1
|
Tiwari P, Srivastava Y, Sharma A, Vinayagam R. Antimicrobial Peptides: The Production of Novel Peptide-Based Therapeutics in Plant Systems. Life (Basel) 2023; 13:1875. [PMID: 37763279 PMCID: PMC10532476 DOI: 10.3390/life13091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The increased prevalence of antibiotic resistance is alarming and has a significant impact on the economies of emerging and underdeveloped nations. The redundancy of antibiotic discovery platforms (ADPs) and injudicious use of conventional antibiotics has severely impacted millions, across the globe. Potent antimicrobials from biological sources have been extensively explored as a ray of hope to counter the growing menace of antibiotic resistance in the population. Antimicrobial peptides (AMPs) are gaining momentum as powerful antimicrobial therapies to combat drug-resistant bacterial strains. The tremendous therapeutic potential of natural and synthesized AMPs as novel and potent antimicrobials is highlighted by their unique mode of action, as exemplified by multiple research initiatives. Recent advances and developments in antimicrobial discovery and research have increased our understanding of the structure, characteristics, and function of AMPs; nevertheless, knowledge gaps still need to be addressed before these therapeutic options can be fully exploited. This thematic article provides a comprehensive insight into the potential of AMPs as potent arsenals to counter drug-resistant pathogens, a historical overview and recent advances, and their efficient production in plants, defining novel upcoming trends in drug discovery and research. The advances in synthetic biology and plant-based expression systems for AMP production have defined new paradigms in the efficient production of potent antimicrobials in plant systems, a prospective approach to countering drug-resistant pathogens.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Yashdeep Srivastava
- RR Institute of Modern Technology, Dr. A.P.J. Abdul Kalam Technical University, Sitapur Road, Lucknow 226201, Uttar Pradesh, India;
| | - Abhishek Sharma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar 392426, Gujarat, India;
| | - Ramachandran Vinayagam
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
2
|
Cessur A, Albayrak İ, Demirci T, Göktürk Baydar N. Silver and salicylic acid-chitosan nanoparticles alter indole alkaloid production and gene expression in root and shoot cultures of Isatis tinctoria and Isatis ermenekensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107977. [PMID: 37639984 DOI: 10.1016/j.plaphy.2023.107977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Isatis spp. are well-known for their industrial significance due to natural sources of indigotin and indirubin, important indole alkaloids, used in the dye and pharmaceutical industries. In this study, silver nanoparticles (AgNP) and salicylic acid-chitosan nanoparticles (SA-CNP) were synthesized and applied to enhance the production of indigotin and indirubin in shoot and root cultures of Isatis tinctoria and Isatis ermenekensis. Different doses of AgNP and SA-CNP were administered to three-week-old shoot and root cultures, and the effects were assessed at 12, 24, and 48 h. The harvested samples were analyzed to quantify indigotin and indirubin levels. Furthermore, the expression levels of It-TSA and CYP79B2 genes, known to be involved in indole alkaloid biosynthesis, were determined. In I. tinctoria roots, the highest levels of indigotin and indirubin were observed after applying 150 mg L-1 of SA-CNP for 48 h while in I. ermenekensis shoots, indigotin and indirubin reached the maximum levels with the application of 8 mg L-1 AgNP for 48 h. NP application had no remarkable effects on the accumulation of indigotin and indirubin in I. tinctoria shoots and I. ermenekensis roots compared to controls. Additionally, shoot cultures demonstrated superior indirubin production, which significantly increased with AgNP applications. The gene expression analysis also exhibited significant correlations with the changes in indigotin and indirubin levels. The findings of this study lay the groundwork for enhancing in vitro production of indigotin and indirubin in Isatis species through NP applications, and for developing high-capacity production strategies by determining optimal dosages in scale-up studies.
Collapse
Affiliation(s)
- Alper Cessur
- Department of Agricultural Biotechnology, Faculty of Agriculture, Isparta University of Applied Sciences, 32270, Isparta, Turkey
| | - İlknur Albayrak
- Department of Agricultural Biotechnology, Faculty of Agriculture, Isparta University of Applied Sciences, 32270, Isparta, Turkey
| | - Tunahan Demirci
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Süleyman Demirel University, 32260, Isparta, Turkey.
| | - Nilgün Göktürk Baydar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Isparta University of Applied Sciences, 32270, Isparta, Turkey
| |
Collapse
|
3
|
Huang Q, Ding Y, Fang C, Wang H, Kong L. The Emerging Role of Ferroptosis in Sepsis, Opportunity or Challenge? Infect Drug Resist 2023; 16:5551-5562. [PMID: 37641800 PMCID: PMC10460599 DOI: 10.2147/idr.s419993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Sepsis is a syndrome in multi-organ dysfunction triggered by a deleterious immunological reaction of the body to a condition caused by infection, surgery, or trauma. Currently, sepsis is thought to be primarily associated with abnormal immune responses resulting in organ microcirculatory disturbances, cellular mitochondrial dysfunction, and induced cell death, although the exact pathogenesis of sepsis is still inconclusive. In recent years, the role of abnormal metabolism of trace nutrients in the pathogenesis of sepsis has been investigated. Ferroptosis is a type of cell death that relies on iron and is characterized by unique morphological, biochemical, and genetic features. Unlike other forms of cell death, such as autophagy, apoptosis, necrosis, and pyroptosis, ferroptosis is primarily driven by lipid peroxidation. Ferroptosis cells may be immunogenic, amplify inflammatory responses, cause more cell death, and ultimately induce multi-organ failure. An increasing number of studies have indicated the significance of ferroptosis in sepsis and its role in reducing inflammation. The effectiveness of sepsis treatment has been demonstrated by the use of drugs that specifically target molecules associated with the ferroptosis pathway, including ferroptosis inhibitors. Nevertheless, there is a scarcity of studies investigating the multi-organ dysfunction caused by ferroptosis in sepsis. This article presents a summary and evaluation of recent progress in the role of ferroptosis through molecularly regulated mechanisms and its potential mechanisms of action in the multi-organ dysfunction associated with sepsis. It also discusses the current challenges and prospects in understanding the connection between sepsis and ferroptosis, and proposes innovative ideas and strategies for the treatment of sepsis.
Collapse
Affiliation(s)
- Qigang Huang
- Department of Emergency Medicine, Zhejiang University Medical College Affiliated Jinhua Hospital, Jinhua, Zhejiang, People’s Republic of China
| | - Yingwei Ding
- Department of Emergency Medicine, Zhejiang University Medical College Affiliated Jinhua Hospital, Jinhua, Zhejiang, People’s Republic of China
| | - Chao Fang
- Department of Emergency Medicine, Zhejiang University Medical College Affiliated Jinhua Hospital, Jinhua, Zhejiang, People’s Republic of China
| | - Hao Wang
- Department of Emergency Medicine, Zhejiang University Medical College Affiliated Jinhua Hospital, Jinhua, Zhejiang, People’s Republic of China
| | - Laifa Kong
- Department of Emergency Medicine, Zhejiang University Medical College Affiliated Jinhua Hospital, Jinhua, Zhejiang, People’s Republic of China
| |
Collapse
|
4
|
Miceli N, Kwiecień I, Nicosia N, Speranza J, Ragusa S, Cavò E, Davì F, Taviano MF, Ekiert H. Improvement in the Biosynthesis of Antioxidant-Active Metabolites in In Vitro Cultures of Isatis tinctoria (Brassicaceae) by Biotechnological Methods/Elicitation and Precursor Feeding. Antioxidants (Basel) 2023; 12:antiox12051111. [PMID: 37237977 DOI: 10.3390/antiox12051111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to establish the in vitro shoot culture of Isatis tinctoria L. and its ability to produce antioxidant bioactive compounds. The Murashige and Skoog (MS) medium variants, containing different concentrations (0.1-2.0 mg/L) of benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) were tested. Their influence on the growth of biomass, accumulation of phenolic compounds, and antioxidant potential was evaluated. To improve the phenolic content, agitated cultures (MS 1.0/1.0 mg/L BAP/NAA) were treated with different elicitors, including the following: Methyl Jasmonate, CaCl2, AgNO3, and yeast, as well as with L-Phenylalanine and L-Tyrosine-precursors of phenolic metabolites. The total phenolic content (TPC) of hydroalcoholic extracts (MeOH 70%) obtained from the biomass grown in vitro was determined spectrophotometrically; phenolic acids and flavonoids were quantified by RP-HPLC. Moreover, the antioxidant potential of extracts was examined through the DPPH test, the reducing power, and the Fe2+ chelating assays. The biomass extracts obtained after 72 h of supplementation with Tyr (2 g/L), as well as after 120 and 168 h with Tyr (1 g/L), were found to be the richest in TPC (49.37 ± 0.93, 58.65 ± 0.91, and 60.36 ± 4.97 mg GAE/g extract, respectively). Whereas among the elicitors, the highest TPC achieved was with CaCl2 (20 and 50 mM 24 h), followed by MeJa (50 and 100 µM, 120 h). The HPLC of the extracts led to the identification of six flavonoids and nine phenolic acids, with vicenin-2, isovitexin, syringic, and caffeic acids being the most abundant compounds. Notably, the amount of all flavonoids and phenolic acids detected in the elicited/precursor feeding biomass was higher than that of the leaves of the parental plant. The best chelating activity was found with the extract of biomass fed with Tyrosine 2 g/L, 72 h (IC50 0.27 ± 0.01 mg/mL), the strongest radical scavenging (DPPH test) for the extract obtained from biomass elicited with CaCl2 50 mM, after 24 h of incubation (25.14 ± 0.35 mg Trolox equivalents (TE)/g extract). In conclusion, the in vitro shoot culture of I. tinctoria supplemented with Tyrosine, as well as MeJa and/or CaCl2, could represent a biotechnological source of compounds with antioxidant properties.
Collapse
Affiliation(s)
- Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Inga Kwiecień
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str., 30-688 Krakow, Poland
| | - Noemi Nicosia
- Foundation "Prof. Antonio Imbesi", University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
- Division of Neuroscience, Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Jasmine Speranza
- Foundation "Prof. Antonio Imbesi", University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Salvatore Ragusa
- PLANTA/Research, Documentation and Training Center, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| | - Emilia Cavò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
- Foundation "Prof. Antonio Imbesi", University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Federica Davì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
- Foundation "Prof. Antonio Imbesi", University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Halina Ekiert
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str., 30-688 Krakow, Poland
| |
Collapse
|
5
|
Ghitti E, Rolli E, Crotti E, Borin S. Flavonoids Are Intra- and Inter-Kingdom Modulator Signals. Microorganisms 2022; 10:microorganisms10122479. [PMID: 36557733 PMCID: PMC9781135 DOI: 10.3390/microorganisms10122479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Flavonoids are a broad class of secondary metabolites with multifaceted functionalities for plant homeostasis and are involved in facing both biotic and abiotic stresses to sustain plant growth and health. Furthermore, they were discovered as mediators of plant networking with the surrounding environment, showing a surprising ability to perform as signaling compounds for a multitrophic inter-kingdom level of communication that influences the plant host at the phytobiome scale. Flavonoids orchestrate plant-neighboring plant allelopathic interactions, recruit beneficial bacteria and mycorrhizal fungi, counteract pathogen outbreak, influence soil microbiome and affect plant physiology to improve its resilience to fluctuating environmental conditions. This review focuses on the diversified spectrum of flavonoid functions in plants under a variety of stresses in the modulation of plant morphogenesis in response to environmental clues, as well as their role as inter-kingdom signaling molecules with micro- and macroorganisms. Regarding the latter, the review addresses flavonoids as key phytochemicals in the human diet, considering their abundance in fruits and edible plants. Recent evidence highlights their role as nutraceuticals, probiotics and as promising new drugs for the treatment of several pathologies.
Collapse
|
6
|
Elmowafy M, Alruwaili NK, Ahmad N, Kassem AM, Ibrahim MF. Quercetin-Loaded Mesoporous Silica Nanoparticle-Based Lyophilized Tablets for Enhanced Physicochemical Features and Dissolution Rate: Formulation, Optimization, and In Vitro Evaluation. AAPS PharmSciTech 2022; 24:6. [PMID: 36447021 DOI: 10.1208/s12249-022-02464-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNPs) have been proposed as a potential approach for stabilizing the amorphous state of poorly water-soluble actives. This study aimed to improve the physiochemical characteristics of poorly water-soluble quercetin (QT) through a novel lyophilized formulation. Various parameters, including solvent polarity, QT-carrier mass ratio, and adsorption time, were studied to improve the loading of QT into MSNPs. The optimized loaded MSNPs were formulated into lyophilized tablets through a freeze-drying process using hydrophilic polyvinylpyrrolidone (PVP-K30) as a polymeric stabilizer and water-soluble sucrose as a cryoprotectant. The effect of PVP-K30 and sucrose on the particle size, disintegration time, friability, and time required to release 90% of QT were studied using 32 full factorial design. The optimized formula was characterized using different evaluating techniques; for instance, differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectroscopy, drug content, moisture content, and saturation solubility. The analysis proved that QT was consistently kept in the nanosize range with a narrow size distribution. The loaded silica nanoparticles and the optimized formulation are in an amorphous state devoid of any chemical interaction with the silica matrix or the lyophilization excipients. The optimized formula also featured low friability (less than 1%), fast disintegration (< 30 s), and a pronounced enhancement in saturation solubility and dissolution rate. Briefly, we established that the lyophilized MSNPs-based tablet would be a potential strategy for improving the rate of dissolution and, ultimately, the bioavailability of the poorly water-soluble QT.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia.
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Abdulsalam M Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed F Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
7
|
Hairy Root Cultures as a Source of Polyphenolic Antioxidants: Flavonoids, Stilbenoids and Hydrolyzable Tannins. PLANTS 2022; 11:plants11151950. [PMID: 35956428 PMCID: PMC9370385 DOI: 10.3390/plants11151950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Due to their chemical properties and biological activity, antioxidants of plant origin have gained interest as valuable components of the human diet, potential food preservatives and additives, ingredients of cosmetics and factors implicated in tolerance mechanisms against environmental stress. Plant polyphenols are the most prominent and extensively studied, albeit not only group of, secondary plant (specialized) metabolites manifesting antioxidative activity. Because of their potential economic importance, the productive and renewable sources of the compounds are desirable. Over thirty years of research on hairy root cultures, as both producers of secondary plant metabolites and experimental systems to investigate plant biosynthetic pathways, brought about several spectacular achievements. The present review focuses on the Rhizobium rhizogenes-transformed roots that either may be efficient sources of plant-derived antioxidants or were used to elucidate some regulatory mechanisms responsible for the enhanced accumulation of antioxidants in plant tissues.
Collapse
|
8
|
Gai QY, Lu Y, Jiao J, Fu JX, Xu XJ, Yao L, Fu YJ. Application of UV-B radiation for enhancing the accumulation of bioactive phenolic compounds in pigeon pea [Cajanus cajan (L.) Millsp.] hairy root cultures. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 228:112406. [PMID: 35152064 DOI: 10.1016/j.jphotobiol.2022.112406] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
Abstract
UV-B radiation is an ideal elicitation strategy for promoting phytochemical accumulation in plant in vitro cultures, associated with various advantages of easy manipulation, cost-effectiveness, no residue, and instantaneous termination. For the first time, UV-B radiation was used to enhance the production of bioactive phenolic compounds (flavonoids and stilbenes) in pigeon pea hairy root cultures (PPHRCs). The total yield of eight flavonoids (414.95 ± 50.68 μg/g DW) in 42-day-old PPHRCs exposed to 4 h of UV-B radiation increased by 1.49-fold as against control, whereas the yield of cajaninstilbene acid (6566.01 ± 702.14 μg/g DW) in PPHRCs undergoing 10 h of UV-B radiation significantly increased by 2.31-fold over control. UV-B radiation was found to induce the oxidative stress in PPHRCs and cause the tissue damage to hairy roots, which improved the levels of endogenous salicylic acid thus triggering the expression of genes involved in phenylpropanoid biosynthesis pathway. And, a regulation competition in metabolic flow dominated by CHS and STS was responsible for the difference in accumulation trends of flavonoids and cajaninstilbene acid. Results of this study not only provide a feasible and simple UV-B supplementation strategy for the enhanced production of bioactive phenolic compounds (especially the high-value cajaninstilbene acid) in PPHRCs, but also contributed to the understanding of photobiological responses related to secondary metabolism.
Collapse
Affiliation(s)
- Qing-Yan Gai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, PR China
| | - Yao Lu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, PR China
| | - Jiao Jiao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, PR China.
| | - Jin-Xian Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, PR China
| | - Xiao-Jie Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, PR China
| | - Lan Yao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, PR China
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, PR China
| |
Collapse
|
9
|
Quercetin-loaded niosomal nanoparticles prepared by the thin-layer hydration method: Formulation development, colloidal stability, and structural properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Dymarska M, Janeczko T, Kostrzewa-Susłow E. The Callus of Phaseolus coccineus and Glycine max Biotransform Flavanones into the Corresponding Flavones. Molecules 2020; 25:E5767. [PMID: 33297500 PMCID: PMC7730475 DOI: 10.3390/molecules25235767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 01/10/2023] Open
Abstract
In vitro plant cultures are gaining in industrial importance, especially as biocatalysts and as sources of secondary metabolites used in pharmacy. The idea that guided us in our research was to evaluate the biocatalytic potential of newly obtained callus tissue towards flavonoid compounds. In this publication, we describe new ways of using callus cultures in the biotransformations. In the first method, the callus cultures grown on a solid medium are transferred to the water, the reaction medium into which the substrate is introduced. In the second method, biotransformation is carried out on a solid medium by growing callus cultures. In the course of the research, we have shown that the callus obtained from Phaseolus coccineus and Glycine max is capable of converting flavanone, 5-methoxyflavanone and 6-methoxyflavanone into the corresponding flavones.
Collapse
Affiliation(s)
- Monika Dymarska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (T.J.); (E.K.-S.)
| | | | | |
Collapse
|
11
|
Speranza J, Miceli N, Taviano MF, Ragusa S, Kwiecień I, Szopa A, Ekiert H. Isatis tinctoria L. (Woad): A Review of its Botany, Ethnobotanical Uses, Phytochemistry, Biological Activities, and Biotechnological Studies. PLANTS (BASEL, SWITZERLAND) 2020; 9:E298. [PMID: 32121532 PMCID: PMC7154893 DOI: 10.3390/plants9030298] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Isatis tinctoria L. (Brassicaceae), which is commonly known as woad, is a species with an ancient and well-documented history as an indigo dye and medicinal plant. Currently, I. tinctoria is utilized more often as medicinal remedy and also as a cosmetic ingredient. In 2011, I. tinctoria root was accepted in the official European phytotherapy by introducing its monograph in the European Pharmacopoeia. The biological properties of raw material have been known from Traditional Chinese Medicine (TCM). Over recent decades, I. tinctoria has been investigated both from a phytochemical and a biological point of view. The modern in vitro and in vivo scientific studies proved anti-inflammatory, anti-tumour, antimicrobial, antiviral, analgesic, and antioxidant activities. The phytochemical composition of I. tinctoria has been thoroughly investigated and the plant was proven to contain many valuable biologically active compounds, including several alkaloids, among which tryptanthrin, indirubin, indolinone, phenolic compounds, and polysaccharides as well as glucosinolates, carotenoids, volatile constituents, and fatty acids. This article provides a general botanical and ethnobotanical overview that summarizes the up-to-date knowledge on the phytochemistry and biological properties of this valuable plant in order to support its therapeutic potential. Moreover, the biotechnological studies on I. tinctoria, which mainly focused on hairy root cultures for the enhanced production of flavonoids and alkaloids as well as on the establishment of shoot cultures and micropropagation protocols, were reviewed. They provide input for future research prospects.
Collapse
Affiliation(s)
- Jasmine Speranza
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy;
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy;
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy;
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy;
| | - Salvatore Ragusa
- Department of Health Sciences, University ‘Magna Graecia’ of Catanzaro, V. Europa, IT-88100 Catanzaro, Italy;
| | - Inga Kwiecień
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (I.K.); (A.S.); (H.E.)
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (I.K.); (A.S.); (H.E.)
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (I.K.); (A.S.); (H.E.)
| |
Collapse
|