1
|
Yang Z, Tao P, Han X, Kozlova A, He T, Volchkov E, Nesterenko Z, Pershin D, Raykina E, Fatkhudinov T, Korobeynikova A, Aksentijevich I, Yang J, Shcherbina A, Zhou Q, Yu X. Characterization of a Novel Pathogenic PLCG2 Variant Leading to APLAID Syndrome Responsive to a TNF Inhibitor. Arthritis Rheumatol 2024; 76:1670-1678. [PMID: 38965708 DOI: 10.1002/art.42948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/13/2024] [Accepted: 07/25/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE Autoinflammation and phospholipase C (PLC) γ2-associated antibody deficiency and immune dysregulation (APLAID) syndrome is an autoinflammatory disease caused by gain-of-function variants in PLCG2. This study investigates the pathogenic mechanism of a novel variant of PLCG2 in a patient with APLAID syndrome. METHODS Whole-exome sequencing and Sanger sequencing were used to identify the pathogenic variant in the patient. Single-cell RNA sequencing, immunoblotting, luciferase assay, inositol monophosphate enzyme-linked immunosorbent assay, calcium flux assay, quantitative PCR, and immunoprecipitation were used to define inflammatory signatures and evaluate the effects of the PLCG2 variant on protein functionality and immune signaling. RESULTS We identified a novel de novo variant, PLCG2 p.D993Y, in a patient with colitis, pansinusitis, skin rash, edema, recurrent respiratory infections, B-cell deficiencies, and hypogammaglobulinemia. The single-cell transcriptome revealed exacerbated inflammatory responses in the patient's peripheral blood mononuclear cells. Expression of the D993Y variant in HEK293T, COS-7, and PLCG2 knock-out THP-1 cell lines showed heightened PLCγ2 phosphorylation; elevated inositol-1,4,5-trisphosphate production and intracellular Ca2+ release; and activation of the MAPK, NF-κB, and NFAT signaling pathways compared with control-transfected cells. In vitro experiments indicated that the D993Y variant altered amino acid properties, disrupting the interaction between the catalytic and autoinhibitory domains of PLCγ2, resulting in PLCγ2 autoactivation. CONCLUSION Our findings demonstrated that the PLCG2 D993Y variant is a gain-of-function mutation via impairing its autoinhibition, activating multiple inflammatory signaling pathways, thus leading to APLAID syndrome. This study further broadens the molecular underpinnings and phenotypic spectrum of PLCγ2-related disorders.
Collapse
Affiliation(s)
- Zhaohui Yang
- The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Panfeng Tao
- The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xu Han
- The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Anna Kozlova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Tingyan He
- Shenzhen Children's Hospital, Shenzhen, China
| | - Egor Volchkov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation and Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Zoya Nesterenko
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Dmitryi Pershin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Elena Raykina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Peoples' Friendship University of Russia (RUDN University) and Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Anastasia Korobeynikova
- Peoples' Friendship University of Russia (RUDN University), Moscow, and Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Ivona Aksentijevich
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jun Yang
- Shenzhen Children's Hospital, Shenzhen, China
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Qing Zhou
- The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xiaomin Yu
- The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Ben-Aicha S, Haskard D. Unlocking unknown mutations to understand causal relationships in cardiovascular science: paving the path to personalized cardiovascular care. Cardiovasc Res 2024; 120:e48-e50. [PMID: 39196712 PMCID: PMC11472452 DOI: 10.1093/cvr/cvae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 07/14/2024] [Indexed: 08/30/2024] Open
Affiliation(s)
- Soumaya Ben-Aicha
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Dorian Haskard
- Department of Immunology and Inflammation, Imperial College London, UK
| |
Collapse
|
3
|
Chen J, Hu ZY, Ma Y, Jiang S, Yin JY, Wang YK, Wu YG, Liu XQ. Rutaecarpine alleviates inflammation and fibrosis by targeting CK2α in diabetic nephropathy. Biomed Pharmacother 2024; 180:117499. [PMID: 39353318 DOI: 10.1016/j.biopha.2024.117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the serious microvascular complications of diabetes mellitus. During the progression of DN, the proliferation of glomerular mesangial cells (GMCs) leads to the deposition of excessive extracellular matrix (ECM) in the mesangial region, eventually resulting in glomerulosclerosis. Rutaecarpine (Rut), an alkaloid found in the traditional Chinese medicinal herb Fructus Evodiae (Euodia rutaecarpa (Juss.) Benth.), has many biological activities. However, its mechanism of action in DN remains unknown. This study used db/db mice and high glucose (HG)-treated mouse mesangial cells (SV40 MES-13) to evaluate the protective effects of Rut and underlying mechanisms on GMCs in DN. We found that Rut alleviated urinary albumin and renal function and significantly relieved renal pathological damage. In addition, Rut decreased the ECM production, and renal inflammation and suppressed the activation of TGF-β1/Smad3 and NF-κB signaling pathways in vitro and in vivo. Protein kinase CK2α (CK2α) was identified as the target of Rut by target prediction, molecular docking, and cellular thermal shift assay (CETSA), and surface plasmon resonance (SPR). Furthermore, Rut could not continue to play a protective role in HG-treated SV40 cells after silencing CK2α. In summary, this study is the first to find that Rut can suppress ECM production and inflammation in HG-treated SV40 cells by inhibiting the activation of TGF-β1/Smad3 and NF-κB signaling pathways and targeting CK2α. Thus, Rut can potentially become a novel treatment option for DN.
Collapse
Affiliation(s)
- Juan Chen
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Zi-Yun Hu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yu Ma
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Shan Jiang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Jiu-Yu Yin
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yu-Kai Wang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yong-Gui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Center for Scientific Research of Anhui Medical University, Hefei, Anhui 230022, PR China.
| | - Xue-Qi Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
4
|
Kozu KT, Nascimento RRNRD, Aires PP, Cordeiro RA, Moura TCLD, Sztajnbok FR, Pereira IA, Almeida de Jesus A, Perazzio SF. Inflammatory turmoil within: an exploration of autoinflammatory disease genetic underpinnings, clinical presentations, and therapeutic approaches. Adv Rheumatol 2024; 64:62. [PMID: 39175060 DOI: 10.1186/s42358-024-00404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) arise from dysregulated innate immune system activity, which leads to systemic inflammation. These disorders, encompassing a diverse array of genetic defects classified as inborn errors of immunity, are significant diagnostic challenges due to their genetic heterogeneity and varied clinical presentations. Although recent advances in genetic sequencing have facilitated pathogenic gene discovery, approximately 40% of SAIDs patients lack molecular diagnoses. SAIDs have distinct clinical phenotypes, and targeted therapeutic approaches are needed. This review aims to underscore the complexity and clinical significance of SAIDs, focusing on prototypical disorders grouped according to their pathophysiology as follows: (i) inflammasomopathies, characterized by excessive activation of inflammasomes, which induces notable IL-1β release; (ii) relopathies, which are monogenic disorders characterized by dysregulation within the NF-κB signaling pathway; (iii) IL-18/IL-36 signaling pathway defect-induced SAIDs, autoinflammatory conditions defined by a dysregulated balance of IL-18/IL-36 cytokine signaling, leading to uncontrolled inflammation and tissue damage, mainly in the skin; (iv) type I interferonopathies, a diverse group of disorders characterized by uncontrolled production of type I interferons (IFNs), notably interferon α, β, and ε; (v) anti-inflammatory signaling pathway impairment-induced SAIDs, a spectrum of conditions characterized by IL-10 and TGFβ anti-inflammatory pathway disruption; and (vi) miscellaneous and polygenic SAIDs. The latter group includes VEXAS syndrome, chronic recurrent multifocal osteomyelitis/chronic nonbacterial osteomyelitis, Schnitzler syndrome, and Still's disease, among others, illustrating the heterogeneity of SAIDs and the difficulty in creating a comprehensive classification. Therapeutic strategies involving targeted agents, such as JAK inhibitors, IL-1 blockers, and TNF inhibitors, are tailored to the specific disease phenotypes.
Collapse
Affiliation(s)
- Kátia Tomie Kozu
- Universidade de Sao Paulo, Faculdade de Medicina (USP FM), Sao Paulo, Brazil
| | | | - Patrícia Pontes Aires
- Universidade Federal de Sao Paulo, Escola Paulista de Medicina (Unifesp EPM), Rua Otonis, 863, Vila Clementino, São Paulo, SP, 04025-002, Brazil
| | | | | | - Flavio Roberto Sztajnbok
- Federal University of Rio de Janeiro: Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Sandro Félix Perazzio
- Universidade de Sao Paulo, Faculdade de Medicina (USP FM), Sao Paulo, Brazil.
- Universidade Federal de Sao Paulo, Escola Paulista de Medicina (Unifesp EPM), Rua Otonis, 863, Vila Clementino, São Paulo, SP, 04025-002, Brazil.
- Division of Immunology and Rheumatology, Fleury Laboratories, Sao Paulo, SP, Brazil.
| |
Collapse
|
5
|
Rowczenio D, Aksentijevich I. Genetic Approaches to Study Rheumatic Diseases and Its Implications in Clinical Practice. Arthritis Rheumatol 2024; 76:1169-1181. [PMID: 38433603 DOI: 10.1002/art.42841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Patients with rare and complex rheumatic diseases (RDs) present with immense clinical variability inherent to all immunologic diseases. In addition to systemic and organ-specific inflammation, patients may display features of immunodeficiency or allergy, which may represent major diagnostic and therapeutic challenges. The person's genetic architecture has been a well-established risk factor for patients with RDs, albeit to variable degrees. Patients with early-onset diseases and/or positive family history (FH) have a strong genetic component, whereas patients with late-onset RDs demonstrate a more complex interplay of genetic and environmental risk factors. Overall, the genetic studies in patients with RDs have been instrumental to our understanding of innate and adaptive immunity in human health and disease. The elucidation of the molecular causes underlying rare diseases has played a major role in the identification of genes that are critical in the regulation of inflammatory responses. In addition, studies of patients with rare disorders may help determine the mechanisms of more complex autoimmune diseases by identifying variants with small effect sizes in the same genes. In contrast, studies of patients with common RDs are conducted in cohorts of patients with well-established phenotypes and ancestry-matched controls, and they aim to discover disease-related pathways that can inform the development of novel targeted therapies. Knowing the genetic cause of a disease has helped patients and families understand the disease progression and outcome. Here, we discuss the current understanding of genetic heritability and challenges in the diagnosis of RDs in patients and how this field may develop in the future.
Collapse
|
6
|
Caiado F, Manz MG. IL-1 in aging and pathologies of hematopoietic stem cells. Blood 2024; 144:368-377. [PMID: 38781562 DOI: 10.1182/blood.2023023105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
ABSTRACT Defense-oriented inflammatory reactivity supports survival at younger age but might contribute to health impairments in modern, aging societies. The interleukin-1 (IL-1) cytokines are highly conserved and regulated, pleiotropic mediators of inflammation, essential to respond adequately to infection and tissue damage but also with potential host damaging effects when left unresolved. In this review, we discuss how continuous low-level IL-1 signaling contributes to aging-associated hematopoietic stem and progenitor cell (HSPC) functional impairments and how this inflammatory selective pressure acts as a driver of more profound hematological alterations, such as clonal hematopoiesis of indeterminate potential, and to overt HSPC diseases, like myeloproliferative and myelodysplastic neoplasia as well as acute myeloid leukemia. Based on this, we outline how IL-1 pathway inhibition might be used to prevent or treat inflammaging-associated HSPC pathologies.
Collapse
Affiliation(s)
- Francisco Caiado
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Zhang D, Xu D, Huang X, Wei Y, Tang F, Qin X, Liang W, Liang Z, Jin L, Wang H, Wang H. Puerarin-Loaded Electrospun Patches with Anti-Inflammatory and Pro-Collagen Synthesis Properties for Pelvic Floor Reconstruction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308590. [PMID: 38509840 DOI: 10.1002/advs.202308590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/02/2024] [Indexed: 03/22/2024]
Abstract
Pelvic organ prolapse (POP) is one of the most common pelvic floor dysfunction disorders worldwide. The weakening of pelvic connective tissues initiated by excessive collagen degradation is a leading cause of POP. However, the patches currently used in the clinic trigger an unfavorable inflammatory response, which often leads to implantation failure and the inability to simultaneously reverse progressive collagen degradation. Therefore, to overcome the present challenges, a new strategy is applied by introducing puerarin (Pue) into poly(l-lactic acid) (PLLA) using electrospinning technology. PLLA improves the mechanical properties of the patch, while Pue offers intrinsic anti-inflammatory and pro-collagen synthesis effects. The results show that Pue is released from PLLA@Pue in a sustained manner for more than 20 days, with a total release rate exceeding 80%. The PLLA@Pue electrospun patches also show good biocompatibility and low cytotoxicity. The excellent anti-inflammatory and pro-collagen synthesis properties of the PLLA@Pue patch are demonstrated both in vitro in H2O2-stimulated mouse fibroblasts and in vivo in rat abdominal wall muscle defects. Therefore, it is believed that this multifunctional electrospun patch integrating anti-inflammatory and pro-collagen synthesis properties can overcome the limitations of traditional patches and has great prospects for efficient pelvic floor reconstruction.
Collapse
Affiliation(s)
- Di Zhang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Dong Xu
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Xiaobo Huang
- Department of Ophthalmology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yingqi Wei
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fuxin Tang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Xiusen Qin
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Weiwen Liang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Zhongping Liang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, China
| | - Hui Wang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Huaiming Wang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| |
Collapse
|
8
|
Li Z, Zhang X, Li K, Li F, Kou J, Wang Y, Wei X, Sun Y, Jing Y, Song Y, Yu Q, Yu H, Wang S, Chen S, Wang Y, Xie S, Zhu X, Zhan Y, Sun G, Ni Y. IL-36 antagonism blunts the proliferation and migration of oral squamous cell carcinoma cells. Cell Signal 2024; 117:111096. [PMID: 38346528 DOI: 10.1016/j.cellsig.2024.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
IL-36 is known to mediate inflammation and fibrosis. Nevertheless, IL-36 signalling axis has also been implicated in cancer, although understanding of exact contribution of IL-36 to cancer progression is very limited, partly due to existence of multiple IL-36 ligands with agonistic and antagonistic function. Here we explored the role of IL-36 in oral squamous cell carcinoma (OSCC). Firstly, we analyzed expression of IL-36 ligands and receptor and found that the expression of IL-36γ was significantly higher in head and neck cancer (HNSCC) than that of normal tissues, and that the high expression of IL-36γ predicted poor clinical outcomes. Secondly, we investigated the direct effect of IL-36γ on OSCC cells and found that IL-36γ stimulated proliferation of OSCC cells with high expression of IL-36R expression. Interestingly, IL-36γ also promoted migration of OSCC cells with low to high IL-36R expression. Critically, both proliferation and migration of OSCC cells induced by IL-36γ were abrogated by anti-IL-36R mAb. Fittingly, RNA sequence analysis revealed that IL-36γ regulated genes involved in cell cycle and cell division. In summary, our results showed that IL-36γ can be a tumor-promoting factor, and targeting of IL-36R signalling may be a beneficial targeted therapy for patients with abnormal IL-36 signalling.
Collapse
Affiliation(s)
- Zihui Li
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoxin Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ke Li
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fuyan Li
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiahao Kou
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuhan Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoyue Wei
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Yawei Sun
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - QiuYa Yu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haijia Yu
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Shuai Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shi Chen
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Yangtin Wang
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Simin Xie
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Xiangyang Zhu
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Yifan Zhan
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China.
| | - Guowen Sun
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
9
|
Hospach T, Kallinich T, Martin L, V Kalle T, Reichert F, Girschick HJ, Hedrich CM. [Arthritis and osteomyelitis in childhood and adolescence-Bacterial and nonbacterial]. Z Rheumatol 2024:10.1007/s00393-024-01504-z. [PMID: 38653784 DOI: 10.1007/s00393-024-01504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/25/2024]
Abstract
Bacterial arthritis and osteomyelitis are usually acute diseases, which in this way differ from the often insidious course of nonbacterial osteomyelitis; however, there is often an overlap both in less acute courses of bacterial illnesses and also in nonbacterial osteitis. The overlapping clinical phenomena can be explained by similar pathophysiological processes. In bacteria-related illnesses the identification of the pathogen and empirical or targeted anti-infectious treatment are prioritized, whereas no triggering agent is known for nonbacterial diseases. The diagnostics are based on the exclusion of differential diagnoses, clinical scores and magnetic resonance imaging (MRI). An activity-adapted anti-inflammatory treatment is indicated.
Collapse
Affiliation(s)
- T Hospach
- Zentrum für Pädiatrische Rheumatologie, Olgahospital, Klinikum Stuttgart (ZEPRAS), Kriegsbergstr 62, 70176, Stuttgart, Deutschland.
| | - T Kallinich
- Klinik für Pädiatrie m.S. Pneumologie, Immunologie und Intensivmedizin, Charité, Universitätsmedizin Berlin, Berlin, Deutschland
| | - L Martin
- Klinik für Pädiatrie m.S. Pneumologie, Immunologie und Intensivmedizin, Charité, Universitätsmedizin Berlin, Berlin, Deutschland
| | - T V Kalle
- Radiologisches Institut, Olgahospital, Klinikum Stuttgart, Stuttgart, Deutschland
| | - F Reichert
- Pädiatrische Infektiologie, Olgahospital, Klinikum Stuttgart, Stuttgart, Deutschland
| | - H J Girschick
- Vivantes Klinikum Friedrichshain, Berlin, Deutschland
| | - C M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, Großbritannien
- Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, Großbritannien
| |
Collapse
|
10
|
Urbaneja E, Bonet N, Solis-Moruno M, Mensa-Vilaro A, de Landazuri IO, Tormo M, Lara R, Plaza S, Fabregat V, Yagüe J, Casals F, Arostegui JI. Case report: Novel compound heterozygous IL1RN mutations as the likely cause of a lethal form of deficiency of interleukin-1 receptor antagonist. Front Immunol 2024; 15:1381447. [PMID: 38646532 PMCID: PMC11026629 DOI: 10.3389/fimmu.2024.1381447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/04/2024] [Indexed: 04/23/2024] Open
Abstract
Undiagnosed monogenic diseases represent a challenging group of human conditions highly suspicious to have a genetic origin, but without conclusive evidences about it. We identified two brothers born prematurely from a non-consanguineous healthy couple, with a neonatal-onset, chronic disease characterized by severe skin and bone inflammatory manifestations and a fatal outcome in infancy. We conducted DNA and mRNA analyses in the patients' healthy relatives to identify the genetic cause of the patients' disease. DNA analyses were performed by both Sanger and next-generation sequencing, which identified two novel heterozygous IL1RN variants: the intronic c.318 + 2T>G variant in the father and a ≈2,600-bp intragenic deletion in the mother. IL1RN mRNA production was markedly decreased in both progenitors when compared with healthy subjects. The mRNA sequencing performed in each parent identified two novel, truncated IL1RN transcripts. Additional experiments revealed a perfect intrafamilial phenotype-genotype segregation following an autosomal recessive inheritance pattern. The evidences shown here supported for the presence of two novel loss-of-function (LoF) IL1RN pathogenic variants in the analyzed family. Biallelic LoF variants at the IL1RN gene cause the deficiency of interleukin-1 receptor antagonist (DIRA), a monogenic autoinflammatory disease with marked similarities with the patients described here. Despite the non-availability of the patients' samples representing the main limitation of this study, the collected evidences strongly suggest that the patients described here suffered from a lethal form of DIRA likely due to a compound heterozygous genotype at IL1RN, thus providing a reliable genetic diagnosis based on the integration of old medical information with currently obtained genetic data.
Collapse
Affiliation(s)
- Elena Urbaneja
- Department of Immunology and Pediatric Rheumatology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Nuria Bonet
- Genomics Core Facility, Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Manuel Solis-Moruno
- Genomics Core Facility, Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Anna Mensa-Vilaro
- Department of Immunology, Hospital Clínic, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Iñaki Ortiz de Landazuri
- Department of Immunology, Hospital Clínic, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Marc Tormo
- Genomics Core Facility, Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
- Scientific Computing Core Facility, Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Rocio Lara
- Department of Immunology, Hospital Clínic, Barcelona, Spain
| | - Susana Plaza
- Department of Immunology, Hospital Clínic, Barcelona, Spain
| | | | - Jordi Yagüe
- Department of Immunology, Hospital Clínic, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Ferran Casals
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan I. Arostegui
- Department of Immunology, Hospital Clínic, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Gander-Bui HTT. Turning nature's experiment into a cure. Allergy 2024; 79:767-769. [PMID: 38084776 DOI: 10.1111/all.15981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 03/01/2024]
Affiliation(s)
- Hang Thi Thuy Gander-Bui
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Papa R, Gattorno M. New genes, pathways and therapeutic targets in autoinflammatory diseases. Nat Rev Rheumatol 2024; 20:71-72. [PMID: 38097849 DOI: 10.1038/s41584-023-01063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Affiliation(s)
- Riccardo Papa
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marco Gattorno
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genova, Italy.
| |
Collapse
|
13
|
Zhang J, Lee PY, Aksentijevich I, Zhou Q. How to Build a Fire: The Genetics of Autoinflammatory Diseases. Annu Rev Genet 2023; 57:245-274. [PMID: 37562411 DOI: 10.1146/annurev-genet-030123-084224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Systemic autoinflammatory diseases (SAIDs) are a heterogeneous group of disorders caused by excess activation of the innate immune system in an antigen-independent manner. Starting with the discovery of the causal gene for familial Mediterranean fever, more than 50 monogenic SAIDs have been described. These discoveries, paired with advances in immunology and genomics, have allowed our understanding of these diseases to improve drastically in the last decade. The genetic causes of SAIDs are complex and include both germline and somatic pathogenic variants that affect various inflammatory signaling pathways. We provide an overview of the acquired SAIDs from a genetic perspective and summarize the clinical phenotypes and mechanism(s) of inflammation, aiming to provide a comprehensive understanding of the pathogenesis of autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA;
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China;
| |
Collapse
|
14
|
Sundqvist M, Christenson K, Wekell P, Björnsdottir H, Dahlstrand Rudin A, Sanchez Klose FP, Kallinich T, Welin A, Björkman L, Bylund J, Karlsson-Bengtsson A, Berg S. Severe chronic non-bacterial osteomyelitis in combination with total MPO deficiency and responsiveness to TNFα inhibition. Front Immunol 2023; 14:1233101. [PMID: 37954595 PMCID: PMC10637399 DOI: 10.3389/fimmu.2023.1233101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
We describe a female patient suffering from severe chronic non-bacterial osteomyelitis (CNO) with systemic inflammation and advanced malnutrition and complete deficiency of myeloperoxidase (MPO). CNO is a rare autoinflammatory bone disorder associated with dysregulation of the innate immune system. MPO deficiency is a genetic disorder with partial or complete absence of the phagocyte peroxidase MPO. MPO deficiency has no established clinical phenotype but reports indicate increased susceptibility to infection and chronic inflammation. The patient's symptoms began at 10 years of age with pain in the thighs, systemic inflammation and malnutrition. She was diagnosed with CNO at 14 years of age. Treatment with nonsteroidal anti-inflammatory drugs, corticosteroids, bisphosphonates or IL1-receptor antagonists (anakinra) did not relieve the symptoms. However, the patient responded instantly and recovered from her clinical symptoms when treated with TNFα blockade (adalimumab). Three years after treatment initiation adalimumab was withdrawn, resulting in rapid symptom recurrence. When reintroducing adalimumab, the patient promptly responded and went into remission. In addition to clinical and laboratory profiles, neutrophil functions (reactive oxygen species, ROS; neutrophil extracellular traps, NETs; degranulation; apoptosis; elastase activity) were investigated both in a highly inflammatory state (without treatment) and in remission (on treatment). At diagnosis, neither IL1β, IL6, nor TNFα was significantly elevated in serum, but since TNFα blockade terminated the inflammatory symptoms, the disease was likely TNFα-driven. All neutrophil parameters were normal both during treatment and treatment withdrawal, except for MPO-dependent intracellular ROS- and NET formation. The role of total MPO deficiency for disease etiology and severity is discussed.
Collapse
Affiliation(s)
- Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Wekell
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, NU Hospital Group, Uddevalla, Sweden
- Department of Pediatric Rheumatology and Immunology, Queen Silvia Children’s Hospital, Gothenburg, Sweden
| | - Halla Björnsdottir
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Felix P. Sanchez Klose
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tilmann Kallinich
- Department of Pediatric Pneumology, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Amanda Welin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy University of Gothenburg, Gothenburg, Sweden
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy University of Gothenburg, Gothenburg, Sweden
- Unit of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Karlsson-Bengtsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy University of Gothenburg, Gothenburg, Sweden
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Stefan Berg
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatric Rheumatology and Immunology, Queen Silvia Children’s Hospital, Gothenburg, Sweden
| |
Collapse
|
15
|
Garlanda C, Supino D. Genetics of autoinflammation instructs selective IL-1 targeting. Immunity 2023; 56:1429-1431. [PMID: 37437532 DOI: 10.1016/j.immuni.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Interleukin-1 (IL-1) is a primary pro-inflammatory cytokine requiring tightly controlled negative regulation. In this issue of Immunity, Wang et al.,1 inspired by an IL-1 receptor missense mutation associated with unleashed IL-1-mediated inflammation, design a new drug to selectively inhibit IL-1.
Collapse
Affiliation(s)
- Cecilia Garlanda
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano 20089 Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele 20072 Milan, Italy.
| | - Domenico Supino
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano 20089 Milan, Italy
| |
Collapse
|