenchymal transition. Tumor-promoting TANs promote tumor growth by releasing proteases, reactive oxygen species, and cytokines, whereas tumor-suppressing TANs enhance immune responses by activating T cells and natural killer cells. Understanding the mechanisms underlying TAN mobilization, plasticity, and their role in the tumor microenvironment has revealed potential therapeutic targets. This review provides a comprehensive overview of TAN biology in CRC and discusses both the tumor-promoting and tumor-suppressing functions of neutrophils. Novel therapeutic approaches targeting TANs, such as chemokine receptor antagonists, aim to modulate neutrophil reprogramming and offer promising avenues for improving treatment outcomes of CRC.
Collapse
Affiliation(s)
- Hideyuki Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
- Department of Surgery, Hirakata Kohsai Hospital, Osaka 573-0153, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
- Department of Surgery, Kurashiki Central Hospital, Okayama 710-8602, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
| |
Collapse
|
6
|
Zhukova JV, Lopatnikova JA, Alshevskaya AA, Sennikov SV. Molecular mechanisms of regulation of IL-1 and its receptors. Cytokine Growth Factor Rev 2024; 80:59-71. [PMID: 39414547 DOI: 10.1016/j.cytogfr.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Interleukin 1 (IL-1) is a pro-inflammatory cytokine that plays a key role in the development and regulation of nonspecific defense and specific immunity. However, its regulatory influence extends beyond inflammation and impacts a range of immune and non-immune processes. The involvement of IL-1 in numerous biological processes, including modulation of inflammation, necessitates strict regulation at multiple levels. This review focuses on these regulatory processes and discusses their underlying mechanisms. IL-1 activity is controlled at various levels, including receptor binding, gene transcription, expression as inactive proforms, and regulated post-translational processing and secretion. Regulation at the level of the receptor expression - alternative splicing, tissue-specific isoforms, and gene polymorphism - is also crucial to IL-1 functional activity. Understanding these regulatory features of IL-1 will not only continue to shape future research directions but will also highlight promising therapeutic strategies to modulate the biological effects of IL-1.
Collapse
Affiliation(s)
- J V Zhukova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - J A Lopatnikova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - A A Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - S V Sennikov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.
| |
Collapse
|
7
|
Fumet JD, Roussot N, Bertaut A, Limagne E, Thibaudin M, Hervieu A, Zanetta S, Borg C, Senellart H, Pernot S, Thuillier F, Carnot A, Mineur L, Chibaudel B, Touchefeu Y, Martin-Babau J, Jary M, Labourey JL, Rederstorff E, Lepage C, Ghiringhelli F. Phase I/II study of trifluridine/tipiracil plus XB2001 versus trifluridine/tipiracil in metastatic colorectal cancer. Future Oncol 2024; 20:3077-3085. [PMID: 39530624 DOI: 10.1080/14796694.2024.2415280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: Trifluridine/tipiracil-bevacizumab is a standard of care in metastatic colorectal cancer (mCRC) after chemotherapy failure. We aim to assess the addition of XB2001 (anti-IL-1 alpha monoclonal antibody) plus trifluridine/tipiracil-bevacizumab in mCRC refractory to standard chemotherapy.Methods: This multicenter, randomized, double blind, non-comparative Phase I-II study (ClinicalTrials.gov NCT05201352) will assess the efficacy and safety of trifluridine/tipiracil-bevacizumab and XB2001 in patients with mCRC previously treated for metastatic disease by chemotherapy treatment including oxaliplatin, irinotecan, 5-FU, antiangiogenic and/or anti-EGFR if indicated. Primary end point of Phase I is the safety according to the Maximum Tolerated Dose (MTD) of XB2001. Primary end point of Phase II is the efficacy of trifluridine/tipiracil-bevacizumab + XB2001 in term of 6-month overall survival. Ancillary analysis will be performed.
Collapse
Affiliation(s)
- Jean-David Fumet
- Department of Medical Oncology, Center GF Leclerc, Dijon, France
- Research Platform in Biological Oncology, Dijon, France
- University of Burgundy-Franche Comté, Dijon, France
| | - Nicolas Roussot
- Department of Medical Oncology, Center GF Leclerc, Dijon, France
- Research Platform in Biological Oncology, Dijon, France
- University of Burgundy-Franche Comté, Dijon, France
- UMR INSERM 1231, Dijon, France
| | - Aurélie Bertaut
- Department of Epidemiology & Biostatistics, Georges François Leclerc Center, Dijon, France
| | - Emeric Limagne
- Research Platform in Biological Oncology, Dijon, France
- University of Burgundy-Franche Comté, Dijon, France
- UMR INSERM 1231, Dijon, France
| | - Marion Thibaudin
- Research Platform in Biological Oncology, Dijon, France
- University of Burgundy-Franche Comté, Dijon, France
- UMR INSERM 1231, Dijon, France
| | - Alice Hervieu
- Department of Medical Oncology, Center GF Leclerc, Dijon, France
- Department of Medical Dermatology-Oncology, Institut Gustave Roussy, Villejuif, France
| | - Sylvie Zanetta
- Department of Medical Oncology, Center GF Leclerc, Dijon, France
| | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besancon, Besancon, France
| | - Hélène Senellart
- Department of Medical Oncology, Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - Simon Pernot
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - Frédéric Thuillier
- Department of Medical Oncology, University Hospital of Limoges, Limoges, France
| | - Aurélien Carnot
- Department of Medical Oncology, Centre Oscar Lambret, Lille, France
| | - Laurent Mineur
- Department of Medical Oncology, Institut Sainte Catherine, Avignon, France
| | - Benoist Chibaudel
- Department of Medical Oncology, Franco-British Institute, Levallois-Perret, France
| | - Yann Touchefeu
- Nantes Université, CHU Nantes, Institut des Maladies de l'Appareil Digestif (IMAD), Hépato-Gastroentérologie, Inserm CIC 1413, Nantes, F-44000, France
| | - Jérome Martin-Babau
- Department of Medical Oncology, Hopital privé des Cotes D'Armor, Plérin, France
| | - Marine Jary
- Department of Medical Oncology, University Hospital of Clermont Ferrand, Clermont Ferrand, France
| | - Jean-Luc Labourey
- Department of Medical Oncology, Carcassonne Hospital, Carcassonne, France
| | - Emilie Rederstorff
- Department of Epidemiology & Biostatistics, Georges François Leclerc Center, Dijon, France
| | | | - Francois Ghiringhelli
- Department of Medical Oncology, Center GF Leclerc, Dijon, France
- Research Platform in Biological Oncology, Dijon, France
- GIMI Genetic & Immunology Medical Institute, Dijon, France
- University of Burgundy-Franche Comté, Dijon, France
- UMR INSERM 1231, Dijon, France
| |
Collapse
|
8
|
He Y, Xiao L, Zhang J, Zhu Y, Guo Y, Xia Y, Zhao H, Wei Z, Dai Y. Diallyl trisulfide alleviates dextran sulphate sodium-induced colitis in mice by inhibiting NLRP3 inflammasome activation via ROS/Trx-1 pathway. Basic Clin Pharmacol Toxicol 2024; 135:593-606. [PMID: 39324280 DOI: 10.1111/bcpt.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/01/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Diallyl trisulfide (DATS), a sulphur-containing compound isolated from the medicinal food plant garlic, has been previously reported to attenuate experimental colitis induced by either dextran sodium sulphate (DSS) or 2,4,6-trinitrobenzenesulfonic acid (TNBS) in mice; however, the underlying mechanism remains to be identified. In this study, we deciphered the key mechanism by which DATS alleviates ulcerative colitis (UC). We showed that oral administration of DATS for 10 consecutive days greatly restrained the infiltration of macrophages and the pathological changes in colonic tissues of mice with DSS-induced colitis. DATS treatment notably dampened the content of IL-1β and IL-18 and suppressed NLRP3 inflammasome activation in colon. Mechanistically, DATS effectively diminished the generation of ROS in macrophages. The suppressive effect of DATS on the activation of NLRP3 inflammasome and downregulation of IL-18 and IL-1β levels was blunted by xanthine oxidase. Further studies revealed that DATS inhibited NF-κB pathway activation by suppressing the expression of Trx-1, thereby inhibiting NLRP3 inflammasome activation. Trx-1 overexpression and interference in macrophages promoted and diminished NLRP3 inflammasome activation, respectively. In summary, garlic and its main active ingredient DATS have potentials to prevent and treat UC, and DATS functions by inhibiting NLRP3 inflammasome activation via Trx-1/ROS pathway.
Collapse
Affiliation(s)
- Yue He
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ling Xiao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Zhang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanrong Zhu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yilei Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Huatou Zhao
- Department of Cardiology, Nanjing Gaochun People's Hospital, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
Pan X, Wang Q, Sun B. Multifaceted roles of neutrophils in tumor microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189231. [PMID: 39615862 DOI: 10.1016/j.bbcan.2024.189231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Neutrophils, the most abundant leukocyte population in circulation, play a crucial role in detecting and responding to foreign cells, such as pathogens and tumor cells. However, the impact of neutrophils on cancer pathogenesis has been overlooked because of their short lifespan, terminal differentiation, and limited transcriptional activity. Within the tumor microenvironment (TME), neutrophils can be influenced by tumor cells or other stromal cells to acquire either protumor or antitumor properties via the cytokine environment. Despite progress in neutrophil-related research, a comprehensive understanding of tissue-specific neutrophil diversity and adaptability in the TME is still lacking, which poses a significant obstacle to the development of neutrophil-based cancer therapies. This review evaluated the current studies on the dual roles of neutrophils in cancer progression, emphasizing their importance in predicting clinical outcomes, and explored various approaches for targeting neutrophils in cancer treatment, including their potential synergy with cancer immunotherapy.
Collapse
Affiliation(s)
- Xueyin Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| |
Collapse
|
10
|
Liu J, Wang A, Zhang X, You X, Wang Y. The effect of nursing intervention combined with PD-1 inhibitor on platelets, white blood cells, tumor markers and quality of life in patients with lung cancer. Biotechnol Genet Eng Rev 2024; 40:1556-1570. [PMID: 36971229 DOI: 10.1080/02648725.2023.2195257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Tumor immunotherapy has become one of the important directions in the field of anti-tumor research. Among them, programmed death molecule-1 (PD-1) and its ligand (PD-L1) inhibitors have attracted considerable attention. This study analyzed the application effects of PD-1 inhibitors assisted nursing intervention in patients with lung cancer (LC). Sixty-eight patients with LC were divided into research group and control group randomly. Control group was treated with PD-1 inhibitor chemotherapy. Research group was treated with PD-1 inhibitors as auxiliary nursing intervention. Platelets, immune function indexes, tumor markers, and white blood cells were analyzed. Clinical efficacy was evaluated by traditional Chinese medicine (TCM) symptom score, survival quality of karnofsky performance scale (KPS) score, living quality of quality of life (QOL) score, and nausea and vomiting classification. Hemoglobin (HB), platelet (PLT) and serum white blood cells (WBC) levels in the two groups were decreased after treatment. HB, PLT and WBC levels were enhanced in research group versus control group. Moreover, carcino-embryonic antigen (CEA), carbohydrate antigen 199 (CA199) and CA125 levels in both groups were reduced after treatment. Compared with before treatment, the levels of cluster of differentiation (CD)3+, CD4+, CD4+/CD8+ in control group and the research group increased, while the CD8+ content was significantly decreased after treatment. And their content of the research group was significantly higher/lower than that of the control group. TCM symptom score, KPS score, QOL score and nausea and vomiting classification were improved in research group compared to control group. PD-1 inhibitors assisted nursing intervention can improve the living quality of patients with LC after chemotherapy.
Collapse
Affiliation(s)
- Jianna Liu
- Department of Spinal Surgery, Hiser Medical Center of Qingdao, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Aiju Wang
- Department of ICU, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, China
| | - Xianzhong Zhang
- Department of Thoracic Surgery, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, China
| | - Xinting You
- Department of Endoscopic Diagnosis and Treatment, Qingdao Eighth People's Hospital, Qingdao, China
| | - Yanzheng Wang
- Department of Clinical Laboratory, Yantaishan Hospital of Yantai, Yantai, China
| |
Collapse
|
11
|
Gao H, Li W, Xu S, Xu Z, Hu W, Pan L, Luo K, Xie T, Yu Y, Sun H, Huang L, Chen P, Wu J, Yang D, Li L, Luan S, Cao M, Chen P. Gasdermin D promotes development of intestinal tumors through regulating IL-1β release and gut microbiota composition. Cell Commun Signal 2024; 22:511. [PMID: 39434144 PMCID: PMC11492562 DOI: 10.1186/s12964-024-01890-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
The interplay between gut microbiota and host is crucial for maintaining host health. When this balance is broken, various diseases can arise, including colorectal cancer (CRC). However, the mechanism by which gut microbiota and host interactions mediate CRC development remains unclear. Here, we found that Gasdermin D (GSDMD), an inflammasome effector responsible for forming membrane pores to mediate cell pyroptosis, was upregulated in both human and mouse intestinal tumor samples. GSDMD deficiency significantly suppressed intestinal tumor development in Apcmin/+ mice, a spontaneous CRC mouse model. Apcmin/+Gsdmd-/- mice exhibited reduced IL-1β release in the intestine, and the administration of recombinant mouse IL-1β partially restored intestinal tumor development in Apcmin/+Gsdmd-/- mice. Moreover, 16s rRNA sequencing showed a substantial increase in Lactobacillus abundance in the feces of Apcmin/+Gsdmd-/- mice compared to Apcmin/+ mice. Concurrently, Kynurenine (Kyn), a metabolite derived from host tryptophan (Trp) metabolism, was significantly decreased in the feces of Apcmin/+Gsdmd-/- mice, as shown by metabolite analysis. Additionally, Kyn levels were inversely correlated with Lactobacillus abundance. Furthermore, the administration of exogenous Kyn also promoted intestinal tumor development in Apcmin/+Gsdmd-/- mice. Thus, GSDMD promotes spontaneous CRC development through increasing IL-1β release and Kyn production. Our data suggest an association between GSDMD, gut microbiota, the host Trp/Kyn pathway, and CRC development.
Collapse
Affiliation(s)
- Hanchao Gao
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China.
| | - Weilong Li
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Zigan Xu
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Wenjun Hu
- Department of Anesthesiology, The 305 Hospital of Liberation Army of China (PLA), Beijing, 100036, China
| | - Litao Pan
- Department of Acupuncture and Massage, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518037, China
| | - Kewang Luo
- Department of Medical Laboratory, People's Hospital of Longhua, Shenzhen, Guangdong, 518110, China
| | - Ting Xie
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yeye Yu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Huimin Sun
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Liwen Huang
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Peishan Chen
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Jinmei Wu
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Dexing Yang
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China
| | - Lian Li
- Wuzhou Medical College, Wuzhou, Guangxi, 543199, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China.
| | - Mengtao Cao
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China.
| | - Pengfei Chen
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, 518110, China.
| |
Collapse
|
12
|
Ghosh S, Zanoni I. The Dark Knight: Functional Reprogramming of Neutrophils in the Pathogenesis of Colitis-Associated Cancer. Cancer Immunol Res 2024; 12:1311-1319. [PMID: 39270036 PMCID: PMC11444878 DOI: 10.1158/2326-6066.cir-23-0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/05/2024] [Accepted: 07/17/2024] [Indexed: 09/15/2024]
Abstract
Neutrophils are the primary myeloid cells that are recruited to inflamed tissues, and they are key players during colitis, being also present within the tumor microenvironment during the initiation and growth of colon cancer. Neutrophils fundamentally serve to protect the host against microorganism invasion, but during cancer development, they can become protumoral and lead to tumor initiation, growth, and eventually, metastasis-hence, playing a dichotomic role for the host. Protumoral neutrophils in cancer patients can be immunosuppressive and serve as markers for disease progression but their characteristics are not fully defined. In this review, we explore the current knowledge on how neutrophils in the gut fluctuate between an inflammatory or immunosuppressive state and how they contribute to tumor development. We describe neutrophils' antitumoral and protumoral effects during inflammatory bowel diseases and highlight their capacity to provoke the advent of inflammation-driven colorectal cancer. We present the functional ambivalence of the neutrophil populations within the colon tumor microenvironment, which can be potentially exploited to establish therapies that will prevent, or even reverse, inflammation-dependent colon cancer incidence in high-risk patients.
Collapse
Affiliation(s)
- Sreya Ghosh
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| | - Ivan Zanoni
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| |
Collapse
|
13
|
Brandaleone L, Dal Buono A, Gabbiadini R, Marcozzi G, Polverini D, Carvello M, Spinelli A, Hassan C, Repici A, Bezzio C, Armuzzi A. Hereditary Colorectal Cancer Syndromes and Inflammatory Bowel Diseases: Risk Management and Surveillance Strategies. Cancers (Basel) 2024; 16:2967. [PMID: 39272825 PMCID: PMC11394661 DOI: 10.3390/cancers16172967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Background and aims: Hereditary colorectal cancer syndromes (HCCS), including familial adenomatous polyposis (FAP) and Lynch syndrome (LS), are the two most important high-risk conditions for colorectal cancer (CRC). Inflammatory bowel disease (IBD) increases the risk by two to six times compared with that in the general population. The intersection of these two conditions has rarely been documented in literature. We aimed to summarize the prevalence, pathogenesis, and current evidence-based management of IBD and HCCS and the underlying molecular mechanisms of accelerated carcinogenesis due to combined inflammation and genetic predisposition. Methods: PubMed and Scopus were searched until June 2024 to identify relevant studies investigating the epidemiology, pathogenesis, and management of IBD and coexisting hereditary CRC syndromes. Results: Co-occurrence of IBD and hereditary CRC syndromes is exceptionally uncommon. Individuals with LS and IBD tend to develop CRC at a younger age than those without IBD, with patients with ulcerative colitis facing particularly elevated risks. The interaction between mismatch deficiency and chronic inflammation requires further investigation.
Collapse
Affiliation(s)
- Luca Brandaleone
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Arianna Dal Buono
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Roberto Gabbiadini
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Giacomo Marcozzi
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Davide Polverini
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Michele Carvello
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- Colon and Rectal Surgery Division, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- Colon and Rectal Surgery Division, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- Endoscopy Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- Endoscopy Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Cristina Bezzio
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| |
Collapse
|
14
|
Park KH, Kim HC, Won YS, Yoon WK, Choi I, Han SB, Kang JS. Vitamin D 3 Upregulated Protein 1 Deficiency Promotes Azoxymethane/Dextran Sulfate Sodium-Induced Colorectal Carcinogenesis in Mice. Cancers (Basel) 2024; 16:2934. [PMID: 39272794 PMCID: PMC11394134 DOI: 10.3390/cancers16172934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/24/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
VDUP1 acts as a tumor suppressor gene in various cancers. VDUP1 is expressed at low levels in sporadic and ulcerative-colitis-associated colorectal cancer. However, the effects of VDUP1 deficiency on CAC remain unclear. In this study, we found that VDUP1 deficiency promoted CAC development in mice. Wild-type (WT) and VDUP1 KO mice were used to investigate the role of VDUP1 in the development of azoxymethane (AOM)- and dextran sulfate sodium (DSS)-induced CAC. VDUP1 levels significantly decreased in the colonic tumor and adjacent nontumoral tissues of WT mice after AOM/DSS treatment. Moreover, AOM/DSS-treated VDUP1 KO mice exhibited a worse survival rate, disease activity index, and tumor burden than WT mice. VDUP1 deficiency significantly induced cell proliferation and anti-apoptosis in tumor tissues of VDUP1 KO mice compared to WT littermates. Additionally, mRNA levels of interleukin-6 and tumor necrosis factor-alpha and active forms of signal transducer and activator of transcription 3 and nuclear factor-kappa B p65 were significantly increased in the tumor tissues of VDUP1 KO mice. Overall, this study demonstrated that the loss of VDUP1 promoted AOM/DSS-induced colon tumorigenesis in mice, highlighting the potential of VDUP1-targeting strategies for colon cancer prevention and treatment.
Collapse
Affiliation(s)
- Ki Hwan Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| | - Won Kee Yoon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseoung-gu, Daejeon-si 34141, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 194-21 Osongsaemgmyung-1-ro, Heungdeok-gu, Cheongju-si 28160, Chungcheongbuk-do, Republic of Korea
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
15
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
16
|
Liu W, Kuang T, Liu L, Deng W. The role of innate immune cells in the colorectal cancer tumor microenvironment and advances in anti-tumor therapy research. Front Immunol 2024; 15:1407449. [PMID: 39100676 PMCID: PMC11294098 DOI: 10.3389/fimmu.2024.1407449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Innate immune cells in the colorectal cancer microenvironment mainly include macrophages, neutrophils, natural killer cells, dendritic cells and bone marrow-derived suppressor cells. They play a pivotal role in tumor initiation and progression through the secretion of diverse cytokines, chemokines, and other factors that govern these processes. Colorectal cancer is a common malignancy of the gastrointestinal tract, and understanding the role of innate immune cells in the microenvironment of CRC may help to improve therapeutic approaches to CRC and increase the good prognosis. In this review, we comprehensively explore the pivotal role of innate immune cells in the initiation and progression of colorectal cancer (CRC), alongside an extensive evaluation of the current landscape of innate immune cell-based immunotherapies, thereby offering valuable insights for future research strategies and clinical trials.
Collapse
Affiliation(s)
| | | | | | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
17
|
Majumder B, Nataraj NB, Maitreyi L, Datta S. Mismatch repair-proficient tumor footprints in the sands of immune desert: mechanistic constraints and precision platforms. Front Immunol 2024; 15:1414376. [PMID: 39100682 PMCID: PMC11294168 DOI: 10.3389/fimmu.2024.1414376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024] Open
Abstract
Mismatch repair proficient (MMRp) tumors of colorectal origin are one of the prevalent yet unpredictable clinical challenges. Despite earnest efforts, optimal treatment modalities have yet to emerge for this class. The poor prognosis and limited actionability of MMRp are ascribed to a low neoantigen burden and a desert-like microenvironment. This review focuses on the critical roadblocks orchestrated by an immune evasive mechanistic milieu in the context of MMRp. The low density of effector immune cells, their weak spatiotemporal underpinnings, and the high-handedness of the IL-17-TGF-β signaling are intertwined and present formidable challenges for the existing therapies. Microbiome niche decorated by Fusobacterium nucleatum alters the metabolic program to maintain an immunosuppressive state. We also highlight the evolving strategies to repolarize and reinvigorate this microenvironment. Reconstruction of anti-tumor chemokine signaling, rational drug combinations eliciting T cell activation, and reprograming the maladapted microbiome are exciting developments in this direction. Alternative vulnerability of other DNA damage repair pathways is gaining momentum. Integration of liquid biopsy and ex vivo functional platforms provide precision oncology insights. We illustrated the perspectives and changing landscape of MMRp-CRC. The emerging opportunities discussed in this review can turn the tide in favor of fighting the treatment dilemma for this elusive cancer.
Collapse
|
18
|
Chen J, Singh N, Ye X, Theune EV, Wang K. Gut microbiota-mediated activation of GSDMD ignites colorectal tumorigenesis. Cancer Gene Ther 2024; 31:1007-1017. [PMID: 38898209 PMCID: PMC11257976 DOI: 10.1038/s41417-024-00796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Activation of Gasdermin D (GSDMD) results in its cleavage, oligomerization, and subsequent formation of plasma membrane pores, leading to a form of inflammatory cell death denoted as pyroptosis. The roles of GSDMD in inflammation and immune responses to infection are well documented. However, whether GSDMD also plays a role in sporadic cancer development, especially that in the gut epithelium, remains unknown. Here, we show that GSDMD is activated in colorectal tumors of both human and mouse origins. Ablation of GSDMD in a mouse model of sporadic colorectal cancer resulted in reduced tumor formation in the colon and rectum, suggesting a tumor-promoting role of the protein in the gut. Both antibiotic-mediated depletion of gut microbiota and pharmacological inhibition of NLRP3 inflammasome reduced the activation of GSDMD. Loss of GSDMD resulted in reduced infiltration of immature myeloid cells, and increased numbers of macrophages in colorectal tumors. Activation of GSDMD is also accompanied by the aggregation of the endosomal sorting complex required for transport (ESCRT) membrane repair proteins on the membrane of colorectal tumor cells, suggesting that active membrane repairment may prevent pyroptosis induced by the formation of GSDMD pore in tumor cells. Our results show that gut microbiota/NLRP3-mediated activation of GSDMD promotes the development of colorectal tumors, and supports the use of NLRP3 inhibitors to treat colon cancer.
Collapse
Affiliation(s)
- Ju Chen
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, 528000, China
| | - Neha Singh
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Xiaoyang Ye
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Eileen Victoria Theune
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA.
| |
Collapse
|
19
|
Hazra R, Chattopadhyay S, Mallick A, Gayen S, Roy S. Revealing the therapeutic properties of gut microbiota: transforming cancer immunotherapy from basic to clinical approaches. Med Oncol 2024; 41:175. [PMID: 38874788 DOI: 10.1007/s12032-024-02416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
The immune system plays a pivotal role in the battle against cancer, serving as a formidable guardian in the ongoing fight against malignant cells. To combat these malignant cells, immunotherapy has emerged as a prevalent approach leveraging antibodies and peptides such as anti-PD-1, anti-PD-L1, and anti-CTLA-4 to inhibit immune checkpoints and activate T lymphocytes. The optimization of gut microbiota plays a significant role in modulating the defense system in the body. This study explores the potential of certain gut-resident bacteria to amplify the impact of immunotherapy. Contemporary antibiotic treatments, which can impair gut flora, may diminish the efficacy of immune checkpoint blockers. Conversely, probiotics or fecal microbiota transplantation can help re-establish intestinal microflora equilibrium. Additionally, the gut microbiome has been implicated in various strategies to counteract immune resistance, thereby enhancing the success of cancer immunotherapy. This paper also acknowledges cutting-edge technologies such as nanotechnology, CAR-T therapy, ACT therapy, and oncolytic viruses in modulating gut microbiota. Thus, an exhaustive review of literature was performed to uncover the elusive link that could potentiate the gut microbiome's role in augmenting the success of cancer immunotherapy.
Collapse
Affiliation(s)
- Rudradeep Hazra
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
20
|
Chen Y, Lu X, Whitney RL, Li Y, Robson MJ, Blakely RD, Chi JT, Crowley SD, Privratsky JR. Novel anti-inflammatory effects of the IL-1 receptor in kidney myeloid cells following ischemic AKI. Front Mol Biosci 2024; 11:1366259. [PMID: 38693918 PMCID: PMC11061482 DOI: 10.3389/fmolb.2024.1366259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024] Open
Abstract
Introduction: Acute kidney injury (AKI) is one of the most common causes of organ failure in critically ill patients. Following AKI, the canonical pro-inflammatory cytokine interleukin-1β (IL-1β) is released predominantly from activated myeloid cells and binds to the interleukin-1 receptor R1 (IL-1R1) on leukocytes and kidney parenchymal cells. IL-1R1 on kidney tubular cells is known to amplify the immune response and exacerbate AKI. However, the specific role of IL-1R1 on myeloid cells during AKI is poorly understood. The objective of the present study was to elucidate the function of myeloid cell IL-1R1 during AKI. As IL-1R1 is known to signal through the pro-inflammatory Toll-like receptor (TLR)/MyD88 pathway, we hypothesized that myeloid cells expressing IL-1R1 would exacerbate AKI. Methods: IL-1R1 was selectively depleted in CD11c+-expressing myeloid cells with CD11cCre + /IL-1R1 fl/fl (Myel KO) mice. Myel KO and littermate controls (CD11cCre - /IL-1R1 fl/fl-Myel WT) were subjected to kidney ischemia/reperfusion (I/R) injury. Kidney injury was assessed by blood urea nitrogen (BUN), serum creatinine and injury marker neutrophil gelatinase-associated lipocalin (NGAL) protein expression. Renal tubular cells (RTC) were co-cultured with CD11c+ bone marrow-derived dendritic cells (BMDC) from Myel KO and Myel WT mice. Results: Surprisingly, compared to Myel WT mice, Myel KO mice displayed exaggerated I/R-induced kidney injury, as measured by elevated levels of serum creatinine and BUN, and kidney NGAL protein expression. In support of these findings, in vitro co-culture studies showed that RTC co-cultured with Myel KO BMDC (in the presence of IL-1β) exhibited higher mRNA levels of the kidney injury marker NGAL than those co-cultured with Myel WT BMDC. In addition, we observed that IL-1R1 on Myel WT BMDC preferentially augmented the expression of anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1ra/Il1rn), effects that were largely abrogated in Myel KO BMDC. Furthermore, recombinant IL-1Ra could rescue IL-1β-induced tubular cell injury. Discussion: Our findings suggest a novel function of IL-1R1 is to serve as a critical negative feedback regulator of IL-1 signaling in CD11c+ myeloid cells to dampen inflammation to limit AKI. Our results lend further support for cell-specific, as opposed to global, targeting of immunomodulatory agents.
Collapse
Affiliation(s)
- Yanting Chen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Xiaohan Lu
- Department of Medicine, Duke University, Durham, NC, United States
| | - Raeann L. Whitney
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
| | - Yu Li
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Anesthesiology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi, China
| | - Matthew J. Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Randy D. Blakely
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Jen-Tsan Chi
- Department of Microbiology and Molecular Genetics, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Steven D. Crowley
- Department of Medicine, Duke University, Durham, NC, United States
- Durham VA Medical Center, Durham, NC, United States
| | - Jamie R. Privratsky
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| |
Collapse
|
21
|
Yang F, Hua Q, Zhu X, Xu P. Surgical stress induced tumor immune suppressive environment. Carcinogenesis 2024; 45:185-198. [PMID: 38366618 DOI: 10.1093/carcin/bgae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Despite significant advances in cancer treatment over the decades, surgical resection remains a prominent management approach for solid neoplasms. Unfortunately, accumulating evidence suggests that surgical stress caused by tumor resection may potentially trigger postoperative metastatic niche formation. Surgical stress not only activates the sympathetic-adrenomedullary axis and hypothalamic-pituitary-adrenocortical axis but also induces hypoxia and hypercoagulable state. These adverse factors can negatively impact the immune system by downregulating immune effector cells and upregulating immune suppressor cells, which contribute to the colonization and progression of postoperative tumor metastatic niche. This review summarizes the effects of surgical stress on four types of immune effector cells (neutrophils, macrophages, natural killer cells and cytotoxic T lymphocytes) and two types of immunosuppressive cells (regulatory T cells and myeloid-derived suppressor cells), and discusses the immune mechanisms of postoperative tumor relapse and progression. Additionally, relevant therapeutic strategies to minimize the pro-tumorigenic effects of surgical stress are elucidated.
Collapse
Affiliation(s)
- Fan Yang
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Research Center for Neuro-Oncology Interaction, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qing Hua
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Pingbo Xu
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Research Center for Neuro-Oncology Interaction, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
22
|
Ameri P, Bertero E, Lombardi M, Porto I, Canepa M, Nohria A, Vergallo R, Lyon AR, López-Fernández T. Ischaemic heart disease in patients with cancer. Eur Heart J 2024; 45:1209-1223. [PMID: 38323638 DOI: 10.1093/eurheartj/ehae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Cardiologists are encountering a growing number of cancer patients with ischaemic heart disease (IHD). Several factors account for the interrelationship between these two conditions, in addition to improving survival rates in the cancer population. Established cardiovascular (CV) risk factors, such as hypercholesterolaemia and obesity, predispose to both IHD and cancer, through specific mechanisms and via low-grade, systemic inflammation. This latter is also fuelled by clonal haematopoiesis of indeterminate potential. Furthermore, experimental work indicates that IHD and cancer can promote one another, and the CV or metabolic toxicity of anticancer therapies can lead to IHD. The connections between IHD and cancer are reinforced by social determinants of health, non-medical factors that modify health outcomes and comprise individual and societal domains, including economic stability, educational and healthcare access and quality, neighbourhood and built environment, and social and community context. Management of IHD in cancer patients is often challenging, due to atypical presentation, increased bleeding and ischaemic risk, and worse outcomes as compared to patients without cancer. The decision to proceed with coronary revascularization and the choice of antithrombotic therapy can be difficult, particularly in patients with chronic coronary syndromes, necessitating multidisciplinary discussion that considers both general guidelines and specific features on a case by case basis. Randomized controlled trial evidence in cancer patients is very limited and there is urgent need for more data to inform clinical practice. Therefore, coexistence of IHD and cancer raises important scientific and practical questions that call for collaborative efforts from the cardio-oncology, cardiology, and oncology communities.
Collapse
Affiliation(s)
- Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Edoardo Bertero
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Marco Lombardi
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Roma, Italy
| | - Italo Porto
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Marco Canepa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Anju Nohria
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rocco Vergallo
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | | | - Teresa López-Fernández
- Cardiology Department, La Paz University Hospital, IdiPAZ Research Institute, Madrid, Spain
- Cardiology Department, Quirón Pozuelo University Hospital, Madrid, Spain
| |
Collapse
|
23
|
Jones AN, Scheurlen KM, Macleod A, Simon HL, Galandiuk S. Obesity and Inflammatory Factors in the Progression of Early-Onset Colorectal Cancer. Cancers (Basel) 2024; 16:1403. [PMID: 38611081 PMCID: PMC11010915 DOI: 10.3390/cancers16071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic dysfunction associated with obesity leads to a chronic pro-inflammatory state with systemic effects, including the alteration of macrophage metabolism. Tumor-associated macrophages have been linked to the formation of cancer through the production of metabolites such as itaconate. Itaconate downregulates peroxisome proliferator-activated receptor gamma as a tumor-suppressing factor and upregulates anti-inflammatory cytokines in M2-like macrophages. Similarly, leptin and adiponectin also influence macrophage cytokine expression and contribute to the progression of colorectal cancer via changes in gene expression within the PI3K/AKT pathway. This pathway influences cell proliferation, differentiation, and tumorigenesis. This work provides a review of obesity-related hormones and inflammatory mechanisms leading to the development and progression of early-onset colorectal cancer (EOCRC). A literature search was performed using the PubMed and Cochrane databases to identify studies related to obesity and EOCRC, with keywords including 'EOCRC', 'obesity', 'obesity-related hormones', 'itaconate', 'adiponectin', 'leptin', 'M2a macrophage', and 'microbiome'. With this concept of pro-inflammatory markers contributing to EOCRC, increased use of chemo-preventative agents such as aspirin may have a protective effect. Elucidating this association between obesity-related, hormone/cytokine-driven inflammatory effects with EOCRC may help lead to new therapeutic targets in preventing and treating EOCRC.
Collapse
Affiliation(s)
- Alexandra N. Jones
- Price Institute of Surgical Research, University of Louisville, Louisville, KY 40202, USA; (A.N.J.); (A.M.); (H.L.S.)
| | - Katharina M. Scheurlen
- Price Institute of Surgical Research, University of Louisville, Louisville, KY 40202, USA; (A.N.J.); (A.M.); (H.L.S.)
| | - Anne Macleod
- Price Institute of Surgical Research, University of Louisville, Louisville, KY 40202, USA; (A.N.J.); (A.M.); (H.L.S.)
| | - Hillary L. Simon
- Price Institute of Surgical Research, University of Louisville, Louisville, KY 40202, USA; (A.N.J.); (A.M.); (H.L.S.)
- Division of Colon and Rectal Surgery, Hiram C. Polk Jr. MD Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Susan Galandiuk
- Price Institute of Surgical Research, University of Louisville, Louisville, KY 40202, USA; (A.N.J.); (A.M.); (H.L.S.)
- Division of Colon and Rectal Surgery, Hiram C. Polk Jr. MD Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
24
|
Carnevale S, Ponzetta A, Rigatelli A, Carriero R, Puccio S, Supino D, Grieco G, Molisso P, Di Ceglie I, Scavello F, Perucchini C, Pasqualini F, Recordati C, Tripodo C, Belmonte B, Mariancini A, Kunderfranco P, Sciumè G, Lugli E, Bonavita E, Magrini E, Garlanda C, Mantovani A, Jaillon S. Neutrophils Mediate Protection Against Colitis and Carcinogenesis by Controlling Bacterial Invasion and IL22 Production by γδ T Cells. Cancer Immunol Res 2024; 12:413-426. [PMID: 38349973 PMCID: PMC10985471 DOI: 10.1158/2326-6066.cir-23-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/01/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Neutrophils are the most abundant leukocytes in human blood and play a primary role in resistance against invading microorganisms and in the acute inflammatory response. However, their role in colitis and colitis-associated colorectal cancer is still under debate. This study aims to dissect the role of neutrophils in these pathologic contexts by using a rigorous genetic approach. Neutrophil-deficient mice (Csf3r-/- mice) were used in classic models of colitis and colitis-associated colorectal cancer and the role of neutrophils was assessed by histologic, cellular, and molecular analyses coupled with adoptive cell transfer. We also performed correlative analyses using human datasets. Csf3r-/- mice showed increased susceptibility to colitis and colitis-associated colorectal cancer compared with control Csf3r+/+ mice and adoptive transfer of neutrophils in Csf3r-/- mice reverted the phenotype. In colitis, Csf3r-/- mice showed increased bacterial invasion and a reduced number of healing ulcers in the colon, indicating a compromised regenerative capacity of epithelial cells. Neutrophils were essential for γδ T-cell polarization and IL22 production. In patients with ulcerative colitis, expression of CSF3R was positively correlated with IL22 and IL23 expression. Moreover, gene signatures associated with epithelial-cell development, proliferation, and antimicrobial response were enriched in CSF3Rhigh patients. Our data support a model where neutrophils mediate protection against intestinal inflammation and colitis-associated colorectal cancer by controlling the intestinal microbiota and driving the activation of an IL22-dependent tissue repair pathway.
Collapse
Affiliation(s)
| | | | - Anna Rigatelli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Simone Puccio
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Milan, Italy
| | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Piera Molisso
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | | | | | - Fabio Pasqualini
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Camilla Recordati
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Mouse & Animal Pathology Laboratory (MAPLab), UniMi Foundation, Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Science, University of Palermo, School of Medicine, Palermo, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Science, University of Palermo, School of Medicine, Palermo, Italy
| | - Andrea Mariancini
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Enrico Lugli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Eduardo Bonavita
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Elena Magrini
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
25
|
Swanton C, Bernard E, Abbosh C, André F, Auwerx J, Balmain A, Bar-Sagi D, Bernards R, Bullman S, DeGregori J, Elliott C, Erez A, Evan G, Febbraio MA, Hidalgo A, Jamal-Hanjani M, Joyce JA, Kaiser M, Lamia K, Locasale JW, Loi S, Malanchi I, Merad M, Musgrave K, Patel KJ, Quezada S, Wargo JA, Weeraratna A, White E, Winkler F, Wood JN, Vousden KH, Hanahan D. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024; 187:1589-1616. [PMID: 38552609 DOI: 10.1016/j.cell.2024.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.
Collapse
Affiliation(s)
- Charles Swanton
- The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Elsa Bernard
- The Francis Crick Institute, London, UK; INSERM U981, Gustave Roussy, Villejuif, France
| | | | - Fabrice André
- INSERM U981, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Paris Saclay University, Kremlin-Bicetre, France
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Allan Balmain
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gerard Evan
- The Francis Crick Institute, London, UK; Kings College London, London, UK
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrés Hidalgo
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Area of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Johanna A Joyce
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Katja Lamia
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA; Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Department of Medical Oncology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Miriam Merad
- Department of immunology and immunotherapy, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn Musgrave
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK; Department of Haematology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sergio Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Jennifer A Wargo
- Department of Surgical Oncology, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashani Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton, NJ, USA
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John N Wood
- Molecular Nociception Group, WIBR, University College London, London, UK
| | | | - Douglas Hanahan
- Lausanne Branch, Ludwig Institute for Cancer Research, Lausanne, Switzerland; Swiss institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Agora Translational Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
26
|
Jin Y, Huang Y, Ren H, Huang H, Lai C, Wang W, Tong Z, Zhang H, Wu W, Liu C, Bao X, Fang W, Li H, Zhao P, Dai X. Nano-enhanced immunotherapy: Targeting the immunosuppressive tumor microenvironment. Biomaterials 2024; 305:122463. [PMID: 38232643 DOI: 10.1016/j.biomaterials.2023.122463] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024]
Abstract
The tumor microenvironment (TME), which is mostly composed of tumor cells, immune cells, signaling molecules, stromal tissue, and the vascular system, is an integrated system that is conducive to the formation of tumors. TME heterogeneity makes the response to immunotherapy different in different tumors, such as "immune-cold" and "immune-hot" tumors. Tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells are the major suppressive immune cells and their different phenotypes interact and influence cancer cells by secreting different signaling factors, thus playing a key role in the formation of the TME as well as in the initiation, growth, and metastasis of cancer cells. Nanotechnology development has facilitated overcoming the obstacles that limit the further development of conventional immunotherapy, such as toxic side effects and lack of targeting. In this review, we focus on the role of three major suppressive immune cells in the TME as well as in tumor development, clinical trials of different drugs targeting immune cells, and different attempts to combine drugs with nanomaterials. The aim is to reveal the relationship between immunotherapy, immunosuppressive TME and nanomedicine, thus laying the foundation for further development of immunotherapy.
Collapse
Affiliation(s)
- Yuzhi Jin
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yangyue Huang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Hui Ren
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Huanhuan Huang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Postgraduate Training Base Alliance of Wenzhou Medical University, Hangzhou, 310022, China
| | - Chunyu Lai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zhou Tong
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hangyu Zhang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wei Wu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Chuan Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Hongjun Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Chen Q, Sun Y, Wang S, Xu J. New prospects of cancer therapy based on pyroptosis and pyroptosis inducers. Apoptosis 2024; 29:66-85. [PMID: 37943371 DOI: 10.1007/s10495-023-01906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 11/10/2023]
Abstract
Pyroptosis is a gasdermin-mediated programmed cell death (PCD) pathway. It differs from apoptosis because of the secretion of inflammatory molecules. Pyroptosis is closely associated with various malignant tumors. Recent studies have demonstrated that pyroptosis can either inhibit or promote the development of malignant tumors, depending on the cell type (immune or cancer cells) and duration and severity of the process. This review summarizes the molecular mechanisms of pyroptosis, its relationship with malignancies, and focuses on current pyroptosis inducers and their significance in cancer treatment. The molecules involved in the pyroptosis signaling pathway could serve as therapeutic targets for the development of novel drugs for cancer therapy. In addition, we analyzed the potential of combining pyroptosis with conventional anticancer techniques as a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Qiaoyun Chen
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210008, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuxiang Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Siliang Wang
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210008, China.
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Jingyan Xu
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210008, China.
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
28
|
Kwon SJ, Khan MS, Kim SG. Intestinal Inflammation and Regeneration-Interdigitating Processes Controlled by Dietary Lipids in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:1311. [PMID: 38279309 PMCID: PMC10816399 DOI: 10.3390/ijms25021311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a disease of chronic inflammatory conditions of the intestinal tract due to disturbance of the inflammation and immune system. Symptoms of IBD include abdominal pain, diarrhea, bleeding, reduced weight, and fatigue. In IBD, the immune system attacks the intestinal tract's inner wall, causing chronic inflammation and tissue damage. In particular, interlukin-6 and interlukin-17 act on immune cells, including T cells and macrophages, to amplify the immune responses so that tissue damage and morphological changes occur. Of note, excessive calorie intake and obesity also affect the immune system due to inflammation caused by lipotoxicity and changes in lipids supply. Similarly, individuals with IBD have alterations in liver function after sustained high-fat diet feeding. In addition, excess dietary fat intake, along with alterations in primary and secondary bile acids in the colon, can affect the onset and progression of IBD because inflammatory cytokines contribute to insulin resistance; the factors include the release of inflammatory cytokines, oxidative stress, and changes in intestinal microflora, which may also contribute to disease progression. However, interfering with de novo fatty acid synthase by deleting the enzyme acetyl-CoA-carboxylase 1 in intestinal epithelial cells (IEC) leads to the deficiency of epithelial crypt structures and tissue regeneration, which seems to be due to Lgr5+ intestinal stem cell function. Thus, conflicting reports exist regarding high-fat diet effects on IBD animal models. This review will focus on the pathological basis of the link between dietary lipids intake and IBD and will cover the currently available pharmacological approaches.
Collapse
Affiliation(s)
| | | | - Sang Geon Kim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.J.K.); (M.S.K.)
| |
Collapse
|
29
|
Zhang T, Miao YC. Prognostic evaluation of preoperative systemic immune inflammatory index in patients with colorectal cancer. Front Oncol 2023; 13:1260796. [PMID: 38188293 PMCID: PMC10768044 DOI: 10.3389/fonc.2023.1260796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/25/2023] [Indexed: 01/09/2024] Open
Abstract
Objective To investigate the impact of preoperative systemic immune inflammatory index (SII) on the clinical prognosis of patients undergoing colorectal cancer (CRC) surgery. Methods One hundred and sixty CRC patients who underwent surgical treatment in our gastrointestinal surgery department from January 2019 to May 2023 were collected. ROC curves were applied to determine the sensitivity and specificity of SII, determine the optimal cut-off value into low SII and high SII groups, compare the clinicopathological data of SII patients in the two groups, and analyze the postoperative survival of patients in the two groups using Kaplan-Meier and Log-rank methods. Univariate and multifactor COX proportional risk regression models were used to analyze clinical prognostic factors. Results The ROC curve showed that the area under the curve of SII for the evaluation of OS in CRC patients was 0.859, and the best cut-off value was 513.53. There was statistical significance (P < 0.05) in terms of tissue grading and diabetes mellitus in both groups. The Kaplan-Meier survival curves showed that the overall survival rates of the SII<513.53 group and the SII≥513.53 group were 50.88% (29/57) and 32.04% (33/103), and the overall survival rate of the SII<513.53 group was significantly higher than that of the SII≥513.53 group, and the difference was statistically significance (χ2 = 8.375, P=0.004). COX proportional risk regression showed that TNM stage, lymph node metastases, anastomotic fistula and SII were independent risk factors affecting postoperative survival in patients with CRC. Conclusion Preoperative SII is an independent prognostic factor for CRC, which is simple, convenient, and non-invasive, and can be used to predict the prognosis of CRC patients.
Collapse
Affiliation(s)
| | - Yong chang Miao
- Department of Gastrointestinal Surgery, Bengbu Medical College Lianyungang Clinical College, The Second People’s Hospital of Lianyungang, Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
30
|
Karpova Y, Orlicky DJ, Schmidt EE, Tulin AV. Disrupting Poly(ADP-ribosyl)ating Pathway Creates Premalignant Conditions in Mammalian Liver. Int J Mol Sci 2023; 24:17205. [PMID: 38139034 PMCID: PMC10743425 DOI: 10.3390/ijms242417205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global health concern, representing one of the leading causes of cancer-related deaths. Despite various treatment options, the prognosis for HCC patients remains poor, emphasizing the need for a deeper understanding of the factors contributing to HCC development. This study investigates the role of poly(ADP-ribosyl)ation in hepatocyte maturation and its impact on hepatobiliary carcinogenesis. A conditional Parg knockout mouse model was employed, utilizing Cre recombinase under the albumin promoter to target Parg depletion specifically in hepatocytes. The disruption of the poly(ADP-ribosyl)ating pathway in hepatocytes affects the early postnatal liver development. The inability of hepatocytes to finish the late maturation step that occurs early after birth causes intensive apoptosis and acute inflammation, resulting in hypertrophic liver tissue with enlarged hepatocytes. Regeneration nodes with proliferative hepatocytes eventually replace the liver tissue and successfully fulfill the liver function. However, early developmental changes predispose these types of liver to develop pathologies, including with a malignant nature, later in life. In a chemically induced liver cancer model, Parg-depleted livers displayed a higher tendency for hepatocellular carcinoma development. This study underscores the critical role of the poly(ADP-ribosyl)ating pathway in hepatocyte maturation and highlights its involvement in liver pathologies and hepatobiliary carcinogenesis. Understanding these processes may provide valuable insights into liver biology and liver-related diseases, including cancer.
Collapse
Affiliation(s)
- Yaroslava Karpova
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Grand Forks, ND 58202, USA;
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Edward E. Schmidt
- Microbiology & Cell Biology, Montana State University, Bozeman, MT 59718, USA;
- Department of Microbiology & Immunology, Lewis Hall, Bozeman, MT 59718, USA
- Redox Biology Laboratory, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Alexei V. Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Grand Forks, ND 58202, USA;
| |
Collapse
|
31
|
Chen Z, Giotti B, Kaluzova M, Vallcorba MP, Rawat K, Price G, Herting CJ, Pinero G, Cristea S, Ross JL, Ackley J, Maximov V, Szulzewsky F, Thomason W, Marquez-Ropero M, Angione A, Nichols N, Tsankova NM, Michor F, Shayakhmetov DM, Gutmann DH, Tsankov AM, Hambardzumyan D. A paracrine circuit of IL-1β/IL-1R1 between myeloid and tumor cells drives genotype-dependent glioblastoma progression. J Clin Invest 2023; 133:e163802. [PMID: 37733448 PMCID: PMC10645395 DOI: 10.1172/jci163802] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2023] [Indexed: 09/23/2023] Open
Abstract
Monocytes and monocyte-derived macrophages (MDMs) from blood circulation infiltrate glioblastoma (GBM) and promote growth. Here, we show that PDGFB-driven GBM cells induce the expression of the potent proinflammatory cytokine IL-1β in MDM, which engages IL-1R1 in tumor cells, activates the NF-κB pathway, and subsequently leads to induction of monocyte chemoattractant proteins (MCPs). Thus, a feedforward paracrine circuit of IL-1β/IL-1R1 between tumors and MDM creates an interdependence driving PDGFB-driven GBM progression. Genetic loss or locally antagonizing IL-1β/IL-1R1 leads to reduced MDM infiltration, diminished tumor growth, and reduced exhausted CD8+ T cells and thereby extends the survival of tumor-bearing mice. In contrast to IL-1β, IL-1α exhibits antitumor effects. Genetic deletion of Il1a/b is associated with decreased recruitment of lymphoid cells and loss-of-interferon signaling in various immune populations and subsets of malignant cells and is associated with decreased survival time of PDGFB-driven tumor-bearing mice. In contrast to PDGFB-driven GBM, Nf1-silenced tumors have a constitutively active NF-κB pathway, which drives the expression of MCPs to recruit monocytes into tumors. These results indicate local antagonism of IL-1β could be considered as an effective therapy specifically for proneural GBM.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Milota Kaluzova
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
- Department of Neurology, Rutgers University, New Brunswick, New Jersey, USA
| | - Montse Puigdelloses Vallcorba
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Kavita Rawat
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Gabrielle Price
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Cameron J. Herting
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
| | - Gonzalo Pinero
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - James L. Ross
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
- Emory University Department of Microbiology and Immunology, Emory Vaccine Center, Atlanta, Georgia, USA
| | - James Ackley
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
| | - Victor Maximov
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
| | - Frank Szulzewsky
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Wes Thomason
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Mar Marquez-Ropero
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Angelo Angione
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | | | - Nadejda M. Tsankova
- Department of Pathology and Molecular and Cell-Based Medicine, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- The Ludwig Center at Harvard, Boston, Massachusetts, USA
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Dmitry M. Shayakhmetov
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology and Emory Vaccine Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexander M. Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA
- Department of Pediatrics, AFLAC Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Winship Cancer Institute, and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Neurosurgery and
| |
Collapse
|
32
|
Ballarò C, Quaranta V, Giannelli G. Colorectal Liver Metastasis: Can Cytokines Make the Difference? Cancers (Basel) 2023; 15:5359. [PMID: 38001618 PMCID: PMC10670198 DOI: 10.3390/cancers15225359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide. Metastasis is the prime driver of CRC-related mortality, and the liver is the organ most frequently involved. Despite the overall success of current treatments, colorectal liver metastasis (CRLM) is associated with poor prognoses and a survival rate of only 14%. Recent studies have highlighted the importance of the tumor microenvironment (TME) and the crosstalk within it in determining the invasion of distant organs by circulating cancer cells. In the TME, cellular communication is mediated via soluble molecules, among which cytokines have recently emerged as key regulators, involved in every aspect of tumor progression and the metastatic cascade. Indeed, in the serum of CRC patients elevated levels of several cytokines are associated with cancer development and progression. The current review evaluates the role of different cytokines during CRLM development. Additionally, considering the increasing amount of data concerning the importance of cytokine complex networks, we outline the potential of combination treatments using targeted cytokines together with other well-established therapies, such as immune checkpoint blockades, chemotherapy, or gene therapy, to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Costanza Ballarò
- Laboratory of Molecular Medicine, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Valeria Quaranta
- Laboratory of Personalized Medicine, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy;
| |
Collapse
|
33
|
Caronni N, La Terza F, Vittoria FM, Barbiera G, Mezzanzanica L, Cuzzola V, Barresi S, Pellegatta M, Canevazzi P, Dunsmore G, Leonardi C, Montaldo E, Lusito E, Dugnani E, Citro A, Ng MSF, Schiavo Lena M, Drago D, Andolfo A, Brugiapaglia S, Scagliotti A, Mortellaro A, Corbo V, Liu Z, Mondino A, Dellabona P, Piemonti L, Taveggia C, Doglioni C, Cappello P, Novelli F, Iannacone M, Ng LG, Ginhoux F, Crippa S, Falconi M, Bonini C, Naldini L, Genua M, Ostuni R. IL-1β + macrophages fuel pathogenic inflammation in pancreatic cancer. Nature 2023; 623:415-422. [PMID: 37914939 DOI: 10.1038/s41586-023-06685-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with high resistance to therapies1. Inflammatory and immunomodulatory signals co-exist in the pancreatic tumour microenvironment, leading to dysregulated repair and cytotoxic responses. Tumour-associated macrophages (TAMs) have key roles in PDAC2, but their diversity has prevented therapeutic exploitation. Here we combined single-cell and spatial genomics with functional experiments to unravel macrophage functions in pancreatic cancer. We uncovered an inflammatory loop between tumour cells and interleukin-1β (IL-1β)-expressing TAMs, a subset of macrophages elicited by a local synergy between prostaglandin E2 (PGE2) and tumour necrosis factor (TNF). Physical proximity with IL-1β+ TAMs was associated with inflammatory reprogramming and acquisition of pathogenic properties by a subset of PDAC cells. This occurrence was an early event in pancreatic tumorigenesis and led to persistent transcriptional changes associated with disease progression and poor outcomes for patients. Blocking PGE2 or IL-1β activity elicited TAM reprogramming and antagonized tumour cell-intrinsic and -extrinsic inflammation, leading to PDAC control in vivo. Targeting the PGE2-IL-1β axis may enable preventive or therapeutic strategies for reprogramming of immune dynamics in pancreatic cancer.
Collapse
Affiliation(s)
- Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Federica La Terza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco M Vittoria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Barbiera
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Mezzanzanica
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Vincenzo Cuzzola
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Simona Barresi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Garett Dunsmore
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Carlo Leonardi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Montaldo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Lusito
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erica Dugnani
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Melissa S F Ng
- Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore
| | | | - Denise Drago
- Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annapaola Andolfo
- Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandro Scagliotti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anna Mondino
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Lorenzo Piemonti
- Vita-Salute San Raffaele University, Milan, Italy
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudio Doglioni
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Matteo Iannacone
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Florent Ginhoux
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Stefano Crippa
- Vita-Salute San Raffaele University, Milan, Italy
- Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Falconi
- Vita-Salute San Raffaele University, Milan, Italy
- Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
34
|
Wu Y, Luo J, Xu B. Network Pharmacology and Bioinformatics Study of Geniposide Regulating Oxidative Stress in Colorectal Cancer. Int J Mol Sci 2023; 24:15222. [PMID: 37894904 PMCID: PMC10607277 DOI: 10.3390/ijms242015222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to identify the mechanism of geniposide regulating oxidative stress in colorectal cancer (CRC) through network pharmacology and bioinformatics analysis. Targets of geniposide, oxidative stress-related targets and targets related to CRC were applied from databases. The hub genes for geniposide regulating oxidative stress in CRC were identified with the protein-protein interaction (PPI) network. Furthermore, we applied Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment to analyze the hub genes from a macro perspective. We verified the hub genes by molecular docking, GEPIA, HPA and starBase database. We identified five hub genes: IL1B, GSK3B, NOS3, RELA and CDK4. GO analysis results suggested that the anti-colorectal cancer effect of geniposide by regulating oxidative stress is possibly related to the influence of multiple biological processes, including response to temperature stimulus, response to alkaloid, nitric oxide biosynthetic process, nitric oxide metabolic process, reactive nitrogen species metabolic process, cellular response to peptide, etc. KEGG enrichment analysis results indicated that the PI3K-Akt signaling pathway, IL-17 signaling pathway, p53 signaling pathway, NF-κB signaling pathway and NOD-like receptor signaling pathway are likely to be the significant pathways. Molecular docking results showed that the geniposide had a good binding activity with the hub genes. This study demonstrates that geniposide can regulate oxidative stress in CRC, and induction of oxidative stress is one of the possible mechanisms of anti-recurrence and metastasis effects of geniposide against CRC.
Collapse
Affiliation(s)
| | | | - Baojun Xu
- Guangdong Provincial Key Laboratory IRADS, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
35
|
Zhao W, Shen X, Hua Q, Yang L, Zhou R, Zhou C, Xu P. Red cell distribution width-a potential prognostic indicator for colorectal cancer patients after radical resection in China. J Gastrointest Oncol 2023; 14:1746-1758. [PMID: 37720452 PMCID: PMC10502564 DOI: 10.21037/jgo-23-54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/26/2023] [Indexed: 09/19/2023] Open
Abstract
Background Red cell distribution width (RDW) can signal poor prognosis in inflammatory medical conditions. The purpose of the study was to investigate the relationship between preoperative RDW and colorectal cancer (CRC) in a large cohort of patients. Methods A total of 6,224 CRC patients who underwent radical resection at the Fudan University Shanghai Cancer Center were evaluated retrospectively. The prognostic significance of RDW for overall survival (OS) and disease-free survival (DFS) was analyzed using Cox proportional hazards models and Kaplan-Meier method. Propensity score matching (PSM) was used based on survival confounding factors. Results The mean age of the study participants was 59.5±12.0 years and the study cohort was 44% female. The overall median and mean RDW values were 13.3% and 14.0%, respectively. Patients were stratified into three groups based on their RDW value (≤13.3%, 13.4-14.0%, and >14.0%). OS and DFS were shown to significantly deteriorate with increasing RDW category. In the PSM population, OS and DFS were significantly lower in the high RDW group compared with matched controls. However, the differences vanished in the comparisons between the middle RDW group and the control group. Conclusions Our findings demonstrate that preoperative RDW may represent a simple and powerful prognostic factor for CRC patients after radical resection. Integrating RDW into clinical practice may better inform the prognosis and optimize therapeutic approaches for patients with CRC.
Collapse
Affiliation(s)
- Weiwei Zhao
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuefang Shen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qing Hua
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Liu Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ru Zhou
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changming Zhou
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Cancer Prevention, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Pingbo Xu
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| |
Collapse
|
36
|
Xing J, Man C, Liu Y, Zhang Z, Peng H. Factors impacting the benefits and pathogenicity of Th17 cells in the tumor microenvironment. Front Immunol 2023; 14:1224269. [PMID: 37680632 PMCID: PMC10481871 DOI: 10.3389/fimmu.2023.1224269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Tumor development is closely associated with a complex tumor microenvironment, which is composed of tumor cells, blood vessels, tumor stromal cells, infiltrating immune cells, and associated effector molecules. T helper type 17 (Th17) cells, which are a subset of CD4+ T cells and are renowned for their ability to combat bacterial and fungal infections and mediate inflammatory responses, exhibit context-dependent effector functions. Within the tumor microenvironment, different molecular signals regulate the proliferation, differentiation, metabolic reprogramming, and phenotypic conversion of Th17 cells. Consequently, Th17 cells exert dual effects on tumor progression and can promote or inhibit tumor growth. This review aimed to investigate the impact of various alterations in the tumor microenvironment on the antitumor and protumor effects of Th17 cells to provide valuable clues for the exploration of additional tumor immunotherapy strategies.
Collapse
Affiliation(s)
- Jie Xing
- Department of Laboratory Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Changfeng Man
- Department of Oncology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
38
|
Wang Y, Ahmadi MZ, Dikeman DA, Youn C, Archer NK. γδ T cell-intrinsic IL-1R promotes survival during Staphylococcus aureus bacteremia. Front Immunol 2023; 14:1171934. [PMID: 37483624 PMCID: PMC10361057 DOI: 10.3389/fimmu.2023.1171934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Staphylococcus aureus is a leading cause of bacteremia, further complicated by the emergence of antibiotic-resistant strains such as methicillin-resistant S. aureus (MRSA). A better understanding of host defense mechanisms is needed for the development of host-directed therapies as an alternative approach to antibiotics. The levels of IL-1, IL-17, and TNF-α cytokines in circulation have been associated with predictive outcomes in patients with S. aureus bacteremia. However, their causative role in survival and the cell types involved in these responses during bacteremia is not entirely clear. Using a mouse model of S. aureus bacteremia, we demonstrated that IL-17A/F and TNF-α had no significant impact on survival, whereas IL-1R signaling was critical for survival during S. aureus bacteremia. Furthermore, we identified that T cells, but not neutrophils, monocytes/macrophages, or endothelial cells were the crucial cell type for IL-1R-mediated survival against S. aureus bacteremia. Finally, we determined that the expression of IL-1R on γδ T cell, but not CD4+ or CD8+ T cells was responsible for survival against the S. aureus bacteremia. Taken together, we uncovered a role for IL-1R, but not IL-17A/F and TNF-α in protection against S. aureus bacteremia. Importantly, γδ T cell-intrinsic expression of IL-1R was crucial for survival, but not on other immune cells or endothelial cells. These findings reveal potential cellular and immunological targets for host-directed therapies for improved outcomes against S. aureus bacteremia.
Collapse
Affiliation(s)
| | | | | | | | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
39
|
Gibellini L, Borella R, Santacroce E, Serattini E, Boraldi F, Quaglino D, Aramini B, De Biasi S, Cossarizza A. Circulating and Tumor-Associated Neutrophils in the Era of Immune Checkpoint Inhibitors: Dynamics, Phenotypes, Metabolism, and Functions. Cancers (Basel) 2023; 15:3327. [PMID: 37444436 DOI: 10.3390/cancers15133327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophils are the most abundant myeloid cells in the blood and are a considerable immunological component of the tumor microenvironment. However, their functional importance has often been ignored, as they have always been considered a mono-dimensional population of terminally differentiated, short-living cells. During the last decade, the use of cutting-edge, single-cell technologies has revolutionized the classical view of these cells, unmasking their phenotypic and functional heterogeneity. In this review, we summarize the emerging concepts in the field of neutrophils in cancer, by reviewing the recent literature on the heterogeneity of both circulating neutrophils and tumor-associated neutrophils, as well as their possible significance in tumor prognosis and resistance to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Eugenia Serattini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences (DIMEC), University Hospital GB Morgagni-L Pierantoni, 47121 Forlì, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
40
|
Serban RM, Niculae D, Manda G, Neagoe I, Dobre M, Niculae DA, Temelie M, Mustăciosu C, Leonte RA, Chilug LE, Cornoiu MR, Cocioabă D, Stan M, Dinischiotu A. Modifications in cellular viability, DNA damage and stress responses inflicted in cancer cells by copper-64 ions. Front Med (Lausanne) 2023; 10:1197846. [PMID: 37415761 PMCID: PMC10320858 DOI: 10.3389/fmed.2023.1197846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
Due to combined therapeutical emissions, a high linear energy transfer Auger-electrons with the longer ranged β- particles, 64Cu-based radiopharmaceuticals raise particular theragnostic interest in cancer, by joined therapeutic and real-time PET imaging properties. The in vitro study aimed to investigate the biological and molecular background of 64CuCl2 therapy by analyzing the damages and stress responses inflicted in various human normal and tumor cell lines. Colon (HT29 and HCT116) and prostate carcinoma (DU145) cell lines, as well as human normal BJ fibroblasts, were treated up to 72 h with 2-40 MBq/mL 64CuCl2. Radioisotope uptake and retention were assessed, and cell viability/death, DNA damage, oxidative stress, and the expression of 84 stress genes were investigated at various time points after [64Cu]CuCl2 addition. All the investigated cells incorporated 64Cu ions similarly, independent of their tumoral or normal status, but their fate after exposure to [64Cu]CuCl2 was cell-dependent. The most striking cytotoxic effects of the radioisotope were registered in colon carcinoma HCT116 cells, for which a substantial decrease in the number of metabolically active cells, and an increased DNA damage and oxidative stress were registered. The stress gene expression study highlighted the activation of both death and repair mechanisms in these cells, related to extrinsic apoptosis, necrosis/necroptosis or autophagy, and cell cycle arrest, nucleotide excision repair, antioxidant, and hypoxic responses, respectively. The in vitro study indicated that 40 MBq/mL [64Cu]CuCl2 delivers a therapeutic effect in human colon carcinoma, but its use is limited by harmful, yet lower effects on normal fibroblasts. The exposure of tumor cells to 20 MBq/mL [64Cu]CuCl2, might be used for a softer approach aiming for a lower radiotoxicity in normal fibroblasts as compared to tumor cells. This radioactive concentration was able to induce a persistent decrease in the number of metabolically active cells, accompanied by DNA damage and oxidative stress, associated with significant changes in stress gene expression in HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Radu M. Serban
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Dana Niculae
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Gina Manda
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Ionela Neagoe
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Maria Dobre
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Dragoș A. Niculae
- Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Mihaela Temelie
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Cosmin Mustăciosu
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Radu A. Leonte
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Livia E. Chilug
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Maria R. Cornoiu
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Doctoral School of Applied Chemistry and Materials Science, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Bucharest, Romania
| | - Diana Cocioabă
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Doctoral School of Physics, Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Miruna Stan
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | |
Collapse
|
41
|
Overcast GR, Meibers HE, Eshleman EM, Saha I, Waggoner L, Patel KN, Jain VG, Haslam DB, Alenghat T, VanDussen KL, Pasare C. IEC-intrinsic IL-1R signaling holds dual roles in regulating intestinal homeostasis and inflammation. J Exp Med 2023; 220:e20212523. [PMID: 36976181 PMCID: PMC10067527 DOI: 10.1084/jem.20212523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/20/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Intestinal epithelial cells (IECs) constitute a critical first line of defense against microbes. While IECs are known to respond to various microbial signals, the precise upstream cues regulating diverse IEC responses are not clear. Here, we discover a dual role for IEC-intrinsic interleukin-1 receptor (IL-1R) signaling in regulating intestinal homeostasis and inflammation. Absence of IL-1R in epithelial cells abrogates a homeostatic antimicrobial program including production of antimicrobial peptides (AMPs). Mice deficient for IEC-intrinsic IL-1R are unable to clear Citrobacter rodentium (C. rodentium) but are protected from DSS-induced colitis. Mechanistically, IL-1R signaling enhances IL-22R-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation in IECs leading to elevated production of AMPs. IL-1R signaling in IECs also directly induces expression of chemokines as well as genes involved in the production of reactive oxygen species. Our findings establish a protective role for IEC-intrinsic IL-1R signaling in combating infections but a detrimental role during colitis induced by epithelial damage.
Collapse
Affiliation(s)
- Garrett R. Overcast
- Immunology Graduate Program, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Hannah E. Meibers
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Emily M. Eshleman
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Irene Saha
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lisa Waggoner
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Krupaben N. Patel
- Divisions of Gastroenterology, Hepatology, and Nutrition and of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Viral G. Jain
- Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David B. Haslam
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kelli L. VanDussen
- Divisions of Gastroenterology, Hepatology, and Nutrition and of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Chandrashekhar Pasare
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
42
|
Yokota S, Kaji K, Yonezawa T, Momoi Y, Maeda S. CD204⁺ tumor-associated macrophages are associated with clinical outcome in canine pulmonary adenocarcinoma and transitional cell carcinoma. Vet J 2023; 296-297:105992. [PMID: 37164121 DOI: 10.1016/j.tvjl.2023.105992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Tumor-associated macrophages are abundant infiltrating cells in the tumor microenvironment (TME). Macrophages can be classified into several types of subsets based on their immune responses. Among those subsets, M2 macrophages contribute to anti-inflammatory responses and create an immunosuppressive environment that promotes tumor cell proliferation. In a previous study, human cancer patients with high M2 macrophages showed a worse prognosis for many types of tumors. However, studies examining the relationship between M2 macrophages and clinical outcomes in canine tumors are limited. In the previous human and canine studies, CD204 has been used as the marker for detecting M2 macrophages. Then we evaluated CD204+ and total macrophages infiltration and its association with clinical outcomes in canine solid tumors. In this study, we examined dogs with oral malignant melanoma (OMM), pulmonary adenocarcinoma (PA), hepatocellular carcinoma (HCC), and transitional cell carcinoma (TCC). Compared to healthy tissues, CD204+ and total macrophages were increased in OMM, PA, and TCC, but not in HCC. High CD204+ macrophage levels were significantly associated with lung metastasis in TCC (P = 0.030). Kaplan-Meier analysis revealed that high CD204+ macrophage levels were associated with shorter overall survival (OS) in canine patients with PA (P = 0.012) and TCC (P = 0.0053). These results suggest that CD204+ macrophages contribute to tumor progression and could be a prognostic factor in dogs with PA and TCC.
Collapse
Affiliation(s)
- S Yokota
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - K Kaji
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - T Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Y Momoi
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - S Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
43
|
Anwar F, Naqvi S, Shams S, Sheikh RA, Al-Abbasi FA, Asseri AH, Baig MR, Kumar V. Nanomedicines: intervention in inflammatory pathways of cancer. Inflammopharmacology 2023; 31:1199-1221. [PMID: 37060398 PMCID: PMC10105366 DOI: 10.1007/s10787-023-01217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
Inflammation is a complex defense process that maintains tissue homeostasis. However, this complex cascade, if lasts long, may contribute to pathogenesis of several diseases. Chronic inflammation has been exhaustively studied in the last few decades, for its contribution in development and progression of cancer. The intrinsic limitations of conventional anti-inflammatory and anti-cancer therapies triggered the development of nanomedicines for more effective and safer therapies. Targeting inflammation and tumor cells by nanoparticles, encapsulated with active therapeutic agents, offers a promising outcome with patient survival. Considerable technological success has been achieved in this field through exploitation of tumor microenvironment, and recognition of molecules overexpressed on endothelial cells or macrophages, through enhanced vascular permeability, or by rendering biomimetic approach to nanoparticles. This review focusses on the inflammatory pathways in progression of a tumor, and advancement in nanotechnologies targeting these pathways. We also aim to identify the gaps that hinder the successful clinical translation of nanotherapeutics with further clinical studies that will allow oncologist to precisely identify the patients who may be benefited from nanotherapy at time when promotion or progression of tumor initiates. It is postulated that the nanomedicines, in near future, will shift the paradigm of cancer treatment and improve patient survival.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Saiba Shams
- School of Pharmaceutical Education & Research, (Deemed to be University), New Delhi, 110062, India
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mirza Rafi Baig
- Department of Clinical Pharmacy & Pharmacotherapeutics. Dubai Pharmacy College for Girls, Po Box 19099, Dubai, United Arab Emirates
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
44
|
Carnevale S, Di Ceglie I, Grieco G, Rigatelli A, Bonavita E, Jaillon S. Neutrophil diversity in inflammation and cancer. Front Immunol 2023; 14:1180810. [PMID: 37180120 PMCID: PMC10169606 DOI: 10.3389/fimmu.2023.1180810] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Neutrophils are the most abundant circulating leukocytes in humans and the first immune cells recruited at the site of inflammation. Classically perceived as short-lived effector cells with limited plasticity and diversity, neutrophils are now recognized as highly heterogenous immune cells, which can adapt to various environmental cues. In addition to playing a central role in the host defence, neutrophils are involved in pathological contexts such as inflammatory diseases and cancer. The prevalence of neutrophils in these conditions is usually associated with detrimental inflammatory responses and poor clinical outcomes. However, a beneficial role for neutrophils is emerging in several pathological contexts, including in cancer. Here we will review the current knowledge of neutrophil biology and heterogeneity in steady state and during inflammation, with a focus on the opposing roles of neutrophils in different pathological contexts.
Collapse
Affiliation(s)
| | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
45
|
Gu Y, Huang H, Tong Q, Cao M, Ming W, Zhang R, Zhu W, Wang Y, Sun X. Multi-View Radiomics Feature Fusion Reveals Distinct Immuno-Oncological Characteristics and Clinical Prognoses in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:cancers15082338. [PMID: 37190266 DOI: 10.3390/cancers15082338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, and the pronounced intra- and inter-tumor heterogeneity restricts clinical benefits. Dissecting molecular heterogeneity in HCC is commonly explored by endoscopic biopsy or surgical forceps, but invasive tissue sampling and possible complications limit the broadeer adoption. The radiomics framework is a promising non-invasive strategy for tumor heterogeneity decoding, and the linkage between radiomics and immuno-oncological characteristics is worth further in-depth study. In this study, we extracted multi-view imaging features from contrast-enhanced CT (CE-CT) scans of HCC patients, followed by developing a fused imaging feature subtyping (FIFS) model to identify two distinct radiomics subtypes. We observed two subtypes of patients with distinct texture-dominated radiomics profiles and prognostic outcomes, and the radiomics subtype identified by FIFS model was an independent prognostic factor. The heterogeneity was mainly attributed to inflammatory pathway activity and the tumor immune microenvironment. The predominant radiogenomics association was identified between texture-related features and immune-related pathways by integrating network analysis, and was validated in two independent cohorts. Collectively, this work described the close connections between multi-view radiomics features and immuno-oncological characteristics in HCC, and our integrative radiogenomics analysis strategy may provide clues to non-invasive inflammation-based risk stratification.
Collapse
Affiliation(s)
- Yu Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hao Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qi Tong
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Meng Cao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wenlong Ming
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Rongxin Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Wenyong Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuqi Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
46
|
Wilson BE, Shen Q, Cescon DW, Reedijk M. Exploring immune interactions in triple negative breast cancer: IL-1β inhibition and its therapeutic potential. Front Genet 2023; 14:1086163. [PMID: 37065483 PMCID: PMC10095561 DOI: 10.3389/fgene.2023.1086163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Triple negative breast cancer (TNBC) has poor prognosis when compared to other breast cancer subtypes. Despite pre-clinical data supporting an immune targeted approach for TNBCs, immunotherapy has failed to demonstrate the impressive responses seen in other solid tumor malignancies. Additional strategies to modify the tumor immune microenvironment and potentiate response to immunotherapy are needed. In this review, we summarise phase III data supporting the use of immunotherapy for TNBC. We discuss the role of IL-1β in tumorigenesis and summarize pre-clinical data supporting IL-1β inhibition as a potential therapeutic strategy in TNBC. Finally, we present current trials evaluating IL-1β in breast cancer and other solid tumor malignancies and discuss future studies that may provide a strong scientific rationale for the combination of IL-1β and immunotherapy in the neoadjuvant and metastatic setting for people with TNBC.
Collapse
Affiliation(s)
- Brooke E. Wilson
- Department of Oncology, Queen’s University, Kingston, ON, Canada
- Division of Cancer Care and Epidemiology, Queen’s Cancer Research Institute, Kingston, ON, Canada
| | - Qiang Shen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David W. Cescon
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, ON, Canada
| | - Michael Reedijk
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, ON, Canada
- Department of Surgical Oncology, University Health Network, Toronto, ON, Canada
- *Correspondence: Michael Reedijk,
| |
Collapse
|
47
|
Zhang Z, Li X, Wang Y, Wei Y, Wei X. Involvement of inflammasomes in tumor microenvironment and tumor therapies. J Hematol Oncol 2023; 16:24. [PMID: 36932407 PMCID: PMC10022228 DOI: 10.1186/s13045-023-01407-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammasomes are macromolecular platforms formed in response to damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns, whose formation would cause maturation of interleukin-1 (IL-1) family members and gasdermin D (GSDMD), leading to IL-1 secretion and pyroptosis respectively. Several kinds of inflammasomes detecting different types of dangers have been found. The activation of inflammasomes is regulated at both transcription and posttranscription levels, which is crucial in protecting the host from infections and sterile insults. Present findings have illustrated that inflammasomes are involved in not only infection but also the pathology of tumors implying an important link between inflammation and tumor development. Generally, inflammasomes participate in tumorigenesis, cell death, metastasis, immune evasion, chemotherapy, target therapy, and radiotherapy. Inflammasome components are upregulated in some tumors, and inflammasomes can be activated in cancer cells and other stromal cells by DAMPs, chemotherapy agents, and radiation. In some cases, inflammasomes inhibit tumor progression by initiating GSDMD-mediated pyroptosis in cancer cells and stimulating IL-1 signal-mediated anti-tumor immunity. However, IL-1 signal recruits immunosuppressive cell subsets in other cases. We discuss the conflicting results and propose some possible explanations. Additionally, we also summarize interventions targeting inflammasome pathways in both preclinical and clinical stages. Interventions targeting inflammasomes are promising for immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Ziqi Zhang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xue Li
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
48
|
Yousef M, Ozdemir F, Jaber A, Allmer J, Bakir-Gungor B. PriPath: identifying dysregulated pathways from differential gene expression via grouping, scoring, and modeling with an embedded feature selection approach. BMC Bioinformatics 2023; 24:60. [PMID: 36823571 PMCID: PMC9947447 DOI: 10.1186/s12859-023-05187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Cell homeostasis relies on the concerted actions of genes, and dysregulated genes can lead to diseases. In living organisms, genes or their products do not act alone but within networks. Subsets of these networks can be viewed as modules that provide specific functionality to an organism. The Kyoto encyclopedia of genes and genomes (KEGG) systematically analyzes gene functions, proteins, and molecules and combines them into pathways. Measurements of gene expression (e.g., RNA-seq data) can be mapped to KEGG pathways to determine which modules are affected or dysregulated in the disease. However, genes acting in multiple pathways and other inherent issues complicate such analyses. Many current approaches may only employ gene expression data and need to pay more attention to some of the existing knowledge stored in KEGG pathways for detecting dysregulated pathways. New methods that consider more precompiled information are required for a more holistic association between gene expression and diseases. RESULTS PriPath is a novel approach that transfers the generic process of grouping and scoring, followed by modeling to analyze gene expression with KEGG pathways. In PriPath, KEGG pathways are utilized as the grouping function as part of a machine learning algorithm for selecting the most significant KEGG pathways. A machine learning model is trained to differentiate between diseases and controls using those groups. We have tested PriPath on 13 gene expression datasets of various cancers and other diseases. Our proposed approach successfully assigned biologically and clinically relevant KEGG terms to the samples based on the differentially expressed genes. We have comparatively evaluated the performance of PriPath against other tools, which are similar in their merit. For each dataset, we manually confirmed the top results of PriPath in the literature and found that most predictions can be supported by previous experimental research. CONCLUSIONS PriPath can thus aid in determining dysregulated pathways, which applies to medical diagnostics. In the future, we aim to advance this approach so that it can perform patient stratification based on gene expression and identify druggable targets. Thereby, we cover two aspects of precision medicine.
Collapse
Affiliation(s)
- Malik Yousef
- Department of Information Systems, Zefat Academic College, 13206, Zefat, Israel. .,Galilee Digital Health Research Center (GDH), Zefat Academic College, Zefat, Israel.
| | - Fatma Ozdemir
- grid.440414.10000 0004 0558 2628Department of Computer Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri, Turkey ,grid.5570.70000 0004 0490 981XUniversity Institute of Digital Communication Systems, Ruhr-University, Bochum, Germany
| | - Amhar Jaber
- grid.440414.10000 0004 0558 2628Department of Computer Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Jens Allmer
- grid.454318.f0000 0004 0431 5034Medical Informatics and Bioinformatics, Institute for Measurement Engineering and Sensor Technology, Hochschule Ruhr West, University of Applied Sciences, Mülheim an der Ruhr, Germany
| | - Burcu Bakir-Gungor
- grid.440414.10000 0004 0558 2628Department of Computer Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
49
|
IL-1β neutralization prevents diastolic dysfunction development, but lacks hepatoprotective effect in an aged mouse model of NASH. Sci Rep 2023; 13:356. [PMID: 36611037 PMCID: PMC9825403 DOI: 10.1038/s41598-022-26896-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Interleukin-1β (IL-1β) is a key mediator of non-alcoholic steatohepatitis (NASH), a chronic liver disease, and of systemic inflammation-driven aging. IL-1β contributes to cardio-metabolic decline, and may promote hepatic oncogenic transformation. Therefore, IL-1β is a potential therapeutic target in these pathologies. We aimed to investigate the hepatic and cardiac effects of an IL-1β targeting monoclonal antibody in an aged mouse model of NASH. 24 months old male C57Bl/6J mice were fed with control or choline deficient (CDAA) diet and were treated with isotype control or anti-IL-1β Mab for 8 weeks. Cardiac functions were assessed by conventional-and 2D speckle tracking echocardiography. Liver samples were analyzed by immunohistochemistry and qRT-PCR. Echocardiography revealed improved cardiac diastolic function in anti-IL-1β treated mice with NASH. Marked hepatic fibrosis developed in CDAA-fed group, but IL-1β inhibition affected fibrosis only at transcriptomic level. Hepatic inflammation was not affected by the IL-1β inhibitor. PCNA staining revealed intensive hepatocyte proliferation in CDAA-fed animals, which was not influenced by neutralization of IL-1β. IL-1β inhibition increased hepatic expression of Pd-1 and Ctla4, while Pd-l1 expression increased in NASH. In conclusion, IL-1β inhibition improved cardiac diastolic function, but did not ameliorate features of NASH; moreover, even promoted hepatic immune checkpoint expression, with concomitant NASH-related hepatocellular proliferation.
Collapse
|
50
|
López-Otín C, Pietrocola F, Roiz-Valle D, Galluzzi L, Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab 2023; 35:12-35. [PMID: 36599298 DOI: 10.1016/j.cmet.2022.11.001] [Citation(s) in RCA: 199] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
Both aging and cancer are characterized by a series of partially overlapping "hallmarks" that we subject here to a meta-analysis. Several hallmarks of aging (i.e., genomic instability, epigenetic alterations, chronic inflammation, and dysbiosis) are very similar to specific cancer hallmarks and hence constitute common "meta-hallmarks," while other features of aging (i.e., telomere attrition and stem cell exhaustion) act likely to suppress oncogenesis and hence can be viewed as preponderantly "antagonistic hallmarks." Disabled macroautophagy and cellular senescence are two hallmarks of aging that exert context-dependent oncosuppressive and pro-tumorigenic effects. Similarly, the equivalence or antagonism between aging-associated deregulated nutrient-sensing and cancer-relevant alterations of cellular metabolism is complex. The agonistic and antagonistic relationship between the processes that drive aging and cancer has bearings for the age-related increase and oldest age-related decrease of cancer morbidity and mortality, as well as for the therapeutic management of malignant disease in the elderly.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|