1
|
Hasani SM, Behdani M, Amirkhani Z, Rahimmanesh I, Esmaeilifallah M, Zaker E, Nikpour P, Fadaie M, Ghafouri E, Naderi S, Khanahmad H. Novel SARS-COV2 poly epitope phage-based candidate vaccine and its immunogenicity. Res Pharm Sci 2024; 19:573-590. [PMID: 39691297 PMCID: PMC11648347 DOI: 10.4103/rps.rps_82_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 12/19/2024] Open
Abstract
Background and purpose The global emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has prompted widespread concern. Bacteriophages have recently gained attention as a cost-effective and stable alternative for vaccine development due to their adjuvant properties. This study aimed to design and validate a poly epitope composed of viral proteins. Experimental approach SARS-CoV-2 proteins (spike, nucleocapsid, membrane, envelope, papain-like protease, and RNA-dependent RNA polymerase) were selected for analysis. Immunoinformatic methods were employed to predict B and T cell epitopes, assessing their antigenicity, allergenicity, and toxicity. Epitopes meeting criteria for high antigenicity, non-allergenicity, and non-toxicity were linked to form poly epitopes. These sequences were synthesized and cloned into pHEN4 plasmids to generate Poly1 and Poly2 phagemid vectors. Recombinant Poly1 and Poly2 phages were produced by transforming M13ΔIII plasmids and phagemid vectors into E. coli TG1. Female Balb/c mice were immunized with a cocktail of Poly1 and Poly2 phages, and their serum was collected for ELISA testing. Interferon-gamma (IFN-γ) testing was performed on spleen-derived lymphocytes to evaluate immune system activation. Findings/Results Recombinant Poly1 and Poly2 phages were produced, and their titer was determined as 1013 PFU/mL. Efficient humoral immune responses and cellular immunity activation in mice were achieved following phage administration. Conclusion and implication Poly epitopes displayed on phages exhibit adjuvant properties, enhancing humoral and cellular immunity in mice. This suggests that phages could serve as adjuvants to bolster immunity against SARS-Cov-2. Recombinant phages could be applied as effective candidates for injectable and oral vaccine development strategies.
Collapse
Affiliation(s)
- Sharareh Mohammad Hasani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Behdani
- Department of Biotechnology, Biotechnology Research Center, Venom and Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Zohreh Amirkhani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Esmaeilifallah
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfan Zaker
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Skin Diseases and Leishmaniasis Research Centre, Isfahan University of Medical Science, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Fadaie
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Skin Diseases and Leishmaniasis Research Centre, Isfahan University of Medical Science, Isfahan, Iran
| | - Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shamsi Naderi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Lim CP, Leow CH, Lim HT, Kok BH, Chuah C, Oliveira JIN, Jones M, Leow CY. Insights into structural vaccinology harnessed for universal coronavirus vaccine development. Clin Exp Vaccine Res 2024; 13:202-217. [PMID: 39144127 PMCID: PMC11319108 DOI: 10.7774/cevr.2024.13.3.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 08/16/2024] Open
Abstract
Structural vaccinology is pivotal in expediting vaccine design through high-throughput screening of immunogenic antigens. Leveraging the structural and functional characteristics of antigens and immune cell receptors, this approach employs protein structural comparison to identify conserved patterns in key pathogenic components. Molecular modeling techniques, including homology modeling and molecular docking, analyze specific three-dimensional (3D) structures and protein interactions and offer valuable insights into the 3D interactions and binding affinity between vaccine candidates and target proteins. In this review, we delve into the utilization of various immunoinformatics and molecular modeling tools to streamline the development of broad-protective vaccines against coronavirus disease 2019 variants. Structural vaccinology significantly enhances our understanding of molecular interactions between hosts and pathogens. By accelerating the pace of developing effective and targeted vaccines, particularly against the rapidly mutating severe acute respiratory syndrome coronavirus 2 and other prevalent infectious diseases, this approach stands at the forefront of advancing immunization strategies. The combination of computational techniques and structural insights not only facilitates the identification of potential vaccine candidates but also contributes to the rational design of vaccines, fostering a more efficient and targeted approach to combatting infectious diseases.
Collapse
Affiliation(s)
- Chin Peng Lim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Hui Ting Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Candy Chuah
- Faculty of Medicine, Asian Institute of Medical Science and Technology University, Bedong, Malaysia
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Malcolm Jones
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
3
|
Sharma AD, Grewal RK, Gorle S, Cuspoca AF, Kaushik V, Rajjak Shaikh A, Cavallo L, Chawla M. T cell epitope based vaccine design while targeting outer capsid proteins of rotavirus strains infecting neonates: an immunoinformatics approach. J Biomol Struct Dyn 2024; 42:4937-4955. [PMID: 37382214 DOI: 10.1080/07391102.2023.2226721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Gastrointestinal diarrhea is majorly caused by the rotavirus (RV) in the children who generally are under the age group of 5 years. WHO estimates that ∼95% of the children contract RV infection, by this age. The disease is highly contagious; notably in many cases, it is proven fatal with high mortality rates especially in the developing countries. In India alone, an estimated 145,000 yearly deaths occurs due to RV related gastrointestinal diarrhea. WHO pre-qualified vaccines that are available for RV are all live attenuated vaccines with modest efficacy range between 40 and 60%. Further, the risk of intussusceptions has been reported in some children on RV vaccination. Thus, in a quest to develop alternative candidate to overcome challenges associated with these oral vaccines, we chose immunoinformatics approach to design a multi-epitope vaccine (MEV) while targeting the outer capsid viral proteinsVP4 and VP7 of the neonatal strains of rotavirus. Interestingly, ten epitopes, that is, six CD8+T-cells and four CD4+T-cell epitopes were identified which were predicted to be antigenic, non-allergic, non-toxic and stable. These epitopes were then linked to adjuvants, linkers, and PADRE sequences to create a multi-epitope vaccine for RV. The in silico designed RV-MEV and human TLR5 complex displayed stable interactions during molecular dynamics simulations. Further, the immune simulation studies of RV-MEV corroborated that the vaccine candidate emerges as a promising immunogen. Future investigations while performing in vitro and in vivo analyses with designed RV-MEV construct are highly desirable to warrant the potential of this vaccine candidate in protective immunity against different strains of RVs infecting neonates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arijit Das Sharma
- School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India
| | - Ravneet Kaur Grewal
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Suresh Gorle
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Andrés Felipe Cuspoca
- Grupo de Investigación Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
- Centro de Atención e Investigación Médica - CAIMED, Chía, Colombia
| | - Vikas Kaushik
- School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India
| | - Abdul Rajjak Shaikh
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohit Chawla
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
4
|
Sharma N, Sharma G, Toor D. Plausible Influence of HLA Class I and Class II Diversity on SARS-CoV-2 Vulnerability. Crit Rev Immunol 2024; 44:31-40. [PMID: 37947070 DOI: 10.1615/critrevimmunol.2023049920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) caused the global coronavirus disease 2019 (COVID-19) pandemic, which adversely affected almost all aspects of human life and resulted in the loss of millions of lives, while affecting nearly 0.67 billion people worldwide. SARS-CoV-2 still poses a challenge to the healthcare system as there are more than 200,000 active cases of COVID-19 around the globe. Epidemiological data suggests that the magnitude of morbidity and mortality due to COVID-19 was low in a few geographical regions and was unpredictably higher in a few regions. The genetic diversity of different geographical regions might explain the sporadic prevalence of the disease. In this context, human leukocyte antigens (HLA) represent the most polymorphic gene-dense region of the human genome and serve as an excellent mini-genome model for evaluating population genetic diversity in the context of susceptibility and progression of various diseases. In this review, we highlight the plausible influence of HLA in susceptibility, severity, immune response, and designing of epitope-based vaccines for COVID-19. Further, there is a need for extensive investigations for illustration and clarification of the functional impact of HLA class I and II alleles in the pathogenesis and progression of SARS-CoV-2.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Gaurav Sharma
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Devinder Toor
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, Uttar Pradesh, India
| |
Collapse
|
5
|
Mohapatra S, Kumar S, Kumar S, Singh AK, Nayak B. Immunodominant conserved moieties on spike protein of SARS-CoV-2 renders virulence factor for the design of epitope-based peptide vaccines. Virusdisease 2023; 34:456-482. [PMID: 38046066 PMCID: PMC10686954 DOI: 10.1007/s13337-023-00852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
The outbreak of novel SARS-CoV-2 virion has wreaked havoc with a high prevalence of respiratory illness and high transmission due to a vague understanding of the viral antigenicity, augmenting the dire challenge to public health globally. This viral member necessitates the expansion of diagnostic and therapeutic tools to track its transmission and confront it through vaccine development. Therefore, prophylactic strategies are mandatory. Virulent spike proteins can be the most desirable candidate for the computational design of vaccines targeting SARS-CoV-2, followed by the meteoric development of immune epitopes. Spike protein was characterized using existing bioinformatics tools with a unique roadmap related to the immunological profile of SARS-CoV-2 to predict immunogenic virulence epitopes based on antigenicity, allergenicity, toxicity, immunogenicity, and population coverage. Applying in silico approaches, a set of twenty-four B lymphocyte-based epitopes and forty-six T lymphocyte-based epitopes were selected. The predicted epitopes were evaluated for their intrinsic properties. The physico-chemical characterization of epitopes qualifies them for further in vitro and in vivo analysis and pre-requisite vaccine development. This study presents a set of screened epitopes that bind to HLA-specific allelic proteins and can be employed for designing a peptide vaccine construct against SARS-CoV-2 that will confer vaccine-induced protective immunity due to its structural stability. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00852-9.
Collapse
Affiliation(s)
- Subhashree Mohapatra
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Santosh Kumar
- RNA Biology Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Shashank Kumar
- Molecular Signalling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab 151401 India
| | - Atul Kumar Singh
- Molecular Signalling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab 151401 India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| |
Collapse
|
6
|
Bano N, Kumar A. Immunoinformatics study to explore dengue (DENV-1) proteome to design multi-epitope vaccine construct by using CD4+ epitopes. J Genet Eng Biotechnol 2023; 21:128. [PMID: 37987878 PMCID: PMC10663418 DOI: 10.1186/s43141-023-00592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Immunoinformatics is an emerging interdisciplinary field which integrates immunology, bioinformatics, and computational biology to study the immune system. In this study, we apply immunoinformatics approaches to explore the dengue proteome in order to design a multi-epitope vaccine construct. METHODS We used existing databases and algorithms to predict potential epitopes on dengue proteins and used a bioinformatics approach to identify the most promising epitopes. We then used molecular modelling to develop a multi-epitope construct which could be used as a potential vaccine. The results of this study demonstrate that immunoinformatics is a powerful tool for exploring and designing potential vaccines for infectious diseases like dengue. RESULTS Here, we found four CD4+ epitopes NLKYSVIVTVHTGDQ, ANPIVTDKEKPVNIE, LDPVVYDAKFEKQL, and VGAIALDFKPGTSGS that were used to design vaccine construct. The vaccine construct docked with TLR5. RMSD values suggest that docked complex of TLR5 and vaccine construct have putative stable interaction to induce immunogenic effects on host. CONCLUSIONS Furthermore, our study provides a proof of concept for the use of immunoinformatics approaches in DENV vaccine design. This vaccine can be effective in treating patients infected with DENV virus.
Collapse
Affiliation(s)
- Nishat Bano
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, G.T. Road, Kanpur, 209217, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology Rama University, G.T. Road, Kanpur, 209217, India.
| |
Collapse
|
7
|
Joshi A, Akhtar N, Sharma NR, Kaushik V, Borkotoky S. MERS virus spike protein HTL-epitopes selection and multi-epitope vaccine design using computational biology. J Biomol Struct Dyn 2023; 41:12464-12479. [PMID: 36935104 DOI: 10.1080/07391102.2023.2191137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/03/2023] [Indexed: 03/20/2023]
Abstract
MERS-CoV, a zoonotic virus, poses a serious threat to public health globally. Thus, it is imperative to develop an effective vaccination strategy for protection against MERS-CoV. Immunoinformatics and computational biology tools provide a faster and more cost-effective strategy to design potential vaccine candidates. In this work, the spike proteins from different strains of MERS-CoV were selected to predict HTL-epitopes that show affinity for T-helper MHC-class II HTL allelic determinant (HLA-DRB1:0101). The antigenicity and conservation of these epitopes among the selected spike protein variants in different MERS-CoV strains were analyzed. The analysis identified five epitopes with high antigenicity: QSIFYRLNGVGITQQ, DTIKYYSIIPHSIRS, PEPITSLNTKYVAPQ, INGRLTTLNAFVAQQ and GDMYVYSAGHATGTT. Then, a multi-epitope vaccine candidate was designed using linkers and adjuvant molecules. Finally, the vaccine construct was subjected to molecular docking with TLR5 (Toll-like receptor-5). The proposed vaccine construct had strong binding energy of -32.3 kcal/mol when interacting with TLR5.Molecular dynamics simulation analysis showed that the complex of the vaccine construct and TLR5 is stable. Analysis using in silico immune simulation also showed that the prospective multi-epitope vaccine design had the potential to elicit a response within 70 days, with the immune system producing cytokines and immunoglobulins. Finally, codon adaptation and in silico cloning analysis showed that the candidate vaccine could be expressed in the Escherichia coli K12 strain. Here we also designed support vaccine construct MEV-2 by using B-cell and CD8+ CTL epitopes to generate the complete immunogenic effect. This study opens new avenues for the extension of research on MERS vaccine development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Joshi
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
- Department of Biochemistry, Kalinga University, Raipur, India
| | - Nahid Akhtar
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Neeta Raj Sharma
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Kaushik
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Subhomoi Borkotoky
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| |
Collapse
|
8
|
Lim CP, Kok BH, Lim HT, Chuah C, Abdul Rahman B, Abdul Majeed AB, Wykes M, Leow CH, Leow CY. Recent trends in next generation immunoinformatics harnessed for universal coronavirus vaccine design. Pathog Glob Health 2023; 117:134-151. [PMID: 35550001 PMCID: PMC9970233 DOI: 10.1080/20477724.2022.2072456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has globally devastated public health, the economies of many countries and quality of life universally. The recent emergence of immune-escaped variants and scenario of vaccinated individuals being infected has raised the global concerns about the effectiveness of the current available vaccines in transmission control and disease prevention. Given the high rate mutation of SARS-CoV-2, an efficacious vaccine targeting against multiple variants that contains virus-specific epitopes is desperately needed. An immunoinformatics approach is gaining traction in vaccine design and development due to the significant reduction in time and cost of immunogenicity studies and increasing reliability of the generated results. It can underpin the development of novel therapeutic methods and accelerate the design and production of peptide vaccines for infectious diseases. Structural proteins, particularly spike protein (S), along with other proteins have been studied intensively as promising coronavirus vaccine targets. Numbers of promising online immunological databases, tools and web servers have widely been employed for the design and development of next generation COVID-19 vaccines. This review highlights the role of immunoinformatics in identifying immunogenic peptides as potential vaccine targets, involving databases, and prediction and characterization of epitopes which can be harnessed for designing future coronavirus vaccines.
Collapse
Affiliation(s)
- Chin Peng Lim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia.,Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Hui Ting Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Candy Chuah
- Faculty of Health Sciences, Universiti Teknologi MARA, Penang, Malaysia
| | | | | | - Michelle Wykes
- Molecular Immunology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
9
|
Abd El-Baky N, Amara AA, Redwan EM. HLA-I and HLA-II Peptidomes of SARS-CoV-2: A Review. Vaccines (Basel) 2023; 11:548. [PMID: 36992131 PMCID: PMC10058130 DOI: 10.3390/vaccines11030548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The adaptive (T-cell-mediated) immune response is a key player in determining the clinical outcome, in addition to neutralizing antibodies, after SARS-CoV-2 infection, as well as supporting the efficacy of vaccines. T cells recognize viral-derived peptides bound to major histocompatibility complexes (MHCs) so that they initiate cell-mediated immunity against SARS-CoV-2 infection or can support developing a high-affinity antibody response. SARS-CoV-2-derived peptides bound to MHCs are characterized via bioinformatics or mass spectrometry on the whole proteome scale, named immunopeptidomics. They can identify potential vaccine targets or therapeutic approaches for SARS-CoV-2 or else may reveal the heterogeneity of clinical outcomes. SARS-CoV-2 epitopes that are naturally processed and presented on the human leukocyte antigen class I (HLA-I) and class II (HLA-II) were identified for immunopeptidomics. Most of the identified SARS-CoV-2 epitopes were canonical and out-of-frame peptides derived from spike and nucleocapsid proteins, followed by membrane proteins, whereby many of which are not caught by existing vaccines and could elicit effective responses of T cells in vivo. This review addresses the detection of SARS-CoV-2 viral epitopes on HLA-I and HLA-II using bioinformatics prediction and mass spectrometry (HLA peptidomics). Profiling the HLA-I and HLA-II peptidomes of SARS-CoV-2 is also detailed.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Amro A. Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Elrashdy M. Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah P.O. Box 80203, Saudi Arabia
| |
Collapse
|
10
|
Francisco Junior RDS, Temerozo JR, Ferreira CDS, Martins Y, Souza TML, Medina-Acosta E, de Vasconcelos ATR. Differential haplotype expression in class I MHC genes during SARS-CoV-2 infection of human lung cell lines. Front Immunol 2023; 13:1101526. [PMID: 36818472 PMCID: PMC9929942 DOI: 10.3389/fimmu.2022.1101526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Cell entry of SARS-CoV-2 causes genome-wide disruption of the transcriptional profiles of genes and biological pathways involved in the pathogenesis of COVID-19. Expression allelic imbalance is characterized by a deviation from the Mendelian expected 1:1 expression ratio and is an important source of allele-specific heterogeneity. Expression allelic imbalance can be measured by allele-specific expression analysis (ASE) across heterozygous informative expressed single nucleotide variants (eSNVs). ASE reflects many regulatory biological phenomena that can be assessed by combining genome and transcriptome information. ASE contributes to the interindividual variability associated with the disease. We aim to estimate the transcriptome-wide impact of SARS-CoV-2 infection by analyzing eSNVs. Methods We compared ASE profiles in the human lung cell lines Calu-3, A459, and H522 before and after infection with SARS-CoV-2 using RNA-Seq experiments. Results We identified 34 differential ASE (DASE) sites in 13 genes (HLA-A, HLA-B, HLA-C, BRD2, EHD2, GFM2, GSPT1, HAVCR1, MAT2A, NQO2, SUPT6H, TNFRSF11A, UMPS), all of which are enriched in protein binding functions and play a role in COVID-19. Most DASE sites were assigned to the MHC class I locus and were predominantly upregulated upon infection. DASE sites in the MHC class I locus also occur in iPSC-derived airway epithelium basal cells infected with SARS-CoV-2. Using an RNA-Seq haplotype reconstruction approach, we found DASE sites and adjacent eSNVs in phase (i.e., predicted on the same DNA strand), demonstrating differential haplotype expression upon infection. We found a bias towards the expression of the HLA alleles with a higher binding affinity to SARS-CoV-2 epitopes. Discussion Independent of gene expression compensation, SARS-CoV-2 infection of human lung cell lines induces transcriptional allelic switching at the MHC loci. This suggests a response mechanism to SARS-CoV-2 infection that swaps HLA alleles with poor epitope binding affinity, an expectation supported by publicly available proteome data.
Collapse
Affiliation(s)
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Cristina dos Santos Ferreira
- Bioinformatics Laboratory (LABINFO), National Laboratory of Scientific Computation (LNCC/MCTIC), Petrópolis, Brazil
| | - Yasmmin Martins
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina
| | - Thiago Moreno L. Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Center for Technological Development in Health (CDTS), National Institute for Science and Technology on Innovation on Neglected Diseases Neglected Populations (INCT/IDNP), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Enrique Medina-Acosta
- Molecular Identification and Diagnostics Unit (NUDIM), Laboratory of Biotechnology, Center for Biosciences and Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | | |
Collapse
|
11
|
Kovalenko A, Ryabchevskaya E, Evtushenko E, Nikitin N, Karpova O. Recombinant Protein Vaccines against Human Betacoronaviruses: Strategies, Approaches and Progress. Int J Mol Sci 2023; 24:1701. [PMID: 36675218 PMCID: PMC9863728 DOI: 10.3390/ijms24021701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Betacoronaviruses have already troubled humanity more than once. In 2002-2003 and 2012, the SARS-CoV and MERS-CoV, respectively, caused outbreaks of respiratory syndromes with a fatal outcome. The spread of the SARS-CoV-2 coronavirus has become a pandemic. These three coronaviruses belong to the genus Betacoronavirus and have a zoonotic origin. The emergence of new coronavirus infections in the future cannot be ruled out, and vaccination is the main way to prevent the spread of the infection. Previous experience in the development of vaccines against SARS and MERS has helped to develop a number of vaccines against SARS-CoV-2 in a fairly short time. Among them, there are quite a few recombinant protein vaccines, which seem to be very promising in terms of safety, minimization of side effects, storage and transportation conditions. The problem of developing a universal betacoronavirus vaccine is also still relevant. Here, we summarize the information on the designing of vaccines based on recombinant proteins against highly pathogenic human betacoronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | - Nikolai Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | |
Collapse
|
12
|
Salod Z, Mahomed O. Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017-2021-A Scoping Review. Vaccines (Basel) 2022; 10:1785. [PMID: 36366294 PMCID: PMC9695814 DOI: 10.3390/vaccines10111785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Reverse vaccinology (RV) is a promising alternative to traditional vaccinology. RV focuses on in silico methods to identify antigens or potential vaccine candidates (PVCs) from a pathogen's proteome. Researchers use VaxiJen, the most well-known RV tool, to predict PVCs for various pathogens. The purpose of this scoping review is to provide an overview of PVCs predicted by VaxiJen for different viruses between 2017 and 2021 using Arksey and O'Malley's framework and the Preferred Reporting Items for Systematic Reviews extension for Scoping Reviews (PRISMA-ScR) guidelines. We used the term 'vaxijen' to search PubMed, Scopus, Web of Science, EBSCOhost, and ProQuest One Academic. The protocol was registered at the Open Science Framework (OSF). We identified articles on this topic, charted them, and discussed the key findings. The database searches yielded 1033 articles, of which 275 were eligible. Most studies focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), published between 2020 and 2021. Only a few articles (8/275; 2.9%) conducted experimental validations to confirm the predictions as vaccine candidates, with 2.2% (6/275) articles mentioning recombinant protein expression. Researchers commonly targeted parts of the SARS-CoV-2 spike (S) protein, with the frequently predicted epitopes as PVCs being major histocompatibility complex (MHC) class I T cell epitopes WTAGAAAYY, RQIAPGQTG, IAIVMVTIM, and B cell epitope IAPGQTGKIADY, among others. The findings of this review are promising for the development of novel vaccines. We recommend that vaccinologists use these findings as a guide to performing experimental validation for various viruses, with SARS-CoV-2 as a priority, because better vaccines are needed, especially to stay ahead of the emergence of new variants. If successful, these vaccines could provide broader protection than traditional vaccines.
Collapse
Affiliation(s)
- Zakia Salod
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban 4051, South Africa
| | | |
Collapse
|
13
|
Pandey A, Madan R, Singh S. Immunology to Immunotherapeutics of SARS-CoV-2: Identification of Immunogenic Epitopes for Vaccine Development. Curr Microbiol 2022; 79:306. [PMID: 36064873 PMCID: PMC9444117 DOI: 10.1007/s00284-022-03003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/16/2022] [Indexed: 11/21/2022]
Abstract
The emergence of COVID19 pandemic caused by SARS-CoV-2 virus has created a global public health and socio-economic crisis. Immunoinformatics-based approaches to investigate the potential antigens is the fastest way to move towards a multiepitope-based vaccine development. This review encompasses the underlying mechanisms of pathogenesis, innate and adaptive immune signaling along with evasion pathways of SARS-CoV-2. Furthermore, it compiles the promiscuous peptides from in silico studies which are subjected to prediction of cytokine milieu using web-based servers. Out of the 434 peptides retrieved from all studies, we have identified 33 most promising T cell vaccine candidates. This review presents a list of the most potential epitopes from several proteins of the virus based on their immunogenicity, homology, conservancy and population coverage studies. These epitopes can form a basis of second generation of vaccine development as the first generation vaccines in various stages of trials mostly focus only on Spike protein. We therefore, propose them as most potential candidates which can be taken up immediately for confirmation by experimental studies.
Collapse
Affiliation(s)
- Apoorva Pandey
- Indian Council of Medical Research, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box No. 4911, New Delhi, 110029 India
| | - Riya Madan
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Sahibzada Ajit Singh Nagar, Punjab 140306 India
| | - Swati Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
14
|
In-Silico Design of a Multi‑epitope Construct Against Influenza A Based on Nucleoprotein Gene. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Ezzemani W, Kettani A, Sappati S, Kondaka K, El Ossmani H, Tsukiyama-Kohara K, Altawalah H, Saile R, Kohara M, Benjelloun S, Ezzikouri S. Reverse vaccinology-based prediction of a multi-epitope SARS-CoV-2 vaccine and its tailoring to new coronavirus variants. J Biomol Struct Dyn 2022:1-22. [PMID: 35549819 DOI: 10.1080/07391102.2022.2075468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The genome feature of SARS-CoV-2 leads the virus to mutate and creates new variants of concern. Tackling viral mutations is also an important challenge for the development of a new vaccine. Accordingly, in the present study, we undertook to identify B- and T-cell epitopes with immunogenic potential for eliciting responses to SARS-CoV-2, using computational approaches and its tailoring to coronavirus variants. A total of 47 novel epitopes were identified as immunogenic triggering immune responses and no toxic after investigation with in silico tools. Furthermore, we found these peptide vaccine candidates showed a significant binding affinity for MHC I and MHC II alleles in molecular docking investigations. We consider them to be promising targets for developing peptide-based vaccines against SARS-CoV-2. Subsequently, we designed two efficient multi-epitopes vaccines against the SARS-CoV-2, the first one based on potent MHC class I and class II T-cell epitopes of S (FPNITNLCPF-NYNYLYRLFR-MFVFLVLLPLVSSQC), M (MWLSYFIASF-GLMWLSYFIASFRLF), E (LTALRLCAY-LLFLAFVVFLLVTLA), and N (SPRWYFYYL-AQFAPSASAFFGMSR). The second candidate is the result of the tailoring of the first designed vaccine according to three classes of SARS-CoV-2 variants. Molecular docking showed that the protein-protein binding interactions between the vaccines construct and TLR2-TLR4 immune receptors are stable complexes. These findings confirmed that the final multi-epitope vaccine could be easily adapted to new viral variants. Our study offers a shortlist of promising epitopes that can accelerate the development of an effective and safe vaccine against the virus and its adaptation to new variants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wahiba Ezzemani
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Anass Kettani
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Subrahmanyam Sappati
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, Gdańsk, Poland.,BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| | - Kavya Kondaka
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Hicham El Ossmani
- Institut de Criminalistique de la Gendarmerie Royale, AMSSNuR, Rabat, Morocco
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Haya Altawalah
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.,Virology Unit, Yacoub Behbehani Center, Sabah Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Rachid Saile
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
16
|
Drummondin E and Flinderole B are potential inhibitors of RNA-dependent RNA polymerase of SARS-CoV-2: an in silico study. BIOTECHNOLOGIA 2022; 103:53-70. [PMID: 36605381 PMCID: PMC9642944 DOI: 10.5114/bta.2022.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/03/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023] Open
Abstract
Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected 235.6 million people worldwide. In the present study, RNA-dependent RNA polymerase (RdRp) (PDB Id: 6M71) of SARS-CoV-2, an essential enzyme needed for subgenomic replication and amplification of RNA, was selected. Similar to other RdRps, it is a conserved protein and a popular target for antiviral drug therapy. Based on a computational approach, potential RdRp inhibitors were identified. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) of selected molecules were determined using computation tools. The potential inhibitors were docked to the RdRp and later confirmed by Molecular Dynamics (MD) using the "Flare" module of Cresset software. Drummondin E and Flinderole B had higher drug similarity scores among the compounds selected in this study. Both these compounds are noncarcinogenic, nonirritant, nontumorigenic, and nonmutagenic. Molecular docking studies showed that both compounds can bind to RdRp. The best ligand interaction patterns were validated by MD using the "Flare" module. MD was performed for the period of 100 ns with the time step of 1 fs. The simulation results suggest that Thr-680, Arg-624, Lys-676, and Val-557 are key interacting partners in the Drummondin E-RdRp complex, while Asp-618, Asp-760, Asp-623, Arg-624, and Asp-761 are the interacting partners in the Flinderole B-RdRp complex. Based on the in silico drug-likeness score; ADMET properties; and molecular simulation result, we surmise that Flinderole B and Drummondin E could impede SARS-CoV-2 genome replication and transcription by targeting the RdRp protein.
Collapse
|
17
|
Immunogenic Epitope-Based Vaccine Prediction from Surface Glycoprotein of MERS-CoV by Deploying Immunoinformatics Approach. Int J Pept Res Ther 2022; 28:77. [PMID: 35313444 PMCID: PMC8924944 DOI: 10.1007/s10989-022-10382-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2022] [Indexed: 12/19/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) has caused a high mortality rate since its emergence in 2012 in the Middle East. Currently, no effective drug or vaccine is available for MERS-CoV. Supportive care and prevention are the only ways to manage infection. In this study, we identified an epitope-based vaccine that could be an optimal solution for the prevention of MERS-CoV infection. By deploying an immunoinformatics approach, we predicted a subunit vaccine based on the surface glycoprotein (S protein) of MERS-CoV. For this purpose, the proteome of the MERS-CoV spike protein was obtained from the NCBI GenBank database. Then, it was subjected to a check for allergenicity using the Allergen FP v.1.0 tool. The Vaxijen v.2.0 tool was used to conduct antigenicity tests for binding with major histocompatibility complex class I and II molecules. The solidity of the predicted epitope-allele docked complex was evaluated by a molecular dynamics simulation. After docking a total of eight epitopes from the MERS-CoV S protein, further analyses predicted their non-toxicity and therapeutic immunogenic properties. These epitopes have potential utility as vaccine candidates against MERS-CoV, to be validated by wet-lab testing.
Collapse
|
18
|
Joshi A, Krishnan S, Kaushik V. Codon usage studies and epitope-based peptide vaccine prediction against Tropheryma whipplei. J Genet Eng Biotechnol 2022; 20:41. [PMID: 35254546 PMCID: PMC8899776 DOI: 10.1186/s43141-022-00324-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/22/2022] [Indexed: 12/18/2022]
Abstract
Background The Tropheryma whipplei causes acute gastroenteritis to neuronal damages in Homo sapiens. Genomics and codon adaptation studies would be helpful advancements of disease evolution prediction, prevention, and treatment of disease. The codon usage data and codon usage measurement tools were deployed to detect the rare, very rare codons, and also synonymous codons usage. The higher effective number of codon usage values indicates the low codon usage bias in T. whipplei and also in the 23S and 16S ribosomal RNA genes. Results In T. whipplei, it was found to hold low codon biasness in genomic sets. The synonymous codons possess the base content in 3rd position that was calculated as A3S% (24.47 and 22.88), C3S% (20.99 and 22.88), T3S% (21.47 and 19.53), and G3S% (33.08 and 34.71) for 23s and 16s rRNA, respectively. Conclusion Amino acids like valine, aspartate, leucine, and phenylalanine hold high codon usage frequency and also found to be present in epitopes KPSYLSALSAHLNDK and FKSFNYNVAIGVRQP that were screened from proteins excinuclease ABC subunit UvrC and 3-oxoacyl-ACP reductase FabG, respectively. This method opens novel ways to determine epitope-based peptide vaccines against different pathogenic organisms.
Collapse
Affiliation(s)
- Amit Joshi
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sunil Krishnan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Kaushik
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
19
|
Wang B, Li S, Qiao Y, Fu Y, Nie J, Jiang S, Yao X, Pan Y, Zhao L, Wu C, Shi Y, Yin Y, Shan Y. Self-assembling ferritin nanoparticles coupled with linear sequences from canine distemper virus haemagglutinin protein elicit robust immune responses. J Nanobiotechnology 2022; 20:32. [PMID: 35012571 PMCID: PMC8744384 DOI: 10.1186/s12951-021-01229-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Canine distemper virus (CDV), which is highly infectious, has caused outbreaks of varying scales in domestic and wild animals worldwide, so the development of a high-efficiency vaccine has broad application prospects. Currently, the commercial vaccine of CDV is an attenuated vaccine, which has the disadvantages of a complex preparation process, high cost and safety risk. It is necessary to develop a safe and effective CDV vaccine that is easy to produce on a large scale. In this study, sequences of CDV haemagglutinin (HA) from the Yanaka strain were aligned, and three potential linear sequences, termed YaH3, YaH4, and YaH5, were collected. To increase the immunogenicity of the epitopes, ferritin was employed as a self-assembling nanoparticle element. The ferritin-coupled forms were termed YaH3F, YaH4F, and YaH5F, respectively. A full-length HA sequence coupled with ferritin was also constructed as a DNA vaccine to compare the immunogenicity of nanoparticles in prokaryotic expression. RESULT The self-assembly morphology of the proteins from prokaryotic expression was verified by transmission electron microscopy. All the proteins self-assembled into nanoparticles. The expression of the DNA vaccine YaHF in HEK-293T cells was also confirmed in vitro. After subcutaneous injection of epitope nanoparticles or intramuscular injection of DNA YaHF, all vaccines induced strong serum titres, and long-term potency of antibodies in serum could be detected after 84 days. Strong anti-CDV neutralizing activities were observed in both the YaH4F group and YaHF group. According to antibody typing and cytokine detection, YaH4F can induce both Th1 and Th2 immune responses. The results of flow cytometry detection indicated that compared with the control group, all the immunogens elicited an increase in CD3. Simultaneously, the serum antibodies induced by YaH4F and YaHF could significantly enhance the ADCC effect compared with the control group, indicating that the antibodies in the serum effectively recognized the antigens on the cell surface and induced NK cells to kill infected cells directly. CONCLUSIONS YaH4F self-assembling nanoparticle obtained by prokaryotic expression has no less of an immune effect than YaHF, and H4 has great potential to become a key target for the easy and rapid preparation of epitope vaccines.
Collapse
Affiliation(s)
- Bo Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, , 130012, Jilin, China
| | - Shuang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Yongbo Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Yu Fu
- Changchun Xinuo BioTechnology Co., Ltd, Changchun, 130015, Jilin, China
| | - Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Shun Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Xin Yao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Yi Pan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Linye Zhao
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, , 130012, Jilin, China
| | - Congmei Wu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, , 130012, Jilin, China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Yuhe Yin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, , 130012, Jilin, China.
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China. .,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China.
| |
Collapse
|
20
|
Immunoinformatics and reverse vaccinomic approaches for effective design. COMPUTATIONAL APPROACHES FOR NOVEL THERAPEUTIC AND DIAGNOSTIC DESIGNING TO MITIGATE SARS-COV-2 INFECTION 2022. [PMCID: PMC9300457 DOI: 10.1016/b978-0-323-91172-6.00004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The emergence of mutagenic strains of severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) worst hit the world which already suffered from the Coronavirus disease-2019 (COVID-19) pandemic for 2 years. Due to recent advances in vaccinomics, many vaccine candidates are available but their efficacy against a mutant version of SARS-CoV-2 has remained uncertain. The immune-informatics-based reverse vaccinomic approaches have shown promising investigations recently for the development of cost-effective vaccinomics candidates in a very short period of time. The strategic vaccine development of selected epitopes using artificial intelligence for both B- and T-cells is a very crucial step in this process. This approach provides a highly effective and immunogenic vaccine that offers immunological safety against autoimmunity and other adverse effects over ethnicities, pregnant women, and vulnerable age groups. Several researchers have developed effective vaccine candidates using computational vaccinology and the immune-informatics approach. In this process, a unique peptide sequence of viral proteins such as Nucleocapsid, spike, envelope protein was identified by various in silico tools which are acting as immunological epitopes against TLRs, T-cells, and B-cells. While the conventional immunological vaccine studies take years for vaccine candidature, the immunoinformatics approach is a time-efficient way for the next generation research to study host-pathogen interactions and vaccine development. It is also cost-effective and leads to a better understanding of disease pathogenesis, diagnosis, and immunological response. Owing to the advantage of immunoinformatics-based vaccine approaches the present chapter aimed to discuss vaccine development using immunoinformatics approaches. Besides, the current challenges and future aspects have also been discussed herewith.
Collapse
|
21
|
T-cell epitope-based vaccine designing against Orthohantavirus: a causative agent of deadly cardio-pulmonary disease. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2021; 11:2. [PMID: 34900515 PMCID: PMC8649322 DOI: 10.1007/s13721-021-00339-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022]
Abstract
Orthohantavirus, a zoonotic virus responsible for causing human cardio-pulmonary disease, is proven to be a fatal disease. Due to the paucity of regimens to cure the disease and efficient management to eradicate this deadly virus, there is a constant need to expand in-silico approaches belonging to immunology domain to formulate best feasible peptide-based vaccine against it. In lieu of that, we have predicted and validated an epitope of nine-residue-long sequence “MIGLLSSRI”. The predicted epitope has shown best interactions with HLA alleles of MHC Class II proteins, namely HLA DRB1_0101, DRB1_0401, DRB1_0405, DRB1_0701, DRB1_0901, DRB1_1302, and DRB1_1501. The structure of the epitope was modeled by deploying PEPFOLD 3.5 and verified by Ramachandran plot analysis. Molecular docking and simulation studies reveal that this epitope has satisfactory binding scores, ACE value and global energies for docked complexes along with selectable range of RMSD and RMSF values. Also, the predicted epitope “MIGLLSSRI” exhibits population coverage of more than 62% in world population and maximum of 70% in the United States of America. In this intensive study, we have used many tools like AllergenFP, NETMHCII 3.2, VaxiJen, ToxinPred, PEPFOLD 3.5, DINC, IEDB-Population coverage, MHCPred and JCat server. Most of these tools are based on modern innovative statistical algorithms like HMM, ANN, ML, etc. that help in better predictions of putative candidates for vaccine crafting. This innovative methodology is facile, cost-effective and time-efficient, which could facilitate designing of a vaccine against this virus.
Collapse
|
22
|
Prediction of suitable T and B cell epitopes for eliciting immunogenic response against SARS-CoV-2 and its mutant. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2021; 11:1. [PMID: 34849327 PMCID: PMC8619655 DOI: 10.1007/s13721-021-00348-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/21/2021] [Accepted: 11/12/2021] [Indexed: 12/23/2022]
Abstract
Spike glycoprotein of SARS-CoV-2 is mainly responsible for the recognition and membrane fusion within the host and this protein has an ability to mutate. Hence, T cell and B cell epitopes were derived from the spike glycoprotein sequence of wild SARS-CoV-2. The proposed T cell and B cell epitopes were found to be antigenic and conserved in the sequence of SARS-CoV-2 mutant (B.1.1.7). Thus, the proposed epitopes are effective against SARS-CoV-2 and its B.1.1.7 mutant. MHC-I that best interacts with the proposed T cell epitopes were found, using immune epitope database. Molecular docking and molecular dynamic simulations were done for ensuring a good binding between the proposed MHC-I and T cell epitopes. The finally proposed T cell epitope was found to be antigenic, non-allergenic, non-toxic and stable. Further, the finally proposed B cell epitopes were also found to be antigenic. The population conservation analysis has ensured the presence of MHC-I molecule (respective to the finally proposed T cell) in human population of most affected countries with SARS-CoV-2. Thus the proposed T and B cell epitope could be effective in designing an epitope-based vaccine, which is effective on SARS-CoV-2 and its B.1.1.7mutant. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13721-021-00348-w.
Collapse
|
23
|
Computer simulation in the development of vaccines against covid-19 based on the hla-system antigens. КЛИНИЧЕСКАЯ ПРАКТИКА 2021. [DOI: 10.17816/clinpract76291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The genetic variability of population may explain different individual immune responses to the SARS-CoV-2 virus. The use of genome- and peptidome-based technologies makes it possible to develop vaccines by optimizing the target antigens. The computer modeling methodology provides the scientific community with a more complete list of immunogenic peptides, including a number of new and cross-reactive candidates. Studies conducted independently of each other with different approaches provide a high degree of confidence in the reproducibility of results. Most of the effort in developing vaccines and drugs against SARS-CoV-2 is directed towards the thorn glycoprotein (protein S), a major inducer of neutralizing antibodies. Several vaccines have been shown to be effective in the preclinical studies and have been tested in the clinical trials to combat the COVID-19 infection. This review presents the profile of in silico predicted immunogenic peptides of the SARS-CoV-2 virus for the subsequent functional validation and vaccine development, and highlights the current advances in the development of subunit vaccines to combat COVID-19, taking into account the experience that has been previously achieved with SARS-CoV and MERS-CoV. The immunoinformatics techniques reduce the time and cost of developing vaccines that together can stop this new viral infection.
Collapse
|
24
|
Aguiar VRC, Augusto DG, Castelli EC, Hollenbach JA, Meyer D, Nunes K, Petzl-Erler ML. An immunogenetic view of COVID-19. Genet Mol Biol 2021; 44:e20210036. [PMID: 34436508 PMCID: PMC8388242 DOI: 10.1590/1678-4685-gmb-2021-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Meeting the challenges brought by the COVID-19 pandemic requires an interdisciplinary approach. In this context, integrating knowledge of immune function with an understanding of how genetic variation influences the nature of immunity is a key challenge. Immunogenetics can help explain the heterogeneity of susceptibility and protection to the viral infection and disease progression. Here, we review the knowledge developed so far, discussing fundamental genes for triggering the innate and adaptive immune responses associated with a viral infection, especially with the SARS-CoV-2 mechanisms. We emphasize the role of the HLA and KIR genes, discussing what has been uncovered about their role in COVID-19 and addressing methodological challenges of studying these genes. Finally, we comment on questions that arise when studying admixed populations, highlighting the case of Brazil. We argue that the interplay between immunology and an understanding of genetic associations can provide an important contribution to our knowledge of COVID-19.
Collapse
Affiliation(s)
- Vitor R. C. Aguiar
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Danillo G. Augusto
- University of California, UCSF Weill Institute for Neurosciences,
Department of Neurology, San Francisco, CA, USA
- Universidade Federal do Paraná, Departamento de Genética, Curitiba,
PR, Brazil
| | - Erick C. Castelli
- Universidade Estadual Paulista, Faculdade de Medicina de Botucatu,
Departamento de Patologia, Botucatu, SP, Brazil
| | - Jill A. Hollenbach
- University of California, UCSF Weill Institute for Neurosciences,
Department of Neurology, San Francisco, CA, USA
| | - Diogo Meyer
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Kelly Nunes
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | | |
Collapse
|
25
|
Jain P, Joshi A, Akhtar N, Krishnan S, Kaushik V. An immunoinformatics study: designing multivalent T-cell epitope vaccine against canine circovirus. J Genet Eng Biotechnol 2021; 19:121. [PMID: 34406518 PMCID: PMC8371590 DOI: 10.1186/s43141-021-00220-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Canine circovirus is a deadly pathogen of dogs and causes vasculitis and hemorrhagic enteritis. It causes lethal gastroenteritis in pigs, fox, and dogs. Canine circovirus genome contains two main (and opposite) transcription units which encode two open reading frames (ORFs), a replicase-associated protein (Rep) and the capsid (Cap) protein. The replicase protein and capsid protein consist of 303 amino acids and 270 amino acids respectively. Several immuno-informatics methods such as epitope screening, molecular docking, and molecular-dynamics simulations were used to craft peptide-based vaccine construct against canine circovirus. RESULTS The vaccine construct was designed by joining the selected epitopes with adjuvants by suitable linker. The cloning and expression of the vaccine construct was also performed using in silico methods. Screening of epitopes was conducted by NetMHC server that uses ANN (Artificial neural networking) algorithm. These methods are fast and cost-effective for screening epitopes that can interact with dog leukocyte antigens (DLA) and initiate an immune response. Overall, 5 epitopes, YQHLPPFRF, YIRAKWINW, ALYRRLTLI, HLQGFVNLK, and GTMNFVARR, were selected and used to design a vaccine construct. The molecular docking and molecular dynamics simulation studies show that these epitopes can bind with DLA molecules with stability. The codon adaptation and in silico cloning studies show that the vaccine can be expressed by Escherichia coli K12 strain. CONCLUSION The results suggest that the vaccine construct can be useful in preventing the dogs from canine circovirus infections. However, the results need further validation by performing other in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Pankaj Jain
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Amit Joshi
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nahid Akhtar
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sunil Krishnan
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Kaushik
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
26
|
Akhtar N, Joshi A, Singh J, Kaushik V. Design of a novel and potent multivalent epitope based human cytomegalovirus peptide vaccine: An immunoinformatics approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Moura RRD, Agrelli A, Santos-Silva CA, Silva N, Assunção BR, Brandão L, Benko-Iseppon AM, Crovella S. Immunoinformatic approach to assess SARS-CoV-2 protein S epitopes recognised by the most frequent MHC-I alleles in the Brazilian population. J Clin Pathol 2021; 74:528-532. [PMID: 32759312 PMCID: PMC7409971 DOI: 10.1136/jclinpath-2020-206946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022]
Abstract
AIMS Brazil is nowadays one of the epicentres of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and new therapies are needed to face it. In the context of specific immune response against the virus, a correlation between Major Histocompatibility Complex Class I (MHC-I) and the severity of the disease in patients with COVID-19 has been suggested. Aiming at better understanding the biology of the infection and the immune response against the virus in the Brazilian population, we analysed SARS-CoV-2 protein S peptides in order to identify epitopes able to elicit an immune response mediated by the most frequent MHC-I alleles using in silico methods. METHODS Our analyses consisted in searching for the most frequent Human Leukocyte Antigen (HLA)-A, HLA-B and HLA-C alleles in the Brazilian population, excluding the genetic isolates; then, we performed: molecular modelling for unsolved structures, MHC-I binding affinity and antigenicity prediction, peptide docking and molecular dynamics of the best fitted MHC-I/protein S complexes. RESULTS We identified 24 immunogenic epitopes in the SARS-CoV-2 protein S that could interact with 17 different MHC-I alleles (namely, HLA-A*01:01; HLA-A*02:01; HLA-A*11:01; HLA-A*24:02; HLA-A*68:01; HLA-A*23:01; HLA-A*26:01; HLA-A*30:02; HLA-A*31:01; HLA-B*07:02; HLA-B*51:01; HLA-B*35:01; HLA-B*44:02; HLA-B*35:03; HLA-C*05:01; HLA-C*07:01 and HLA-C*15:02) in the Brazilian population. CONCLUSIONS Being aware of the intrinsic limitations of in silico analysis (mainly the differences between the real and the Protein Data Bank (PDB) structure; and accuracy of the methods for simulate proteasome cleavage), we identified 24 epitopes able to interact with 17 MHC-I more frequent alleles in the Brazilian population that could be useful for the development of strategic methods for vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Ronald Rodrigues de Moura
- Department of Advanced Diagnostics, IRCCS Materno Infantile Burlo Garofolo, Trieste, Friuli Venezia Giulia, Italy
| | - Almerinda Agrelli
- Department of Pathology, Federal University of Pernambuco, Recife, Brazil
| | | | - Natália Silva
- Department of Pathology, Federal University of Pernambuco, Recife, Brazil
| | | | - Lucas Brandão
- Department of Pathology, Federal University of Pernambuco, Recife, Brazil
| | | | - Sergio Crovella
- Department of Advanced Diagnostics, IRCCS Materno Infantile Burlo Garofolo, Trieste, Friuli Venezia Giulia, Italy
| |
Collapse
|
28
|
Madhavan M, AlOmair LA, Ks D, Mustafa S. Exploring peptide studies related to SARS-CoV to accelerate the development of novel therapeutic and prophylactic solutions against COVID-19. J Infect Public Health 2021; 14:1106-1119. [PMID: 34280732 PMCID: PMC8253661 DOI: 10.1016/j.jiph.2021.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/18/2021] [Accepted: 06/27/2021] [Indexed: 01/18/2023] Open
Abstract
Recent advances in peptide research revolutionized therapeutic discoveries for various infectious diseases. In view of the ongoing threat of the COVID-19 pandemic, there is an urgent need to develop potential therapeutic options. Intense and accomplishing research is being carried out to develop broad-spectrum vaccines and treatment options for corona viruses, due to the risk of recurrent infection by the existing strains or pandemic outbreaks by new mutant strains. Developing a novel medicine is costly and time consuming, which increases the value of repurposing existing therapies. Since, SARS-CoV-2 shares significant genomic homology with SARS-CoV, we have summarized various peptides identified against SARS-CoV using in silico and molecular studies and also the peptides effective against SARS-CoV-2. Dissecting the molecular mechanisms underlying viral infection could yield fundamental insights in the discovery of new antiviral agents, targeting viral proteins or host factors. We postulate that these peptides can serve as effective components for therapeutic options against SARS-CoV-2, supporting clinical scientists globally in selectively identifying and testing the therapeutic and prophylactic agents for COVID-19 treatment. In addition, we also summarized the latest updates on peptide therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram, Kerala, India.
| | - Lamya A AlOmair
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Deepthi Ks
- Department of Microbiology, Government College for Women, Thiruvananthapuram, Kerala, India.
| | - Sabeena Mustafa
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| |
Collapse
|
29
|
Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. Lessons Learned from Cutting-Edge Immunoinformatics on Next-Generation COVID-19 Vaccine Research. Int J Pept Res Ther 2021; 27:2303-2311. [PMID: 34276266 PMCID: PMC8272614 DOI: 10.1007/s10989-021-10254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 12/23/2022]
Abstract
Presently, immunoinformatics and bioinformatics approaches are contributing actively to COVID-19 vaccine research. The first immunoinformatics-based vaccine construct against SARS-CoV-2 was published in February 2020. Following this, immunoinformatics and bioinformatics approaches have created a new direction in COVID-19 vaccine research. Several researchers have designed the next-generation COVID-19 vaccines using these approaches. Presently, immunoinformatics has accelerated immunology research immensely in the area of COVID-19. Hence, we have tried to depict the current scenario of immunoinformatics and bioinformatics in COVID-19 vaccine research.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Jagannathpur, Kolkata, West Bengal 700126 India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, Odisha 756020 India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| |
Collapse
|
30
|
Nagler A, Kalaora S, Barbolin C, Gangaev A, Ketelaars SLC, Alon M, Pai J, Benedek G, Yahalom-Ronen Y, Erez N, Greenberg P, Yagel G, Peri A, Levin Y, Satpathy AT, Bar-Haim E, Paran N, Kvistborg P, Samuels Y. Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA peptidomics. Cell Rep 2021; 35:109305. [PMID: 34166618 PMCID: PMC8185308 DOI: 10.1016/j.celrep.2021.109305] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/17/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
The human leukocyte antigen (HLA)-bound viral antigens serve as an immunological signature that can be selectively recognized by T cells. As viruses evolve by acquiring mutations, it is essential to identify a range of presented viral antigens. Using HLA peptidomics, we are able to identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived peptides presented by highly prevalent HLA class I (HLA-I) molecules by using infected cells as well as overexpression of SARS-CoV-2 genes. We find 26 HLA-I peptides and 36 HLA class II (HLA-II) peptides. Among the identified peptides, some are shared between different cells and some are derived from out-of-frame open reading frames (ORFs). Seven of these peptides were previously shown to be immunogenic, and we identify two additional immunoreactive peptides by using HLA multimer staining. These results may aid the development of the next generation of SARS-CoV-2 vaccines based on presented viral-specific antigens that span several of the viral genes.
Collapse
Affiliation(s)
- Adi Nagler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shelly Kalaora
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Chaya Barbolin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, the Netherlands
| | - Steven L C Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, the Netherlands
| | - Michal Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Joy Pai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Polina Greenberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gal Yagel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Aviyah Peri
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- The de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Pia Kvistborg
- Tissue Typing and Immunogenetics Unit, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
31
|
Shapiro RS. COVID-19 vaccines and nanomedicine. Int J Dermatol 2021; 60:1047-1052. [PMID: 34089534 PMCID: PMC8239562 DOI: 10.1111/ijd.15673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
Background The COVID‐19 virus‐induced pandemic has been the deadliest pandemic to have occurred in two generations, besides HIV/AIDS. Epidemiologists predicted that the SARS‐Cov 2 pandemic would not be able to be brought under control until a majority of the world’s population had been inoculated with safe and effective vaccines. A world‐wide effort to expedite vaccine development was successful. Previous research for vaccines to prevent SARS and MERS, also coronaviruses, was vital to this success. Nanotechnology was essential to this vaccine development. Key elements are presented here to better understand the relationship between nanomedicine and the COVID‐19 vaccine development. Methods NLM PubMed searches for COVID‐19 vaccines, nanotechnology and nanomedicine were done. There were 6911 articles screened, 235 of which were deemed appropriate to this subject and utilized here, together with two landmark nanomedicine texts used to expand understanding of the basic science of nanotechnology. Results SARS‐Cov 2, caused by the COVID‐19 virus, was first recognized in China in December of 2019 and was declared as a pandemic in March of 2020. The RNA sequence was identified in January of 2020. Within 4 months of the viral genome being released, over 259 vaccines had been in development. The World Health Organization (WHO) anticipated a vaccine with a 50‐80% efficacy to be developed within 1‐2 years. Ahead of schedule, the Food and Drug Administration (FDA) announced the emergency authorization approval for two mRNA vaccines within 11 month’s time. Nanotechnology was the key to the success of these rapidly developed, safe and effective vaccines. A brief review of pertinent basic science principles of nanomedicine are presented. The development of COVID vaccines is reviewed. Future considerations are discussed. Conclusions Control of the COVID‐19 SARS‐Cov2 pandemic benefitted from nanomedicine principles used to develop highly effective, yet very safe and relatively inexpensive vaccines. These nanovaccines can be much more easily altered to adjust for viral variants than traditional live or inactivated legacy‐type whole virus vaccines.
Collapse
|
32
|
Cuspoca AF, Díaz LL, Acosta AF, Peñaloza MK, Méndez YR, Clavijo DC, Yosa Reyes J. An Immunoinformatics Approach for SARS-CoV-2 in Latam Populations and Multi-Epitope Vaccine Candidate Directed towards the World's Population. Vaccines (Basel) 2021; 9:vaccines9060581. [PMID: 34205992 PMCID: PMC8228945 DOI: 10.3390/vaccines9060581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus pandemic is a major public health crisis affecting global health systems with dire socioeconomic consequences, especially in vulnerable regions such as Latin America (LATAM). There is an urgent need for a vaccine to help control contagion, reduce mortality and alleviate social costs. In this study, we propose a rational multi-epitope candidate vaccine against SARS-CoV-2. Using bioinformatics, we constructed a library of potential vaccine peptides, based on the affinity of the most common major human histocompatibility complex (HLA) I and II molecules in the LATAM population to predict immunological complexes among antigenic, non-toxic and non-allergenic peptides extracted from the conserved regions of 92 proteomes. Although HLA-C, had the greatest antigenic peptide capacity from SARS-CoV-2, HLA-B and HLA-A, could be more relevant based on COVID-19 risk of infection in LATAM countries. We also used three-dimensional structures of SARS-CoV-2 proteins to identify potential regions for antibody production. The best HLA-I and II predictions (with increased coverage in common alleles and regions evoking B lymphocyte responses) were grouped into an optimized final multi-epitope construct containing the adjuvants Beta defensin-3, TpD, and PADRE, which are recognized for invoking a safe and specific immune response. Finally, we used Molecular Dynamics to identify the multi-epitope construct which may be a stable target for TLR-4/MD-2. This would prove to be safe and provide the physicochemical requirements for conducting experimental tests around the world.
Collapse
Affiliation(s)
- Andrés Felipe Cuspoca
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Laura Lorena Díaz
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Alvaro Fernando Acosta
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Marcela Katherine Peñaloza
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Yardany Rafael Méndez
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Diana Carolina Clavijo
- Facultad de Ingeniería y Ciencias, Pontificia Universidad Javeriana Cali, Santiago de Cali 760031, Colombia;
| | - Juvenal Yosa Reyes
- Laboratorio de Simulación Molecular, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Correspondence:
| |
Collapse
|
33
|
In-silico designing of epitope-based vaccine against the seven banded grouper nervous necrosis virus affecting fish species. ACTA ACUST UNITED AC 2021; 10:37. [PMID: 34094807 PMCID: PMC8165136 DOI: 10.1007/s13721-021-00315-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Neural necrosis virus (NNV) of family Nodaviridae affect wide range of fish species with viral encephalopathy and retinopathy causing mass mortality up to 100%. Currently there is no effective treatment and depopulation is only suggested recommendation. New avenues and approach are required to control this harmful malady. In this study we developed an epitope-based vaccine (EBV), against NNV using computation approach. We have selected two conserved proteins RNA-dependent RNA polymerase (RdRP) and capsid proteins. Based on more than ~ 1000 epitopes we selected six antigenic epitopes. These were conjugated to adjuvant and linker peptides to generate a full-length vaccine candidate. Biochemical structural properties were analyzed by Phyre2 server. ProtParam, Molprobity. Ramachandran plot results indicate that 98.7% residues are in a favorable region and 93.4% residues in the favored region. The engineered EBV binds to toll like receptor-5 (TLR5) an important elicitor of immune response. Further molecular docking by PatchDock server reveals the atomic contact energy (i.e. − 267.08) for the best docked model of EBV and TLR5 receptor. The molecular simulation results suggest a stable interaction; the RMSD and RMSF values are 1–4 Ǻ and 1–12Ǻ, respectively. Further we have suggested the best possible codon optimized sequence for its cloning and subsequent purification of the protein. Overall, this is a first report to suggest an in-silico method for generation of an EBV candidate against NNV. We surmise that the method and approach suggested could be used as a promising cure for NNVs.
Collapse
|
34
|
Mobini Kesheh M, Shavandi S, Hosseini P, Kakavand-Ghalehnoei R, Keyvani H. Bioinformatic HLA Studies in the Context of SARS-CoV-2 Pandemic and Review on Association of HLA Alleles with Preexisting Medical Conditions. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6693909. [PMID: 34136572 PMCID: PMC8162251 DOI: 10.1155/2021/6693909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/10/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
After the announcement of a new coronavirus in China in December 2019, which was then called SARS-CoV-2, this virus changed to a global concern and it was then declared as a pandemic by WHO. Human leukocyte antigen (HLA) alleles, which are one of the most polymorphic genes, play a pivotal role in both resistance and vulnerability of the body against viruses and other infections as well as chronic diseases. The association between HLA alleles and preexisting medical conditions such as cardiovascular diseases and diabetes mellitus is reported in various studies. In this review, we focused on the bioinformatic HLA studies to summarize the HLA alleles which responded to SARS-CoV-2 peptides and have been used to design vaccines. We also reviewed HLA alleles that are associated with comorbidities and might be related to the high mortality rate among COVID-19 patients. Since both genes and patients' medical conditions play a key role in both severity of the disease and the mortality rate in COVID-19 patients, a better understanding of the connection between HLA alleles and SARS-CoV-2 can provide a wider perspective on the behavior of the virus. Such understanding can help scientists, especially in terms of protecting healthcare workers and designing effective vaccines.
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Shavandi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Sohail MS, Ahmed SF, Quadeer AA, McKay MR. In silico T cell epitope identification for SARS-CoV-2: Progress and perspectives. Adv Drug Deliv Rev 2021; 171:29-47. [PMID: 33465451 PMCID: PMC7832442 DOI: 10.1016/j.addr.2021.01.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Growing evidence suggests that T cells may play a critical role in combating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, COVID-19 vaccines that can elicit a robust T cell response may be particularly important. The design, development and experimental evaluation of such vaccines is aided by an understanding of the landscape of T cell epitopes of SARS-CoV-2, which is largely unknown. Due to the challenges of identifying epitopes experimentally, many studies have proposed the use of in silico methods. Here, we present a review of the in silico methods that have been used for the prediction of SARS-CoV-2 T cell epitopes. These methods employ a diverse set of technical approaches, often rooted in machine learning. A performance comparison is provided based on the ability to identify a specific set of immunogenic epitopes that have been determined experimentally to be targeted by T cells in convalescent COVID-19 patients, shedding light on the relative performance merits of the different approaches adopted by the in silico studies. The review also puts forward perspectives for future research directions.
Collapse
Affiliation(s)
- Muhammad Saqib Sohail
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Syed Faraz Ahmed
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Matthew R McKay
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
36
|
Alam A, Khan A, Imam N, Siddiqui MF, Waseem M, Malik MZ, Ishrat R. Design of an epitope-based peptide vaccine against the SARS-CoV-2: a vaccine-informatics approach. Brief Bioinform 2021; 22:1309-1323. [PMID: 33285567 PMCID: PMC7799329 DOI: 10.1093/bib/bbaa340] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
The recurrent and recent global outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has turned into a global concern which has infected more than 42 million people all over the globe, and this number is increasing in hours. Unfortunately, no vaccine or specific treatment is available, which makes it more deadly. A vaccine-informatics approach has shown significant breakthrough in peptide-based epitope mapping and opens the new horizon in vaccine development. In this study, we have identified a total of 15 antigenic peptides [including thymus cells (T-cells) and bone marrow or bursa-derived cells] in the surface glycoprotein (SG) of SARS-CoV-2 which is nontoxic and nonallergenic in nature, nonallergenic, highly antigenic and non-mutated in other SARS-CoV-2 virus strains. The population coverage analysis has found that cluster of differentiation 4 (CD4+) T-cell peptides showed higher cumulative population coverage over cluster of differentiation 8 (CD8+) peptides in the 16 different geographical regions of the world. We identified 12 peptides ((LTDEMIAQY, WTAGAAAYY, WMESEFRVY, IRASANLAA, FGAISSVLN, VKQLSSNFG, FAMQMAYRF, FGAGAALQI, YGFQPTNGVGYQ, LPDPSKPSKR, QTQTNSPRRARS and VITPGTNTSN) that are $80\hbox{--} 90\%$ identical with experimentally determined epitopes of SARS-CoV, and this will likely be beneficial for a quick progression of the vaccine design. Moreover, docking analysis suggested that the identified peptides are tightly bound in the groove of human leukocyte antigen molecules which can induce the T-cell response. Overall, this study allows us to determine potent peptide antigen targets in the SG on intuitive grounds, which opens up a new horizon in the coronavirus disease (COVID-19) research. However, this study needs experimental validation by in vitro and in vivo.
Collapse
Affiliation(s)
- Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi 110025, India
| | - Arbaaz Khan
- Department of computer science, Jamia Millia Islamia University, New Delhi, India
| | - Nikhat Imam
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia University, New Delhi, India
| | | | - Mohd Waseem
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Md Zubbair Malik
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia University, New Delhi, India
| |
Collapse
|
37
|
Chukwudozie OS, Duru VC, Ndiribe CC, Aborode AT, Oyebanji VO, Emikpe BO. The Relevance of Bioinformatics Applications in the Discovery of Vaccine Candidates and Potential Drugs for COVID-19 Treatment. Bioinform Biol Insights 2021; 15:11779322211002168. [PMID: 33795932 PMCID: PMC7968009 DOI: 10.1177/11779322211002168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/14/2021] [Indexed: 12/16/2022] Open
Abstract
The application of bioinformatics to vaccine research and drug discovery has never been so essential in the fight against infectious diseases. The greatest combat of the 21st century against a debilitating disease agent SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus discovered in Wuhan, China, December 2019, has piqued an unprecedented usage of bioinformatics tools in deciphering the molecular characterizations of infectious pathogens. With the viral genome data of SARS-COV-2 been made available barely weeks after the reported outbreak, bioinformatics platforms have become an all-time critical tool to gain time in the fight against the disease pandemic. Before the outbreak, different platforms have been developed to explore antigenic epitopes, predict peptide-protein docking and antibody structures, and simulate antigen-antibody reactions and lots more. However, the advent of the pandemic witnessed an upsurge in the application of these pipelines with the development of newer ones such as the Coronavirus Explorer in the development of efficacious vaccines, drug repurposing, and/or discovery. In this review, we have explored the various pipelines available for use, their relevance, and limitations in the timely development of useful therapeutic candidates from genomic data knowledge to clinical therapy.
Collapse
Affiliation(s)
| | - Vincent C Duru
- Molecular Genetics Unit, Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Charlotte C Ndiribe
- Department of Cell Biology and Genetics, University of Lagos, Lagos, Nigeria
| | | | - Victor O Oyebanji
- Department of Veterinary Pathology, University of Ibadan, Ibadan, Nigeria
| | - Benjamin O Emikpe
- Department of Veterinary Pathology, University of Ibadan, Ibadan, Nigeria
- School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
38
|
Sadat SM, Aghadadeghi MR, Yousefi M, Khodaei A, Sadat Larijani M, Bahramali G. Bioinformatics Analysis of SARS-CoV-2 to Approach an Effective Vaccine Candidate Against COVID-19. Mol Biotechnol 2021; 63:389-409. [PMID: 33625681 PMCID: PMC7902242 DOI: 10.1007/s12033-021-00303-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
The emerging Coronavirus Disease 2019 (COVID-19) pandemic has posed a serious threat to the public health worldwide, demanding urgent vaccine provide. According to the virus feature as an RNA virus, a high rate of mutations imposes some vaccine design difficulties. Bioinformatics tools have been widely used to make advantage of conserved regions as well as immunogenicity. In this study, we aimed at immunoinformatic evaluation of SARS-CoV-2 proteins conservancy and immunogenicity to design a preventive vaccine candidate. Spike, Membrane and Nucleocapsid amino acid sequences were obtained, and four possible fusion proteins were assessed and compared in terms of structural features and immunogenicity, and population coverage. MHC-I and MHC-II T-cell epitopes, the linear and conformational B-cell epitopes were evaluated. Among the predicted models, the truncated form of Spike in fusion with M and N protein applying AAY linker has high rate of MHC-I and MCH-II epitopes with high antigenicity and acceptable population coverage of 82.95% in Iran and 92.51% in Europe. The in silico study provided truncated Spike-M-N SARS-CoV-2 as a potential preventive vaccine candidate for further in vivo evaluation.
Collapse
Affiliation(s)
- Seyed Mehdi Sadat
- Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, No: 69, Pasteur Ave, 13165, Tehran, Iran
| | - Mohammad Reza Aghadadeghi
- Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, No: 69, Pasteur Ave, 13165, Tehran, Iran.
| | - Masoume Yousefi
- Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, No: 69, Pasteur Ave, 13165, Tehran, Iran
| | - Arezoo Khodaei
- Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, No: 69, Pasteur Ave, 13165, Tehran, Iran
| | - Mona Sadat Larijani
- Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, No: 69, Pasteur Ave, 13165, Tehran, Iran
| | - Golnaz Bahramali
- Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, No: 69, Pasteur Ave, 13165, Tehran, Iran.
| |
Collapse
|
39
|
Fatoba AJ, Maharaj L, Adeleke VT, Okpeku M, Adeniyi AA, Adeleke MA. Immunoinformatics prediction of overlapping CD8 + T-cell, IFN-γ and IL-4 inducer CD4 + T-cell and linear B-cell epitopes based vaccines against COVID-19 (SARS-CoV-2). Vaccine 2021; 39:1111-1121. [PMID: 33478794 PMCID: PMC7831457 DOI: 10.1016/j.vaccine.2021.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/11/2020] [Accepted: 01/02/2021] [Indexed: 02/08/2023]
Abstract
At the beginning of the year 2020, the world was struck with a global pandemic virus referred to as SARS-CoV-2 (COVID-19) which has left hundreds of thousands of people dead. To control this virus, vaccine design becomes imperative. In this study, potential epitopes-based vaccine candidates were explored. Six hundred (600) genomes of SARS-CoV-2 were retrieved from the viPR database to generate CD8+ T-cell, CD4+ T-cell and linear B-cell epitopes which were screened for antigenicity, immunogenicity and non-allergenicity. The results of this study provide 19 promising candidate CD8+ T-cell epitopes that strongly overlap with 8 promising B-cells epitopes. Another 19 CD4+ T-cell epitopes were also identified that can induce IFN-γ and IL-4 cytokines. The most conserved MHC-I and MHC-II for both CD8+ and CD4+ T-cell epitopes are HLA-A*02:06 and HLA-DRB1*01:01 respectively. These epitopes also bound to Toll-like receptor 3 (TLR3). The population coverage of the conserved Major Histocompatibility Complex Human Leukocyte Antigen (HLA) for both CD8+ T-cell and CD4+ T-cell ranged from 65.6% to 100%. The detailed analysis of the potential epitope-based vaccine and their mapping to the complete COVID-19 genome reveals that they are predominantly found in the location of the surface (S) and membrane (M) glycoproteins suggesting the potential involvement of these structural proteins in the immunogenic response and antigenicity of the virus. Since the majority of the potential epitopes are located on M protein, the design of multi-epitope vaccine with the structural protein is highly promising though the whole M protein could also serve as a viable epitope for the development of an attenuated vaccine. Our findings provide a baseline for the experimental design of a suitable vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Abiodun J Fatoba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Victoria T Adeleke
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard Campus, Durban 4041, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Adebayo A Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa; Department of Industrial Chemistry, Federal University, Oye-Ekiti, Nigeria.
| | - Matthew A Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa.
| |
Collapse
|
40
|
Krishnan G S, Joshi A, Akhtar N, Kaushik V. Immunoinformatics designed T cell multi epitope dengue peptide vaccine derived from non structural proteome. Microb Pathog 2021; 150:104728. [PMID: 33400987 DOI: 10.1016/j.micpath.2020.104728] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/20/2020] [Accepted: 12/27/2020] [Indexed: 12/20/2022]
Abstract
Dengue viral disease has been reported as an Aedes aegypti mosquito-borne human disease and causing a severe global public health concern. In this study, immunoinformatics methods was deployed for crafting CTL T-cell epitopes as dengue vaccine candidates. The NS1 protein sequence of dengue serotype 1 strain retrieved from the protein database and T-cell epitopes (n = 85) were predicted by the artificial neural network. The conserved epitopes (n = 10) were predicted and selected for intensive computational analysis. The machine learning technique and quantitative matrix-based toxicity analysis assured nontoxic peptide selection. Hidden Markov Model derived Structural Alphabet (SA) based algorithm predicted the 3D molecular structure and all-atom structure of peptide ligand validated by Ramachandran-plot. Three-tier molecular docking approaches were used to predictthe peptide - HLA docking complex. Molecular dynamics (MD) simulation study confirmed the docking complex was stable in the time frame of 100ns. Population coverage analysis predicted the interaction epitope interaction with a particular population of HLA. These results concluded that the computationally designed HTLWSNGVL and FTTNIWLKL epitope peptides could be used as putative agents for the multi CTL T cell epitope vaccine. The vaccine protein sequence expression and translation were analyzed in the prokaryotic vector adapted by codon usage. Such in silico formulated CTL T-cell-based prophylactic vaccines could encourage the commercial development of dengue vaccines.
Collapse
Affiliation(s)
- Sunil Krishnan G
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India.
| | - Amit Joshi
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India.
| | - Nahid Akhtar
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India.
| | - Vikas Kaushik
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India.
| |
Collapse
|
41
|
|
42
|
Neural Network Analysis. Adv Bioinformatics 2021. [DOI: 10.1007/978-981-33-6191-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
43
|
Ayyagari VS, T C V, K AP, Srirama K. Design of a multi-epitope-based vaccine targeting M-protein of SARS-CoV2: an immunoinformatics approach. J Biomol Struct Dyn 2020; 40:2963-2977. [PMID: 33252008 PMCID: PMC7754933 DOI: 10.1080/07391102.2020.1850357] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the present study, one of the targets present on the envelopes of coronaviruses, membrane glycoprotein (M) was chosen for the design of a multi-epitope vaccine by Immunoinformatics approach. The B-cell and T-cell epitopes used for the construction of vaccine were antigenic, nonallergic and nontoxic. An adjuvant, β-defensin and PADRE sequence were included at the N-terminal end of the vaccine. All the epitopes were joined by linkers for decreasing the junctional immunogenicity. Various physicochemical parameters of the vaccine were evaluated. Secondary and tertiary structures were predicted for the vaccine construct. The tertiary structure was further refined, and various parameters related to the refinement of the protein structure were validated by using different tools. Humoral immunity induced by B-cells relies upon the identification of antigenic determinants on the surface of the vaccine construct. In this regard, the vaccine construct was found to consist of several B-cell epitopes in its three-dimensional conformation. Molecular docking of the vaccine was carried out with TLR-3 receptor to study their binding and its strength. Further, protein-protein interactions in the docked complex were visualized using LigPlot+. Population coverage analysis had shown that the multi-epitope vaccine covers 94.06% of the global population. The vaccine construct was successfully cloned in silico into pET-28a (+). Immune simulation studies showed the induction of primary, secondary and tertiary immune responses marked by the increased levels of antibodies, INF-γ, IL-2, TGF-β, B- cells, CD4+ and CD8+ cells. Finally, the vaccine construct was able to elicit immune response as desired.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vijaya Sai Ayyagari
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - Venkateswarulu T C
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - Abraham Peele K
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - Krupanidhi Srirama
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India
| |
Collapse
|
44
|
Joshi A, Sunil Krishnan G, Kaushik V. Molecular docking and simulation investigation: effect of beta-sesquiphellandrene with ionic integration on SARS-CoV2 and SFTS viruses. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2020; 18:78. [PMID: 33245459 PMCID: PMC7692438 DOI: 10.1186/s43141-020-00095-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022]
Abstract
Background At present, viral diseases become major concern for the world. SARS-CoV2 and SFTS viruses are deadly in nature, and there is a need for developing best treatments for them. Modern in silico approaches were found to be very handy in determining putative drug molecules. In this study, we analyze interaction of beta-sesquiphellandrene (compound belongs to ginger) with spike protein (Sp) and membrane glycoprotein polyprotein (MPp). Results Our molecular docking and simulation study reveals the perfect binding pocket of Sp and MPp holding beta-sesquiphellandrene (bS). Binding energies for MPp-bS and Sp-bS were found to be − 9.5 kcal/mol and − 10.3 kcal/mol respectively. RMSD and RMSF values for docked complexes were found to be in selectable range, i.e., 1 to 3 Å and 1 to 8 Å respectively. Modern computational tools were used here to make this investigation fast and effective. Further, ADME analysis reveals the therapeutic validations for beta-sesquiphellandrene to act as a useful pharmacoactive compound. Beta-sesquiphellandrene provides not only inhibitory effect on spike protein of SARS-CoV2 but also similar inhibitory effects on membrane glycoprotein polyprotein complex of SFTS virus, which hampers the pathological initiation of the diseases caused by both the viruses, i.e., COVID-19 and severe fever with thrombocytopenia syndrome. Conclusion This method of computational analysis was found to be rapid and effective, and opens new doors in the domain of in silico drug discovery. Beta-sesquiphellandrene can be used as effective medicine to control these harmful pathogens after wet lab validations.
Collapse
Affiliation(s)
- Amit Joshi
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - G Sunil Krishnan
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Kaushik
- Domain of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
45
|
Abd Albagi SO, Al-Nour MY, Elhag M, Tageldein Idris Abdelihalim A, Musa Haroun E, Adam Essa ME, Abubaker M, Deka H, Ghosh A, Hassan MA. A multiple peptides vaccine against COVID-19 designed from the nucleocapsid phosphoprotein (N) and Spike Glycoprotein (S) via the immunoinformatics approach. INFORMATICS IN MEDICINE UNLOCKED 2020; 21:100476. [PMID: 33200089 PMCID: PMC7654333 DOI: 10.1016/j.imu.2020.100476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022] Open
Abstract
Due to the current Coronavirus (COVID-19) pandemic, the rapid discovery of a safe and effective vaccine is an essential issue. Consequently, this study aims to predict a potential COVID-19 peptide-based vaccine utilizing the Nucleocapsid phosphoprotein (N) and Spike Glycoprotein (S) via the Immunoinformatics approach. To achieve this goal, several Immune Epitope Database (IEDB) tools, molecular docking, and safety prediction servers were used. According to the results, The Spike peptide SQCVNLTTRTQLPPAYTNSFTRGVY is predicted to have the highest binding affinity to the B-Cells. The Spike peptide FTISVTTEI has the highest binding affinity to the Major Histocompatibility Complex class 1 (MHC I) Human Leukocyte Allele HLA-B*1503 (according to the MDockPeP and HPEPDOCK servers, docking scores were −153.9 and −229.356, respectively). The Nucleocapsid peptides KTFPPTEPK and RWYFYYLGTGPEAGL have the highest binding affinity to the MHC I HLA-A0202 allele and the three the Major Histocompatibility Complex class 2 (MHC II) Human Leukocyte Allele HLA-DPA1*01:03/DPB1*02:01, HLA-DQA1*01:02/DQB1-*06:02, HLA-DRB1, respectively. Docking scores of peptide KTFPPTEPK were −153.9 and −220.876. In contrast, docking scores of peptide RWYFYYLGTGPEAGL were ranged from 218 to 318. Furthermore, those peptides were predicted as non-toxic and non-allergen. Therefore, the combination of those peptides is predicted to stimulate better immunological responses with respectable safety.
Collapse
Affiliation(s)
- Sahar Obi Abd Albagi
- Department of Microbiology and Immunology, AL Neelain University, Khartoum, Sudan
| | - Mosab Yahya Al-Nour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan
| | - Mustafa Elhag
- Faculty of Medicine, University of Seychelles-American Institute of Medicine, Seychelles
| | | | | | | | - Mustafa Abubaker
- Faculty of Medical Laboratory Sciences, Sudan University of Science and Technology, Sudan
| | - Hemchandra Deka
- Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati, Assam, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Mohammed A Hassan
- Department of Bioinformatics, DETAGEN Genetics Diagnostic Center, Kayseri, Turkey
| |
Collapse
|
46
|
Oliveira SC, de Magalhães MTQ, Homan EJ. Immunoinformatic Analysis of SARS-CoV-2 Nucleocapsid Protein and Identification of COVID-19 Vaccine Targets. Front Immunol 2020; 11:587615. [PMID: 33193414 PMCID: PMC7655779 DOI: 10.3389/fimmu.2020.587615] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/02/2020] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is a worldwide emergency; therefore, there is a critical need for foundational knowledge about B and T cell responses to SARS-CoV-2 essential for vaccine development. However, little information is available defining which determinants of SARS-CoV-2 other than the spike glycoprotein are recognized by the host immune system. In this study, we focus on the SARS-CoV-2 nucleocapsid protein as a suitable candidate target for vaccine formulations. Major B and T cell epitopes of the SARS-CoV-2 N protein are predicted and resulting sequences compared with the homolog immunological domains of other coronaviruses that infect human beings. The most dominant of B cell epitope is located between 176–206 amino acids in the SRGGSQASSRSSSRSRNSSRNSTPGSSRGTS sequence. Further, we identify sequences which are predicted to bind multiple common MHC I and MHC II alleles. Most notably there is a region of potential T cell cross-reactivity within the SARS-CoV-2 N protein position 102–110 amino acids that traverses multiple human alpha and betacoronaviruses. Vaccination strategies designed to target these conserved epitope regions could generate immune responses that are cross-reactive across human coronaviruses, with potential to protect or modulate disease. Finally, these predictions can facilitate effective vaccine design against this high priority virus.
Collapse
Affiliation(s)
- Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Ministerio de Ciencia e Tecnologia (MCT), Salvador, Brazil
| | - Mariana T Q de Magalhães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
47
|
Romero-López JP, Carnalla-Cortés M, Pacheco-Olvera DL, Ocampo-Godínez JM, Oliva-Ramírez J, Moreno-Manjón J, Bernal-Alferes B, López-Olmedo N, García-Latorre E, Domínguez-López ML, Reyes-Sandoval A, Jiménez-Zamudio L. A bioinformatic prediction of antigen presentation from SARS-CoV-2 spike protein revealed a theoretical correlation of HLA-DRB1*01 with COVID-19 fatality in Mexican population: An ecological approach. J Med Virol 2020; 93:2029-2038. [PMID: 32986250 PMCID: PMC7537233 DOI: 10.1002/jmv.26561] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022]
Abstract
SARS‐CoV‐2 infection is causing a pandemic disease that is reflected in challenging public health problems worldwide. Human leukocyte antigen (HLA)‐based epitope prediction and its association with disease outcomes provide an important base for treatment design. A bioinformatic prediction of T cell epitopes and their restricted HLA Class I and II alleles was performed to obtain immunogenic epitopes and HLA alleles from the spike protein of the severe acute respiratory syndrome coronavirus 2 virus. Also, a correlation with the predicted fatality rate of hospitalized patients in 28 states of Mexico was done. Here, we describe a set of 10 highly immunogenic epitopes, together with different HLA alleles that can efficiently present these epitopes to T cells. Most of these epitopes are located within the S1 subunit of the spike protein, suggesting that this area is highly immunogenic. A statistical negative correlation was found between the frequency of HLA‐DRB1*01 and the fatality rate in hospitalized patients in Mexico. First HLA association study for COVID‐19 in Mexico An epitope prediction for HLA Class I and II provided a list of highly immunogenic epitopes from the S protein of SARS‐CoV2 with potential use for vaccine development. A multi‐level approach revealed a correlation of HLA‐DRB1*01 frequency with fatality in Mexican hospitalized patients at ecological level.
Collapse
Affiliation(s)
- José Pablo Romero-López
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, UNAM, Avenida de los Barrios 1, Tlalnepantla de Baz, Estado de México, Mexico.,Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala SN, Mexico City, Mexico
| | - Martha Carnalla-Cortés
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Diana L Pacheco-Olvera
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala SN, Mexico City, Mexico.,Unidad Médica de Investigación en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Juan Moisés Ocampo-Godínez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, UNAM, Avenida de los Barrios 1, Tlalnepantla de Baz, Estado de México, Mexico.,Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala SN, Mexico City, Mexico.,Laboratorio de Ingeniería de Tejidos, Posgrado de la Facultad de Odontología, UNAM, Mexico City, Mexico
| | | | - Julia Moreno-Manjón
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, UNAM, Mexico City, Mexico.,Laboratorio de Bacteriología Médica, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala SN, Mexico City, Mexico
| | - Brian Bernal-Alferes
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala SN, Mexico City, Mexico.,Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nancy López-Olmedo
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Ethel García-Latorre
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala SN, Mexico City, Mexico
| | - María Lilia Domínguez-López
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala SN, Mexico City, Mexico
| | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, The Jenner Institute, The Henry Welcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Luis Jiménez-Zamudio
- Laboratorio de Inmunología Clínica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
48
|
Safavi A, Kefayat A, Mahdevar E, Abiri A, Ghahremani F. Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine 2020; 38:7612-7628. [PMID: 33082015 PMCID: PMC7546226 DOI: 10.1016/j.vaccine.2020.10.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/25/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 causes a severe respiratory disease called COVID-19. Currently, global health is facing its devastating outbreak. However, there is no vaccine available against this virus up to now. In this study, a novel multi-epitope vaccine against SARS-CoV-2 was designed to provoke both innate and adaptive immune responses. The immunodominant regions of six non-structural proteins (nsp7, nsp8, nsp9, nsp10, nsp12 and nsp14) of SARS-CoV-2 were selected by multiple immunoinformatic tools to provoke T cell immune response. Also, immunodominant fragment of the functional region of SARS-CoV-2 spike (400-510 residues) protein was selected for inducing neutralizing antibodies production. The selected regions' sequences were connected to each other by furin-sensitive linker (RVRR). Moreover, the functional region of β-defensin as a well-known agonist for the TLR-4/MD complex was added at the N-terminus of the vaccine using (EAAAK)3 linker. Also, a CD4 + T-helper epitope, PADRE, was used at the C-terminal of the vaccine by GPGPG and A(EAAAK)2A linkers to form the final vaccine construct. The physicochemical properties, allergenicity, antigenicity, functionality and population coverage of the final vaccine construct were analyzed. The final vaccine construct was an immunogenic, non-allergen and unfunctional protein which contained multiple CD8 + and CD4 + overlapping epitopes, IFN-γ inducing epitopes, linear and conformational B cell epitopes. It could form stable and significant interactions with TLR-4/MD according to molecular docking and dynamics simulations. Global population coverage of the vaccine for HLA-I and II were estimated 96.2% and 97.1%, respectively. At last, the final vaccine construct was reverse translated to design the DNA vaccine. Although the designed vaccine exhibited high efficacy in silico, further experimental validation is necessary.
Collapse
Affiliation(s)
- Ashkan Safavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Mahdevar
- Department of Biology, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Ghahremani
- Department of Medical Physics and Radiotherapy, Arak School of Paramedicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
49
|
Soni N, Pai P, Krishna Kumar GR, Prasad V, Dasgupta S, Bhadra B. A flow virometry process proposed for detection of SARS-CoV-2 and large-scale screening of COVID-19 cases. Future Virol 2020. [PMCID: PMC7434223 DOI: 10.2217/fvl-2020-0141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The viral pneumonia COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread rapidly over 210 countries and declared as pandemic by WHO. WHO has emphasized on the scale-up of testing capacity, followed by isolation of infected individuals, and contact tracing, as the ‘backbone’ of managing the pandemic. Globally, the detection of SARS-CoV-2 in patients is done by real-time PCR (RT-PCR) and blood antibody-based testing. Here, a flow cytometry-based high-throughput screening system is proposed for testing of COVID-19 cases where the virus particle binds to specific primary antibodies and the resultant virus–antibody complex then binds to fluorescent-tagged secondary antibodies. The fluorescence signal could be measured in a flow channel for qualitative detection of virus in the test sample.
Collapse
Affiliation(s)
- Niraja Soni
- Synthetic Biology Group, Reliance Corporate Park, Reliance Industries Ltd, Ghansoli, Navi Mumbai 400701, India
| | - Puja Pai
- Synthetic Biology Group, Reliance Corporate Park, Reliance Industries Ltd, Ghansoli, Navi Mumbai 400701, India
| | | | - Venkatesh Prasad
- Synthetic Biology Group, Reliance Corporate Park, Reliance Industries Ltd, Ghansoli, Navi Mumbai 400701, India
| | - Santanu Dasgupta
- Synthetic Biology Group, Reliance Corporate Park, Reliance Industries Ltd, Ghansoli, Navi Mumbai 400701, India
| | - Bhaskar Bhadra
- Synthetic Biology Group, Reliance Corporate Park, Reliance Industries Ltd, Ghansoli, Navi Mumbai 400701, India
| |
Collapse
|
50
|
TopuzoĞullari M, Acar T, Pelİt Arayici P, UÇar B, UĞurel E, Abamor EŞ, ArasoĞlu T, Turgut-Balik D, Derman S. An insight into the epitope-based peptide vaccine design strategy and studies against COVID-19. Turk J Biol 2020; 44:215-227. [PMID: 32595358 PMCID: PMC7314509 DOI: 10.3906/biy-2006-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SARS-CoV-2 is a new member of the coronavirus family and caused the pandemic of coronavirus disease 2019 (COVID-19) in 2020. It is crucial to design and produce an effective vaccine for the prevention of rapid transmission and possible deaths wcaused by the disease. Although intensive work and research are being carried out all over the world to develop a vaccine, an effective and approved formulation that can prevent the infection and limit the outbreak has not been announced yet. Among all types of vaccines, epitope-based peptide vaccines outshine with their low-cost production, easy modification in the structure, and safety. In this review, vaccine studies against COVID-19 have been summarized and detailed information about the epitope-based peptide vaccines against COVID-19 has been provided. We have not only compared the peptide vaccine with other types of vaccines but also presented comprehensive literature information about development steps for an effective and protective formulation to give an insight into on-going peptide vaccine studies against SARS-CoV-2.
Collapse
Affiliation(s)
- Murat TopuzoĞullari
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Tayfun Acar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Pelin Pelİt Arayici
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Burcu UÇar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Erennur UĞurel
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Emrah Şefik Abamor
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Tülin ArasoĞlu
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, İstanbul Turkey
| | - Dilek Turgut-Balik
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Serap Derman
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| |
Collapse
|