1
|
Lu Q, Liu Z, He W, Chu X. Retracted article: Protective effects of ulinastatin on rats with acute lung injury induced by lipopolysaccharide. Bioengineered 2024; 15:1987083. [PMID: 34637694 PMCID: PMC10813561 DOI: 10.1080/21655979.2021.1987083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022] Open
Abstract
Qitong Lu, Zhiyong Liu, Wei He and Xin Chu. Protective effects of ulinastatin on rats with acute lung injury induced by lipopolysaccharide. Bioengineered. 2021 Oct. doi: 10.1080/21655979.2021.1987083.Since publication, significant concerns have been raised about the compliance with ethical policies for human research and the integrity of the data reported in the article.When approached for an explanation, the authors provided some original data but were not able to provide all the necessary supporting information. As verifying the validity of published work is core to the scholarly record's integrity, we are retracting the article. All authors listed in this publication have been informed.We have been informed in our decision-making by our editorial policies and the COPE guidelines. The retracted article will remain online to maintain the scholarly record, but it will be digitally watermarked on each page as 'Retracted.'
Collapse
Affiliation(s)
- Qitong Lu
- Department of Cardiothoracic Surgery, Zhongda Hospital, Southeast University, Nanjing, P. R. China
| | - Zhiyong Liu
- Department of Cardiothoracic Surgery, Zhongda Hospital, Southeast University, Nanjing, P. R. China
| | - Wei He
- Department of Cardiothoracic Surgery, Zhongda Hospital, Southeast University, Nanjing, P. R. China
| | - Xin Chu
- Department of Cardiothoracic Surgery, Zhongda Hospital, Southeast University, Nanjing, P. R. China
| |
Collapse
|
2
|
Uzunlulu G, Uzunlulu M, Gencer A, Özdoğru F, Seven S. Knowledge on Medical Waste Management Among Health Care Personnel: A Report from Turkey. CYPRUS JOURNAL OF MEDICAL SCIENCES 2022. [DOI: 10.4274/cjms.2020.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Tao Q, Zhang ZD, Qin Z, Liu XW, Li SH, Bai LX, Ge WB, Li JY, Yang YJ. Aspirin eugenol ester alleviates lipopolysaccharide-induced acute lung injury in rats while stabilizing serum metabolites levels. Front Immunol 2022; 13:939106. [PMID: 35967416 PMCID: PMC9372404 DOI: 10.3389/fimmu.2022.939106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aspirin eugenol ester (AEE) was a novel drug compound with aspirin and eugenol esterified. AEE had various pharmacological activities, such as anti-inflammatory, antipyretic, analgesic, anti-oxidative stress and so on. In this study, it was aimed to investigate the effect of AEE on the acute lung injury (ALI) induced by lipopolysaccharide (LPS) in rats. In vitro experiments evaluated the protective effect of AEE on the LPS-induced A549 cells. The tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were measured in the cell supernatant. The Wistar rats were randomly divided into five groups (n = 8): control group, model group (LPS group), LPS + AEE group (AEE, 54 mg·kg-1), LPS + AEE group (AEE, 108 mg·kg-1), LPS + AEE group (AEE, 216 mg·kg-1). The lung wet-to-dry weight (W/D) ratio and immune organ index were calculated. WBCs were counted in bronchoalveolar lavage fluid (BALF) and total protein concentration was measured. Hematoxylin-Eosin (HE) staining of lung tissue was performed. Glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), antioxidant superoxide dismutase (SOD), total antioxidant capacity (T-AOC), lactate dehydrogenase (LDH), C-reactive protein (CRP), myeloperoxidase (MPO), malondialdehyde (MDA), macrophage mobility inhibitory factor (MIF), TNF-α, IL-6, and IL-1β activity were measured. The metabolomic analysis of rat serum was performed by UPLC-QTOF-MS/MS. From the results, compared with LPS group, AEE improved histopathological changes, reduced MDA, CRP, MPO, MDA, and MIF production, decreased WBC count and total protein content in BALF, pro-inflammatory cytokine levels, immune organ index and lung wet-dry weight (W/D), increased antioxidant enzyme activity, in a dose-dependent manner. The results of serum metabolomic analysis showed that the LPS-induced ALI caused metabolic disorders and oxidative stress in rats, while AEE could ameliorate it to some extent. Therefore, AEE could alleviate LPS-induced ALI in rats by regulating abnormal inflammatory responses, slowing down oxidative stress, and modulating energy metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
4
|
Aboushanab SA, El-Far AH, Narala VR, Ragab RF, Kovaleva EG. Potential therapeutic interventions of plant-derived isoflavones against acute lung injury. Int Immunopharmacol 2021; 101:108204. [PMID: 34619497 DOI: 10.1016/j.intimp.2021.108204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that possibly leads to high morbidity and mortality as no therapy exists. Several natural ingredients with negligible adverse effects have recently been investigated to possibly inhibit the inflammatory pathways associated with ALI at the molecular level. Isoflavones, as phytoestrogenic compounds, are naturally occurring bioactive compounds that represent the most abundant category of plant polyphenols (Leguminosae family). A broad range of therapeutic activities of isoflavones, including antioxidants, chemopreventive, anti-inflammatory, antiallergic and antibacterial potentials, have been extensively documented in the literature. Our review exclusively focuses on the possible anti-inflammatory, antioxidant role of botanicals'-derived isoflavones against ALI and their immunomodulatory effect in experimentally induced ALI. Despite the limited scope covering their molecular mechanisms, isoflavones substantially contributed to protecting from ALI via inhibiting toll-like receptor 4 (TLR4)/Myd88/NF-κB pathway and subsequent cytokines, chemokines, and adherent proteins. Nonetheless, future research is suggested to fill the gap in elucidating the protective roles of isoflavones to alleviate ALI concerning antioxidant potentials, inhibition of the inflammatory pathways, and associated molecular mechanisms.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; Scientific Chair of Yousef Abdullatif Jameel of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | - Rokia F Ragab
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| |
Collapse
|
5
|
Wang M, Zhong H, Zhang X, Huang X, Wang J, Li Z, Chen M, Xiao Z. EGCG promotes PRKCA expression to alleviate LPS-induced acute lung injury and inflammatory response. Sci Rep 2021; 11:11014. [PMID: 34040072 PMCID: PMC8154949 DOI: 10.1038/s41598-021-90398-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury (ALI), which could be induced by multiple factors such as lipopolysaccharide (LPS), refer to clinical symptoms of acute respiratory failure, commonly with high morbidity and mortality. Reportedly, active ingredients from green tea have anti-inflammatory and anticancer properties, including epigallocatechin-3-gallate (EGCG). In the present study, protein kinase C alpha (PRKCA) is involved in EGCG protection against LPS-induced inflammation and ALI. EGCG treatment attenuated LPS-stimulated ALI in mice as manifested as improved lung injury scores, decreased total cell amounts, neutrophil amounts and macrophage amounts, inhibited the activity of MPO, decreased wet-to-dry weight ratio of lung tissues, and inhibited release of inflammatory cytokines TNF-α, IL-1β, and IL-6. PRKCA mRNA and protein expression showed to be dramatically decreased by LPS treatment while reversed by EGCG treatment. Within LPS-stimulated ALI mice, PRKCA silencing further aggravated, while PRKCA overexpression attenuated LPS-stimulated inflammation and ALI through MAPK signaling pathway. PRKCA silencing attenuated EGCG protection. Within LPS-induced RAW 264.7 macrophages, EGCG could induce PRKCA expression. Single EGCG treatment or Lv-PRKCA infection attenuated LPS-induced increases in inflammatory factors; PRKCA silencing could reverse the suppressive effects of EGCG upon LPS-stimulated inflammatory factor release. In conclusion, EGCG pretreatment inhibits LPS-induced ALI in mice. The protective mechanism might be associated with the inhibitory effects of PRKCA on proinflammatory cytokine release via macrophages and MAPK signaling pathway.
Collapse
Affiliation(s)
- Mian Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya RD 110, Changsha, 410078, China
- Department of Epidemiology and Health Statistics, School of Public Health, University of South China, Hengyang, 421001, China
| | - Hua Zhong
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xian Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya RD 110, Changsha, 410078, China
| | - Xin Huang
- Department of Epidemiology and Health Statistics, Hunan Normal University, Changsha, 410006, China
| | - Jing Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya RD 110, Changsha, 410078, China
| | - Zihao Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya RD 110, Changsha, 410078, China
| | - Mengshi Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya RD 110, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, 410078, China.
| | - Zhenghui Xiao
- Hunan Provincial Key Laboratory of Pediatric Emergency, Hunan Children's Hospital, Changsha, 410006, China
| |
Collapse
|
6
|
Jiang Y, Xia M, Xu J, Huang Q, Dai Z, Zhang X. Dexmedetomidine alleviates pulmonary edema through the epithelial sodium channel (ENaC) via the PI3K/Akt/Nedd4-2 pathway in LPS-induced acute lung injury. Immunol Res 2021; 69:162-175. [PMID: 33641076 PMCID: PMC8106593 DOI: 10.1007/s12026-021-09176-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/10/2021] [Indexed: 01/11/2023]
Abstract
Dexmedetomidine (Dex), a highly selective α2-adrenergic receptor (α2AR) agonist, has an anti-inflammatory property and can alleviate pulmonary edema in lipopolysaccharide (LPS)-induced acute lung injury (ALI), but the mechanism is still unclear. In this study, we attempted to investigate the effect of Dex on alveolar epithelial sodium channel (ENaC) in the modulation of alveolar fluid clearance (AFC) and the underlying mechanism. Lipopolysaccharide (LPS) was used to induce acute lung injury (ALI) in rats and alveolar epithelial cell injury in A549 cells. In vivo, Dex markedly reduced pulmonary edema induced by LPS through promoting AFC, prevented LPS-induced downregulation of α-, β-, and γ-ENaC expression, attenuated inflammatory cell infiltration in lung tissue, reduced the concentrations of TNF-α, IL-1β, and IL-6, and increased concentrations of IL-10 in bronchoalveolar lavage fluid (BALF). In A549 cells stimulated with LPS, Dex attenuated LPS-mediated cell injury and the downregulation of α-, β-, and γ-ENaC expression. However, all of these effects were blocked by the PI3K inhibitor LY294002, suggesting that the protective role of Dex is PI3K-dependent. Additionally, Dex increased the expression of phosphorylated Akt and reduced the expression of Nedd4-2, while LY294002 reversed the effect of Dex in vivo and in vitro. Furthermore, insulin-like growth factor (IGF)-1, a PI3K agonists, promoted the expression of phosphorylated Akt and reduced the expression of Nedd4-2 in LPS-stimulated A549 cells, indicating that Dex worked through PI3K, and Akt and Nedd4-2 are downstream of PI3K. In conclusion, Dex alleviates pulmonary edema by suppressing inflammatory response in LPS-induced ALI, and the mechanism is partly related to the upregulation of ENaC expression via the PI3K/Akt/Nedd4-2 signaling pathway.
Collapse
Affiliation(s)
- Yuanxu Jiang
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The Fist Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Shenzhen Anesthesiology Engineering Center, Shenzhen, 518020, China
| | - Mingzhu Xia
- Hubei Community Health Service Center, Luohu Hospital Group, Luohu People's Hospital, Shenzhen, 518020, China
| | - Jing Xu
- Department of Pathology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The Fist Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Qiang Huang
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The Fist Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Shenzhen Anesthesiology Engineering Center, Shenzhen, 518020, China
| | - Zhongliang Dai
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The Fist Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
- Shenzhen Anesthesiology Engineering Center, Shenzhen, 518020, China.
| | - Xueping Zhang
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The Fist Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
- Shenzhen Anesthesiology Engineering Center, Shenzhen, 518020, China.
| |
Collapse
|
7
|
Monocyte chemotactic protein-inducing protein 1 negatively regulating asthmatic airway inflammation and mucus hypersecretion involving γ-aminobutyric acid type A receptor signaling pathway in vivo and in vitro. Chin Med J (Engl) 2020; 134:88-97. [PMID: 33009026 PMCID: PMC7862809 DOI: 10.1097/cm9.0000000000001154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mounting evidence, consistent with our previous study, showed that γ-aminobutyric acid type A receptor (GABAAR) played an indispensable role in airway inflammation and mucus hypersecretion in asthma. Monocyte chemotactic protein-inducing protein 1 (MCPIP1) was a key negative regulator of inflammation. Recent studies showed that inflammation was largely suppressed by enhanced MCPIP1 expression in many inflammatory diseases. However, the role and potential mechanism of MCPIP1 in airway inflammation and mucus hypersecretion in asthma were still not well studied. This study was to explore the role of MCPIP1 in asthmatic airway inflammation and mucus hypersecretion in both mice and BEAS-2B cells, and its potential mechanism. METHODS In vivo, mice were sensitized and challenged by ovalbumin (OVA) to induce asthma. Airway inflammation and mucus secretion were analyzed. In vitro, BEAS-2B cells were chosen. Interleukin (IL)-13 was used to stimulate inflammation and mucus hypersecretion in cells. MCPIP1 Lentiviral vector (LA-MCPIP1) and plasmid-MCPIP1 were used to up-regulate MCPIP1 in lung and cells, respectively. MCP-1, thymic stromal lymphopoietin (TSLP), mucin 5AC (MUC5AC), MCPIP1, and GABAARβ2 expressions were measured in both lung and BEAS-2B cells. Immunofluorescence staining was performed to observe the expression of GABAARβ2 in cells. RESULTS MCPIP1 was up-regulated by LA-MCPIP1 (P < 0.001) and plasmid-MCPIP1 (P < 0.001) in lung and cells, respectively. OVA-induced airway inflammation and mucus hypersecretion, OVA-enhanced MCP-1, TSLP, MUC5AC, and GABAARβ2 expressions, and OVA-reduced MCPIP1 were significantly blunted by LA-MCPIP1 in mice (all P < 0.001). IL-13-enhanced MCP-1, TSLP, MUC5AC, and GABAARβ2 expressions, and IL-13-reduced MCPIP1 were markedly abrogated by plasmid-MCPIP1 in BEAS-2B cells (all P < 0.001). CONCLUSION The results of this study suggested that OVA and IL-13-induced airway inflammation and mucus hypersecretion were negatively regulated by MCPIP1 in both lung and BEAS-2B cells, involving GABAAR signaling pathway.
Collapse
|
8
|
An increase in alveolar fluid clearance induced by hyperinsulinemia in obese rats with LPS-induced acute lung injury. Respir Physiol Neurobiol 2020; 279:103470. [PMID: 32474115 DOI: 10.1016/j.resp.2020.103470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 01/11/2023]
Abstract
A lower mortality rate is observed in obese patients with acute lung injury (ALI), which is referred to as the obesity paradox, in several studies and recent meta-analyses. Hyperinsulinemia is characterized as the primary effect of obesity, and exogenous insulin attenuates LPS-induced pulmonary edema. The detailed mechanism responsible for the effect of hyperinsulinemia on pulmonary edema and alveolar filling needs to be elucidated. SD rats were fed with a high-fat diet (HFD) for a total of 14 weeks. SD rats were anesthetized and intraperitoneally injected with 10 mg/kg lipopolysaccharide (LPS), while control rats received only saline vehicle. Insulin receptor antagonist S961 (20 nmol/kg) was given by the tail vein and serum, and glucocorticoid-induced protein kinase-1 (SGK-1) inhibitor EMD638683 (20 mg/kg) was administrated intragastrically prior to LPS exposure. The lungs were isolated for the measurement of alveolar fluid clearance. The protein expression of epithelial sodium channel (ENaC) was detected by Western blot. Insulin level in serum was significantly higher in HFD rats compared with normal diet rats in the presence or absence of LPS pretreatment. Hyperinsulinemia induced by high fat feeding increased alveolar fluid clearance and the abundance of α-ENaC, β-ENaC, and γ-ENaC in both normal rats and ALI rats. Moreover, these effects were reversed in response to S961. EMD638683 prevented the simulation of alveolar fluid clearance and protein expression of ENaC in HFD rats with ALI. These findings suggest that hyperinsulinemia induced by obesity results in the stimulation of alveolar fluid clearance via the upregulation of the abundance of ENaC in clinical acute lung injury, whereas theses effects are prevented by an SGK-1 inhibitor.
Collapse
|
9
|
Curcumin Attenuates Asthmatic Airway Inflammation and Mucus Hypersecretion Involving a PPAR γ-Dependent NF- κB Signaling Pathway In Vivo and In Vitro. Mediators Inflamm 2019; 2019:4927430. [PMID: 31073274 PMCID: PMC6470457 DOI: 10.1155/2019/4927430] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
Asthma is characterized by airway inflammation and mucus hypersecretion. Curcumin possessed a potent anti-inflammatory property involved in the PPARγ-dependent NF-κB signaling pathway. Then, the aim of the current study was to explore the value of curcumin in asthmatic airway inflammation and mucus secretion and its underlying mechanism. In vivo, mice were sensitized and challenged by ovalbumin (OVA) to induce chronic asthma. Airway inflammation and mucus secretion were analyzed. In vitro, BEAS-2B cells were obtained. MCP-1, MUC5AC, and PPARγ expression and the phosphorylation of NF-κB p65 and NF-κB p65 DNA-binding activity were measured in both the lungs and BEAS-2B cells. shRNA-PPARγ was used to knock down PPARγ expression. We found that OVA-induced airway inflammation and mucus hypersecretion in mice, OVA and IL-4-induced upregulation of MCP-1 and MUC5AC, suppression of PPARγ, and activation and translocation of NF-κB p65 were notably improved by curcumin both in vivo and in vitro. Our data also showed that these effects of curcumin were significantly abrogated by shRNA-PPARγ. Taken together, our results indicate that curcumin attenuated OVA-induced airway inflammation and mucus hypersecretion in mice and suppressed OVA- and IL-4-induced upregulation of MCP-1 and MUC5AC both in vivo and in vitro, most likely through a PPARγ-dependent NF-κB signaling pathway.
Collapse
|
10
|
Deng W, Li CY, Tong J, He J, Zhao Y, Wang DX. Insulin ameliorates pulmonary edema through the upregulation of epithelial sodium channel via the PI3K/SGK1 pathway in mice with lipopolysaccharide‑induced lung injury. Mol Med Rep 2019; 19:1665-1677. [PMID: 30628684 PMCID: PMC6390057 DOI: 10.3892/mmr.2019.9809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
Epithelial sodium channel (ENaC) provides the driving force for the removal of edema from the alveolar spaces in acute lung injury (ALI). Our previous study reported that insulin increased the expression of α‑ENaC, possibly via the serum/glucocorticoid‑inducible kinase‑1 (SGK1) pathway in ALI; however, the upstream regulator of SGK1 activity remains unclear. In the current study, C3H/HeN mice were subjected to lipopolysaccharide (LPS)‑induced lung injury without hyperglycemia. Exogenous insulin was administered intravenously using a micro‑osmotic pump, and intratracheal delivery of SGK1 small interfering RNA (siRNA) was performed. Furthermore, alveolar epithelial type II cells transfected with phosphatidylinositol 3‑kinase (PI3K) siRNA or SGK1 siRNA were incubated with insulin. Insulin protected the pulmonary epithelial barrier, reduced the apoptosis of alveolar epithelial cells, attenuated pulmonary edema, improved alveolar fluid clearance, and increased the expression levels of α‑, β‑ and γ‑ENaC in mice. In addition, in alveolar epithelial cells, insulin increased the expression levels of α‑, β‑ and γ‑ENaC, as well as the level of phosphorylated SGK1, which were then inhibited by the selective targeting of PI3K or SGK1 by siRNA. Taken together, the results of the present study demonstrated that insulin protected the lung epithelium and attenuated pulmonary edema through the upregulation of ENaC via the PI3K/SGK1 pathway in LPS‑induced lung injury.
Collapse
Affiliation(s)
- Wang Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Chang-Yi Li
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jin Tong
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jing He
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yan Zhao
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Dao-Xin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
11
|
GLP-1 Analogue Liraglutide Enhances SP-A Expression in LPS-Induced Acute Lung Injury through the TTF-1 Signaling Pathway. Mediators Inflamm 2018; 2018:3601454. [PMID: 29950925 PMCID: PMC5987313 DOI: 10.1155/2018/3601454] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/01/2018] [Accepted: 03/28/2018] [Indexed: 02/05/2023] Open
Abstract
The reduction of pulmonary surfactant (PS) is essential for decreased pulmonary compliance and edema in acute lung injury (ALI). Thyroid transcription factor-1 (TTF-1) plays a major role in the regulation of surfactant protein-A (SP-A), the most abundant protein component of PS. Simultaneously, the glucagon-like peptide-1 (GLP-1) analogue can enhance SP-A expression in the lung. However, the underlying mechanism is still unknown. The purpose of this study was to explore whether liraglutide, a GLP-1 analogue, upregulates SP-A expression through the TTF-1 signaling pathway in ALI. In vivo, a murine model of ALI was induced by lipopolysaccharide (LPS). Pulmonary inflammation, edema, insulin level, ultrastructural changes in type II alveolar epithelial (ATII) cells, and SP-A and TTF-1 expression were analyzed. In vitro, rat ATII cells were obtained. SP-A and TTF-1 expression in cells was measured. ShRNA-TTF-1 transfection was performed to knock down TTF-1 expression. Our data showed that LPS-induced lung injury and increase in insulin level, and LPS-induced reduction of SP-A and TTF-1 expression in both the lung and cells, were significantly compromised by liraglutide. Furthermore, we also found that these effects of liraglutide were markedly blunted by shRNA-TTF-1. Taken together, our findings suggest that liraglutide enhances SP-A expression in ATII cells and attenuates pulmonary inflammation in LPS-induced ALI, most likely through the TTF-1 signaling pathway.
Collapse
|
12
|
Jin B, Jin H. Oxymatrine attenuates lipopolysaccharide-induced acute lung injury by activating the epithelial sodium channel and suppressing the JNK signaling pathway. Exp Anim 2018. [PMID: 29526865 PMCID: PMC6083027 DOI: 10.1538/expanim.17-0121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The epithelial sodium channel (ENaC) and mitogen-activated protein kinase (MAPK) pathway have been reported to be associated with the progression of acute lung injury (ALI). Oxymatrine (OMT) alone or combined with other drugs can ameliorate paraquat- or oleic acid-induced lung injury. However, the effect of OMT on lipopolysaccharide (LPS)-induced ALI remains unknown. The aim of the present study was to evaluate whether OMT can attenuate LPS-induced ALI through regulation of the ENaC and MAPK pathway using an ALI mouse model. Histological assessment of the lung and inflammatory cell counts in bronchoalveolar lavage fluid (BALF) were performed by H&E and Wright-Giemsa staining. The lung wet/dry (W/D) weight ratio and the levels of tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), ENaC subunits, and the MAPK pathway members were determined. Isolated type II rat alveolar epithelial cells were incubated with OMT 30 min before LPS stimulation to investigate the activation of ENaC and the MAPK pathway. The results showed that OMT remarkably alleviated histopathologic changes in lung and pulmonary edema, reduced inflammatory cell counts in BALF, and decreased TNF-α and CRP levels in a dose-dependent manner. OMT significantly increased the three subunits of ENaC proteins in vivo and in vitro, while it decreased p-ERK/ERK, p-p38/p38, and p-JNK/JNK ratios in vivo. However, only the JNK pathway was markedly inhibited in vitro following pretreatment with OMT. Collectively, the results suggested that OMT might alleviate LPS-induced ALI by elevating ENaC proteins and inhibiting the JNK signaling pathway.
Collapse
Affiliation(s)
- Bingji Jin
- Department of Pathogen Biology, China Medical University, 77 Puhe Road, Shenyang, Liaoning 110013, P.R. China.,Department of Cardiothoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, Liaoning 121001, P.R. China
| | - Hong Jin
- Department of Pathogen Biology, China Medical University, 77 Puhe Road, Shenyang, Liaoning 110013, P.R. China
| |
Collapse
|
13
|
Lou Y, Hu M, Wang Q, Yuan M, Wang N, Le F, Li L, Huang S, Wang L, Xu X, Jin F. Estradiol Suppresses TLR4-triggered Apoptosis of Decidual Stromal Cells and Drives an Anti-inflammatory T H2 Shift by Activating SGK1. Int J Biol Sci 2017; 13:434-448. [PMID: 28529452 PMCID: PMC5436564 DOI: 10.7150/ijbs.18278] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/28/2017] [Indexed: 12/27/2022] Open
Abstract
A pro-inflammatory cytokine profile at the feto-maternal interface may predispose immune maladaptation notably in early miscarriages. We investigated the involvement of estradiol (E2)-activated serum-glucocorticoid regulated kinase 1 (SGK1) in preserving the tolerogenic and pro-survival intrauterine microenvironment beneficial to gestation maintenance. Decidual SGK1 was down-regulated in early miscarriage, consistent with the lower serum E2 concentration seen in pregnancy loss. Lipopolysaccharide (LPS)/Toll-like receptors 4 (TLR4) signaling induced apoptosis and the pro-inflammatory T helper type (TH) 1 response of decidual stromal cells (DSCs) were associated with miscarriage. SGK1 activation was suppressed by LPS/TLR4 signaling and would be rescued by E2 administration via the PI3K signaling pathway in DSCs. SGK1 activation attenuated TLR4-mediated cell apoptosis, while promoting cell viability of DSCs by up-regulating the pro-survival genes BCL2 and XIAP, and enhancing the phosphorylation of FOXO1. Furthermore, E2-induced SGK1 activation reduced the secretion of pro-inflammatory TH1 cytokines, and promoted the generation of TH2 cytokines and elevated IRF4 mRNA and protein levels in LPS-incubated DSCs. Pharmacologic inhibition of SGK1 or suppression by small interfering (si) RNA increased the phosphorylation and nuclear translocation of NF-κB to reverse the pro-TH2 and anti-inflammatory effects of E2 pretreatment, leading to compromised pregnancy. These findings suggest that the E2-mediated SGK1 activation suppressed LPS-mediated apoptosis and promoted the anti-inflammatory TH2 responses in DSCs, ultimately contributing to a successful pregnancy.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, 310007, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qijing Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Mu Yuan
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Ning Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Fang Le
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Lejun Li
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shisi Huang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xiangrong Xu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
14
|
Mansley MK, Watt GB, Francis SL, Walker DJ, Land SC, Bailey MA, Wilson SM. Dexamethasone and insulin activate serum and glucocorticoid-inducible kinase 1 (SGK1) via different molecular mechanisms in cortical collecting duct cells. Physiol Rep 2016; 4:4/10/e12792. [PMID: 27225626 PMCID: PMC4886164 DOI: 10.14814/phy2.12792] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 01/12/2023] Open
Abstract
Serum and glucocorticoid-inducible kinase 1 (SGK1) is a protein kinase that contributes to the hormonal control of renal Na(+) retention by regulating the abundance of epithelial Na(+) channels (ENaC) at the apical surface of the principal cells of the cortical collecting duct (CCD). Although glucocorticoids and insulin stimulate Na(+) transport by activating SGK1, the responses follow different time courses suggesting that these hormones act by different mechanisms. We therefore explored the signaling pathways that allow dexamethasone and insulin to stimulate Na(+) transport in mouse CCD cells (mpkCCDcl4). Dexamethasone evoked a progressive augmentation of electrogenic Na(+) transport that became apparent after ~45 min latency and was associated with increases in SGK1 activity and abundance and with increased expression of SGK1 mRNA Although the catalytic activity of SGK1 is maintained by phosphatidylinositol-OH-3-kinase (PI3K), dexamethasone had no effect upon PI3K activity. Insulin also stimulated Na(+) transport but this response occurred with no discernible latency. Moreover, although insulin also activated SGK1, it had no effect upon SGK1 protein or mRNA abundance. Insulin did, however, evoke a clear increase in cellular PI3K activity. Our data are consistent with earlier work, which shows that glucocorticoids regulate Na(+) retention by inducing sgk1 gene expression, and also establish that this occurs independently of increased PI3K activity. Insulin, on the other hand, stimulates Na(+) transport via a mechanism independent of sgk1 gene expression that involves PI3K activation. Although both hormones act via SGK1, our data show that they activate this kinase by distinct physiological mechanisms.
Collapse
Affiliation(s)
- Morag K Mansley
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, UK
| | - Gordon B Watt
- Medical Research Institute, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Sarah L Francis
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, UK
| | - David J Walker
- Medical Research Institute, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Stephen C Land
- Medical Research Institute, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Matthew A Bailey
- The British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Stuart M Wilson
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, UK
| |
Collapse
|
15
|
Lou Y, Zhang F, Luo Y, Wang L, Huang S, Jin F. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis. Int J Mol Sci 2016; 17:ijms17081307. [PMID: 27517916 PMCID: PMC5000704 DOI: 10.3390/ijms17081307] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China.
| | - Fan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Shisi Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Key Laboratory of Reproductive Genetics, National Ministry of Education (Zhejiang University), Women's Reproductive Healthy Laboratory of Zhejiang Province, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
16
|
Cheng Z, Li L. Ginsenoside Rg3 ameliorates lipopolysaccharide-induced acute lung injury in mice through inactivating the nuclear factor-κB (NF-κB) signaling pathway. Int Immunopharmacol 2016; 34:53-59. [DOI: 10.1016/j.intimp.2016.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 01/06/2023]
|
17
|
Glucagon Like Peptide-1 (GLP-1) Modulates OVA-Induced Airway Inflammation and Mucus Secretion Involving a Protein Kinase A (PKA)-Dependent Nuclear Factor-κB (NF-κB) Signaling Pathway in Mice. Int J Mol Sci 2015; 16:20195-211. [PMID: 26343632 PMCID: PMC4613197 DOI: 10.3390/ijms160920195] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 07/23/2015] [Accepted: 08/16/2015] [Indexed: 02/05/2023] Open
Abstract
Asthma is a common chronic pulmonary inflammatory disease, featured with mucus hyper-secretion in the airway. Recent studies found that glucagon like peptide-1 (GLP-1) analogs, including liraglutide and exenatide, possessed a potent anti-inflammatory property through a protein kinase A (PKA)-dependent signaling pathway. Therefore, the aim of current study was to investigate the value of GLP-1 analog therapy liraglutide in airway inflammation and mucus secretion in a murine model of ovalbumin (OVA)-induced asthma, and its underlying molecular mechanism. In our study, BALB/c mice were sensitized and challenged by OVA to induce chronic asthma. Pathological alterations, the number of cells and the content of inflammatory mediators in bronchoalveolar lavage fluid (BALF), and mucus secretion were observed and measured. In addition, the mRNA and protein expression of E-selectin and MUC5AC were analyzed by qPCR and Western blotting. Then, the phosphorylation of PKA and nuclear factor-κB (NF-κB) p65 were also measured by Western blotting. Further, NF-κB p65 DNA binding activity was detected by ELISA. OVA-induced airway inflammation, airway mucus hyper-secretion, the up-regulation of E-selectin and MUC5AC were remarkably inhibited by GLP-1 in mice (all p < 0.01). Then, we also found that OVA-reduced phosphorylation of PKA, and OVA-enhanced NF-κB p65 activation and NF-κB p65 DNA binding activity were markedly improved by GLP-1 (all p < 0.01). Furthermore, our data also figured out that these effects of GLP-1 were largely abrogated by the PKA inhibitor H-89 (all p < 0.01). Taken together, our results suggest that OVA-induced asthma were potently ameliorated by GLP-1 possibly through a PKA-dependent inactivation of NF-κB in mice, indicating that GLP-1 analogs may be considered an effective and safe drug for the potential treatment of asthma in the future.
Collapse
|
18
|
Qiu J, Yu L, Zhang X, Wu Q, Wang D, Wang X, Xia C, Feng H. Asiaticoside attenuates lipopolysaccharide-induced acute lung injury via down-regulation of NF-κB signaling pathway. Int Immunopharmacol 2015; 26:181-7. [PMID: 25835778 DOI: 10.1016/j.intimp.2015.03.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/06/2015] [Accepted: 03/18/2015] [Indexed: 11/20/2022]
Abstract
Asiaticoside (AS), a triterpene glycoside isolated from Centella asiatica, has been shown to possess potent anti-inflammatory activity. However, the detailed molecular mechanisms of AS on lipopolysaccharide (LPS)-induced acute lung injury (ALI) model in mice are scanty. The purpose of this study was to evaluate the effect of AS on LPS-induced mouse ALI via down-regulation of NF-κB signaling pathway. We investigated the efficacy of AS on cytokine levels induced by LPS in bronchoalveolar lavage fluid (BALF) and RAW 264.7 cells. The production of cytokine (TNF-α and IL-6) was measured by enzyme-linked immunosorbent assay (ELISA). The lung wet-to-dry weight ratios were measured in LPS-challenged mice, and lung histopathologic changes observed via paraffin section were assessed. To further study the mechanism of AS protective effects on ALI, the activation of NF-κB p65 subunit and the degradation of IκBα were tested by western blot assay. We found that AS treatment at 15, 30 or 45mg/kg dose-dependently attenuated LPS-induced pulmonary inflammation by reducing inflammatory infiltration, histopathological changes, descended cytokine production, and pulmonary edema initiated by LPS. Furthermore, our results suggested that AS suppressed inflammatory responses in LPS-induced ALI through inhibition of the phosphorylation of NF-κB p65 subunit and the degradation of its inhibitor IκBα, and might be a new preventive agent of ALI in the clinical setting.
Collapse
Affiliation(s)
- Jiaming Qiu
- Key Laboratory of Animal Medicine of Heilongjiang Bayi Agricaltural University, Daqing High-tech Industrial Development Zone, Daqing, PR China; Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Lijun Yu
- Institute of Medicinal Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region, 028000, PR China
| | - Xingxing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Qianchao Wu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Di Wang
- Institute of Medicinal Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region, 028000, PR China
| | - Xiuzhi Wang
- Institute of Medicinal Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region, 028000, PR China
| | - Cheng Xia
- Key Laboratory of Animal Medicine of Heilongjiang Bayi Agricaltural University, Daqing High-tech Industrial Development Zone, Daqing, PR China.
| | - Haihua Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China.
| |
Collapse
|
19
|
He J, Qi D, Wang DX, Deng W, Ye Y, Feng LH, Zhu T, Zhao Y, Zhang CR. Insulin upregulates the expression of epithelial sodium channel in vitro and in a mouse model of acute lung injury: Role of mTORC2/SGK1 pathway. Exp Cell Res 2015; 331:164-175. [DOI: 10.1016/j.yexcr.2014.09.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/03/2014] [Accepted: 09/18/2014] [Indexed: 01/04/2023]
|
20
|
Xiao M, Zhu T, Zhang W, Wang T, Shen YC, Wan QF, Wen FQ. Emodin ameliorates LPS-induced acute lung injury, involving the inactivation of NF-κB in mice. Int J Mol Sci 2014; 15:19355-68. [PMID: 25347274 PMCID: PMC4264115 DOI: 10.3390/ijms151119355] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 02/05/2023] Open
Abstract
Acute lung injury (ALI) and its severe manifestation of acute respiratory distress syndrome (ARDS) are well-known illnesses. Uncontrolled and self-amplified pulmonary inflammation lies at the center of the pathology of this disease. Emodin, the bio-active coxund of herb Radix rhizoma Rhei, shows potent anti-inflammatory properties through inactivation of nuclear factor-κB (NF-κB). The aim of this study was to evaluate the effect of emodin on lipopolysaccharide (LPS)-induced ALI in mice, and its potential bio-mechanism. In our study, BALB/c mice were stimulated with LPS to induce ALI. After 72 h of LPS stimulation, pulmonary pathological changes, lung injury scores, pulmonary edema, myeloperoxidase (MPO) activity, total cells, neutrophils, macrophages, TNF-α, IL-6 and IL-1β in bronchoalveolar lavage fluid (BALF), and MCP-1 and E-selectin expression were notably attenuated by emodin in mice. Meanwhile, our data also revealed that emodin significantly inhibited the LPS-enhanced the phosphorylation of NF-κB p65 and NF-κB p65 DNA binding activity in lung. Our data indicates that emodin potently inhibits LPS-induced pulmonary inflammation, pulmonary edema and MCP-1 and E-selectin expression, and that these effects were very likely mediated by inactivation of NF-κB in mice. These results suggest a therapeutic potential of emodin as an anti-inflammatory agent for ALI/ARDS treatment.
Collapse
Affiliation(s)
- Min Xiao
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Tao Zhu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Wei Zhang
- Respiratory Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Yong-Chun Shen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Qiong-Fang Wan
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Fu-Qiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Thai TL, Yu L, Eaton DC, Duke BJ, Al-Khalili O, Lam HYC, Ma H, Bao HF. Basolateral P2X₄channels stimulate ENaC activity in Xenopus cortical collecting duct A6 cells. Am J Physiol Renal Physiol 2014; 307:F806-13. [PMID: 25100278 DOI: 10.1152/ajprenal.00350.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The polarized nature of epithelial cells allows for different responses to luminal or serosal stimuli. In kidney tubules, ATP is produced luminally in response to changes in luminal flow. Luminal increases in ATP have been previously shown to inhibit the renal epithelial Na⁺ channel (ENaC). On the other hand, ATP is increased basolaterally in renal epithelia in response to aldosterone. We tested the hypothesis that basolateral ATP can stimulate ENaC function through activation of the P2X₄receptor/channel. Using single channel cell-attached patch-clamp techniques, we demonstrated the existence of a basolaterally expressed channel stimulated by the P2X₄agonist 2-methylthio-ATP (meSATP) in Xenopus A6 cells, a renal collecting duct principal cell line. This channel had a similar reversal potential and conductance to that of P2X₄channels. Cell surface biotinylation of the basolateral side of these cells confirmed the basolateral presence of the P2X4 receptor. Basolateral addition of meSATP enhanced the activity of ENaC in single channel patch-clamp experiments, an effect that was absent in cells transfected with a dominant negative P2X₄receptor construct, indicating that activation of P2X₄channels stimulates ENaC activity in these cells. The effect of meSATP on ENaC activity was reduced after chelation of basolateral Ca²⁺ with EGTA or inhibition of phosphatidylinositol 3-kinase with LY-294002. Overall, our results show that ENaC is stimulated by P2X₄receptor activation and that the stimulation is dependent on increases in intracellular Ca²⁺ and phosphatidylinositol 3-kinase activation.
Collapse
Affiliation(s)
- Tiffany L Thai
- Department of Physiology, Emory University, Atlanta, Georgia; and
| | - Ling Yu
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, China
| | - Douglas C Eaton
- Department of Physiology, Emory University, Atlanta, Georgia; and
| | - Billie Jean Duke
- Department of Physiology, Emory University, Atlanta, Georgia; and
| | - Otor Al-Khalili
- Department of Physiology, Emory University, Atlanta, Georgia; and
| | - Ho Yin Colin Lam
- Department of Physiology, Emory University, Atlanta, Georgia; and
| | - Heping Ma
- Department of Physiology, Emory University, Atlanta, Georgia; and
| | - Hui-Fang Bao
- Department of Physiology, Emory University, Atlanta, Georgia; and
| |
Collapse
|
22
|
Zhang RH, Li CH, Wang CL, Xu MJ, Xu T, Wei D, Liu BJ, Wang GH, Tian SF. N-acetyl-l-cystine (NAC) protects against H9N2 swine influenza virus-induced acute lung injury. Int Immunopharmacol 2014; 22:1-8. [PMID: 24968347 PMCID: PMC7106131 DOI: 10.1016/j.intimp.2014.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 12/16/2022]
Abstract
The antioxidant N-acetyl-l-cysteine (NAC) had been shown to inhibit replication of seasonal human influenza A viruses. Here, the effects of NAC on H9N2 swine influenza virus-induced acute lung injury (ALI) were investigated in mice. BALB/c mice were inoculated intranasally with 107 50% tissue culture infective doses (TCID50) of A/swine/HeBei/012/2008/(H9N2) viruses with or without NAC treatments to induce ALI model. The result showed that pulmonary inflammation, pulmonary edema, MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6, IL-1β and CXCL-10 in BALF were attenuated by NAC. Moreover, our data showed that NAC significantly inhibited the levels of TLR4 protein and TLR4 mRNA in the lungs. Pharmacological inhibitors of TLR4 (E5564) exerted similar effects like those determined for NAC in H9N2 swine influenza virus-infected mice. These results suggest that antioxidants like NAC represent a potential additional treatment option that could be considered in the case of an influenza A virus pandemic. NAC protects against H9N2 swine influenza virus-induced acute lung injury (ALI). NAC protects against acute lung injury by inactivation of TLR4. Eritoran (E5564), a TLR4 antagonist, also protects against acute lung injury.
Collapse
Affiliation(s)
- Rui-Hua Zhang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China
| | - Chun-Hong Li
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China
| | - Cun-Lian Wang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China
| | - Ming-Ju Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China
| | - Tong Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China.
| | - Dong Wei
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China
| | - Bao-Jian Liu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China
| | - Guo-Hua Wang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China
| | - Shu-Fei Tian
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China
| |
Collapse
|
23
|
He J, Zhao Y, Deng W, Wang DX. Netrin-1 promotes epithelial sodium channel-mediated alveolar fluid clearance via activation of the adenosine 2B receptor in lipopolysaccharide-induced acute lung injury. Respiration 2014; 87:394-407. [PMID: 24663055 DOI: 10.1159/000358066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The epithelial sodium channel (ENaC) is the driving force for pulmonary edema absorption in acute lung injury (ALI). Netrin-1 is a newly found anti-inflammatory factor that works by activating the adenosine 2B receptor (A2BAR). Meanwhile, activated A2BAR has the potential to enhance ENaC-dependent alveolar fluid clearance (AFC). However, whether netrin-1 can increase ENaC-mediated AFC by activating A2BAR remains unclear. OBJECTIVES To investigate the effect of netrin-1 on AFC in ALI and clarify the pathway via which netrin-1 regulates the expression of ENaC in vivo and in vitro. METHODS An ALI model was established by intratracheal instillation of lipopolysaccharide (LPS; 5 mg/kg) in C57BL/J mice, followed by netrin-1 with or without pretreatment with PSB1115, via the caudal vein. Twenty-four hours later, the lungs were isolated for determination of the bronchoalveolar lavage fluid, the lung wet/dry weight (W/D) ratio, AFC, the expressions of α-, β-, and γ-ENaC, and cyclic adenosine monophosphate (cAMP) levels. LPS-stimulated MLE-12 cells were incubated with netrin-1 with or without preincubation with PSB1115. Twenty-four hours later, the expressions of α-, β-, and γ-ENaC were detected. RESULTS In vivo, netrin-1 expression was significantly decreased during ALI. Substituted netrin-1 significantly dampened the lung injury, decreased the W/D ratio, and enhanced AFC, the expressions of α-, β-, and γ-ENaC, and cAMP levels in ALI, which were abolished by specific A2BAR inhibitor PSB1115. In vitro, netrin-1 increased the expressions of α-, β-, and γ-ENaC, which were prevented by PSB1115. CONCLUSION These results indicate that netrin-1 dampens pulmonary inflammation and increases ENaC-mediated AFC to alleviate pulmonary edema in LPS-induced ALI by enhancing cAMP levels through the activation of A2BAR.
Collapse
Affiliation(s)
- Jing He
- Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | |
Collapse
|
24
|
Zhong W, Cui Y, Yu Q, Xie X, Liu Y, Wei M, Ci X, Peng L. Modulation of LPS-Stimulated Pulmonary Inflammation by Borneol in Murine Acute Lung Injury Model. Inflammation 2014; 37:1148-57. [DOI: 10.1007/s10753-014-9839-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Wu Q, Li R, Soromou LW, Chen N, Yuan X, Sun G, Li B, Feng H. p-Synephrine suppresses lipopolysaccharide-induced acute lung injury by inhibition of the NF-κB signaling pathway. Inflamm Res 2014; 63:429-39. [PMID: 24487736 DOI: 10.1007/s00011-014-0715-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/06/2013] [Accepted: 01/22/2014] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE We investigated whether p-synephrine exerts potent anti-inflammatory effects against acute lung injury (ALI) induced by lipopolysaccharide (LPS) in vivo, and we further investigated the inhibitory mechanism of p-synephrine in LPS-induced ALI. METHODS Lipopolysaccharide (0.5 mg/kg) was instilled intranasally in phosphate-buffered saline to induce acute lung injury, and 6, 24, and 48 h after LPS was given, bronchoalveolar lavage fluid was obtained to measure pro-inflammatory mediator. We also evaluated the effects of p-synephrine on LPS-induced the severity of pulmonary injury. The phosphorylation of nuclear factor-κB (NF-κB) p65 protein was analyzed by Western blotting. RESULTS Our data showed that p-synephrine significantly reduced the amount of inflammatory cells, the lung wet-to-dry weight (W/D) ratio, reactive oxygen species, myeloperoxidase activity and enhanced superoxide dismutase (SOD) in mice with LPS-induced ALI. Tumor necrosis factor α and interleukin (IL)-6 concentrations decreased significantly while the concentration of IL-10 was significantly increased after p-synephrine pretreatment. In addition, p-synephrine suppressed not only the phosphorylation of NF-κB but also the degradation of its inhibitor (IκBα). CONCLUSIONS These results suggested that the inhibition of NF-κB activation and the regulation of SOD are involved in the mechanism of p-synephrine's protection against ALI.
Collapse
Affiliation(s)
- Qianchao Wu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Protective role of andrographolide in bleomycin-induced pulmonary fibrosis in mice. Int J Mol Sci 2013; 14:23581-96. [PMID: 24300094 PMCID: PMC3876064 DOI: 10.3390/ijms141223581] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/01/2013] [Accepted: 11/22/2013] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic devastating disease with poor prognosis. Multiple pathological processes, including inflammation, epithelial mesenchymal transition (EMT), apoptosis, and oxidative stress, are involved in the pathogenesis of IPF. Recent findings suggested that nuclear factor-κB (NF-κB) is constitutively activated in IPF and acts as a central regulator in the pathogenesis of IPF. The aim of our study was to reveal the value of andrographolide on bleomycin-induced inflammation and fibrosis in mice. The indicated dosages of andrographolide were administered in mice with bleomycin-induced pulmonary fibrosis. On day 21, cell counts of total cells, macrophages, neutrophils and lymphocytes, alone with TNF-α in bronchoalveolar lavage fluid (BALF) were measured. HE staining and Masson’s trichrome (MT) staining were used to observe the histological alterations of lungs. The Ashcroft score and hydroxyproline content of lungs were also measured. TGF-β1 and α-SMA mRNA and protein were analyzed. Activation of NF-κB was determined by western blotting and electrophoretic mobility shift assay (EMSA). On day 21 after bleomycin stimulation, andrographolide dose-dependently inhibited the inflammatory cells and TNF-α in BALF. Meanwhile, our data demonstrated that the Ashcroft score and hydroxyproline content of the bleomycin-stimulated lung were reduced by andrographolide administration. Furthermore, andrographloide suppressed TGF-β1 and α-SMA mRNA and protein expression in bleomycin-induced pulmonary fibrosis. Meanwhile, andrographolide significantly dose-dependently inhibited the ratio of phospho-NF-κB p65/total NF-κB p65 and NF-κB p65 DNA binding activities. Our findings indicate that andrographolide compromised bleomycin-induced pulmonary inflammation and fibrosis possibly through inactivation of NF-κB. Andrographolide holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.
Collapse
|
27
|
Cornélio Favarin D, Robison de Oliveira J, Jose Freire de Oliveira C, de Paula Rogerio A. Potential effects of medicinal plants and secondary metabolites on acute lung injury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:576479. [PMID: 24224172 PMCID: PMC3810192 DOI: 10.1155/2013/576479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/16/2013] [Accepted: 08/23/2013] [Indexed: 12/20/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that causes high morbidity and mortality worldwide. ALI is characterized by increased permeability of the alveolar-capillary membrane, edema, uncontrolled neutrophils migration to the lung, and diffuse alveolar damage, leading to acute hypoxemic respiratory failure. Although corticosteroids remain the mainstay of ALI treatment, they cause significant side effects. Agents of natural origin, such as medicinal plants and their secondary metabolites, mainly those with very few side effects, could be excellent alternatives for ALI treatment. Several studies, including our own, have demonstrated that plant extracts and/or secondary metabolites isolated from them reduce most ALI phenotypes in experimental animal models, including neutrophil recruitment to the lung, the production of pro-inflammatory cytokines and chemokines, edema, and vascular permeability. In this review, we summarized these studies and described the anti-inflammatory activity of various plant extracts, such as Ginkgo biloba and Punica granatum, and such secondary metabolites as epigallocatechin-3-gallate and ellagic acid. In addition, we highlight the medical potential of these extracts and plant-derived compounds for treating of ALI.
Collapse
Affiliation(s)
- Daniely Cornélio Favarin
- Departamento de Clínica Médica, Laboratório de ImunoFarmacologia Experimental, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Rua Manoel Carlos 162, 38025-380 Uberaba, MG, Brazil
| | - Jhony Robison de Oliveira
- Departamento de Clínica Médica, Laboratório de ImunoFarmacologia Experimental, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Rua Manoel Carlos 162, 38025-380 Uberaba, MG, Brazil
| | | | - Alexandre de Paula Rogerio
- Departamento de Clínica Médica, Laboratório de ImunoFarmacologia Experimental, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Rua Manoel Carlos 162, 38025-380 Uberaba, MG, Brazil
| |
Collapse
|
28
|
Zhong WT, Jiang LX, Wei JY, Qiao AN, Wei MM, Soromou LW, Xie XX, Zhou X, Ci XX, Wang DC. Protective effect of esculentoside A on lipopolysaccharide-induced acute lung injury in mice. J Surg Res 2013; 185:364-72. [PMID: 23764313 DOI: 10.1016/j.jss.2013.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/25/2013] [Accepted: 05/03/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Esculentoside A (EsA) is a saponin isolated from the Chinese herb Phytolacca esculenta. In our study, we sought to investigate the protective effects of EsA on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. MATERIALS AND METHODS To determine the effects of EsA on the reduction of histopathologic changes in mice with ALI, inflammatory cell count in bronchoalveolar lavage fluid (BALF) and lung wet-to-dry weight ratio were measured in LPS-challenged mice, and lung histopathologic changes observed via paraffin section were assessed. Next, cytokine production induced by LPS in BALF was measured by enzyme-linked immunosorbent assay. To further study the mechanism of EsA protective effects on ALI, IκBa, p38, and extracellular signal receptor-activated kinase pathways were investigated in lung tissue of mice with ALI. RESULTS In the present investigation, EsA showed marked effects by reducing inflammatory infiltration, thickening of the alveolar wall, and pulmonary congestion. Levels of tumor necrosis factor α and interleukin 6 elevated by LPS were significantly decreased in BALF in EsA-pretreated ALI model. Furthermore, EsA significantly suppressed phosphorylation of IκBa, p38, and extracellular signal receptor-activated kinase. CONCLUSIONS Taken together, our results suggest that EsA suppressed inflammatory responses in LPS-induced ALI through inhibition of the nuclear factor kappa B and mitogen activated protein kinase signaling pathways. EsA may be a promising potential preventive agent for ALI treatment.
Collapse
Affiliation(s)
- Wei-ting Zhong
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fan W, Nakazawa K, Abe S, Inoue M, Kitagawa M, Nagahara N, Makita K. Inhaled aerosolized insulin ameliorates hyperglycemia-induced inflammatory responses in the lungs in an experimental model of acute lung injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R83. [PMID: 23622115 PMCID: PMC4057452 DOI: 10.1186/cc12697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/28/2013] [Indexed: 01/04/2023]
Abstract
Introduction Previous studies have shown that patients with diabetes mellitus appear to have a lower prevalence of acute lung injury. We assumed that insulin prescribed to patients with diabetes has an anti-inflammatory property and pulmonary administration of insulin might exert beneficial effects much more than intravenous administration. Methods Twenty-eight mechanically ventilated rabbits underwent lung injury by saline lavage, and then the animals were allocated into a normoglycemia group (NG), a hyperglycemia group (HG), an HG treated with intravenous insulin (HG-VI) group or an HG treated with aerosolized insulin (HG-AI) group with continuous infusion of different fluid solutions and treatments: normal saline, 50% glucose, 50% glucose with intravenous insulin, or 50% glucose with inhaled aerosolized insulin, respectively. After four hours of treatment, the lungs and heart were excised en bloc, and then high-mobility group B1 concentration in bronchoalveolar lavage fluid, interleukin-8 and toll-like receptor 4 mRNA expression in bronchoalveolar lavage fluid cells, and lung myeloperoxidase activity were measured. Results Treatment with both aerosolized insulin and intravenous insulin attenuated toll-like receptor 4 mRNA expressions in the bronchoalveolar lavage fluid cells. Interleukin-8 and toll-like receptor 4 mRNA expression was significantly lower in the HG-AI group than in the HG-IV group. The lung myeloperoxidase activity in the normal healthy group showed significantly lower levels compared to the NG group but not different compared to those of the HG, HG-VI and HG-AI groups. Conclusions The results suggest that insulin attenuates inflammatory responses in the lungs augmented by hyperglycemia in acute lung injury and the insulin's efficacy may be better when administered by aerosol.
Collapse
|
30
|
Lang F, Voelkl J. Therapeutic potential of serum and glucocorticoid inducible kinase inhibition. Expert Opin Investig Drugs 2013; 22:701-14. [PMID: 23506284 DOI: 10.1517/13543784.2013.778971] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Expression of serum-and-glucocorticoid-inducible kinase-1 (SGK1) is low in most cells, but dramatically increases under certain pathophysiological conditions, such as glucocorticoid or mineralocorticoid excess, inflammation with TGFβ release, hyperglycemia, cell shrinkage and ischemia. SGK1 is activated by insulin and growth factors via phosphatidylinositide-3-kinase, 3-phosphoinositide-dependent kinase and mammalian target of rapamycin. SGK1 sensitive functions include activation of ion channels (including epithelial Na(+) channel ENaC, voltage gated Na(+) channel SCN5A transient receptor potential channels TRPV4 - 6, Ca(2+) release activated Ca(2+) channel Orai1/STIM1, renal outer medullary K(+) channel ROMK, voltage gated K(+) channels KCNE1/KCNQ1, kainate receptor GluR6, cystic fibrosis transmembrane regulator CFTR), carriers (including Na(+),Cl(-) symport NCC, Na(+),K(+),2Cl(-) symport NKCC, Na(+)/H(+) exchangers NHE1 and NHE3, Na(+), glucose symport SGLT1, several amino acid transporters), and Na(+)/K(+)-ATPase. SGK1 regulates several enzymes (e.g., glycogen synthase kinase-3, ubiquitin-ligase Nedd4-2) and transcription factors (e.g., forkhead transcription factor 3a, β-catenin, nuclear factor kappa B). AREAS COVERED The phenotype of SGK1 knockout mice is mild and SGK1 is apparently dispensible for basic functions. Excessive SGK1 expression and activity, however, contributes to the pathophysiology of several disorders, including hypertension, obesity, diabetes, thrombosis, stroke, fibrosing disease, infertility and tumor growth. A SGK1 gene variant (prevalence ∼ 3 - 5% in Caucasians and ∼ 10% in Africans) is associated with hypertension, stroke, obesity and type 2 diabetes. SGK1 inhibitors have been developed and shown to reduce blood pressure of hyperinsulinemic mice and to counteract tumor cell survival. EXPERT OPINION Targeting SGK1 may be a therapeutic option in several clinical conditions, including metabolic syndrome and tumor growth.
Collapse
Affiliation(s)
- Florian Lang
- University of Tuebingen, Department of Physiology, Tuebingen, Germany.
| | | |
Collapse
|
31
|
Zhu T, Wang DX, Zhang W, Liao XQ, Guan X, Bo H, Sun JY, Huang NW, He J, Zhang YK, Tong J, Li CY. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-κB. PLoS One 2013; 8:e56407. [PMID: 23437127 PMCID: PMC3578846 DOI: 10.1371/journal.pone.0056407] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 01/08/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Nuclear factor-κB (NF-κB) is a central transcriptional factor and a pleiotropic regulator of many genes involved in acute lung injury. Andrographolide is found in the plant of Andrographis paniculata and widely used in Traditional Chinese Medicine, exhibiting potently anti-inflammatory property by inhibiting NF-κB activity. The purpose of our investigation was designed to reveal the effect of andrographolide on various aspects of LPS induced inflammation in vivo and in vitro. METHODS AND RESULTS In vivo, BALB/C mice were subjected to LPS injection with or without andrographolide treatments to induce ALI model. In vitro, MLE-12 cells were stimulated with LPS in the presence and absence of andrographolide. In vivo, pulmonary inflammation, pulmonary edema, ultrastructure changes of type II alveolar epithelial cells, MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6 and IL-1β in BALF, along with the expression of VCAM-1 and VEGF were dose-dependently attenuated by andrographolide. Meanwhile, in vitro, the expression of VCAM-1 and VEGF was also reduced by andrographolide. Moreover, our data showed that andrographolide significantly inhibited the ratios of phospho-IKKβ/total IKKβ, phospho-IκBα/total IκBα and phospho-NF-κB p65/total NF-κB p65, and NF-κB p65 DNA binding activities, both in vivo and in vitro. CONCLUSIONS These results indicate that andrographolide dose-dependently suppressed the severity of LPS-induced ALI, more likely by virtue of andrographolide-mediated NF-κB inhibition at the level of IKKβ activation. These results suggest andrographolide may be considered as an effective and safe drug for the potential treatment of ALI.
Collapse
Affiliation(s)
- Tao Zhu
- Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dao-xin Wang
- Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhang
- Respiratory Medicine, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiu-qing Liao
- Respiratory Medicine, Chongqing Fuling Central Hospital, Chongqing, China
| | - Xian Guan
- Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Bo
- Nephrology Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-yang Sun
- Respiratory Medicine, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Ni-wen Huang
- Respiratory Medicine, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Jing He
- Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun-kun Zhang
- Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Tong
- Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chang-yi Li
- Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Lang F, Shumilina E. Regulation of ion channels by the serum- and glucocorticoid-inducible kinase SGK1. FASEB J 2012; 27:3-12. [PMID: 23012321 DOI: 10.1096/fj.12-218230] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ubiquitously expressed serum- and glucocorticoid-inducible kinase-1 (SGK1) is genomically regulated by cell stress (including cell shrinkage) and several hormones (including gluco- and mineralocorticoids). SGK1 is activated by insulin and growth factors through PI3K and 3-phosphoinositide-dependent kinase PDK1. SGK1 activates a wide variety of ion channels (e.g., ENaC, SCN5A, TRPV4-6, ROMK, Kv1.3, Kv1.5, Kv4.3, KCNE1/KCNQ1, KCNQ4, ASIC1, GluR6, ClCKa/barttin, ClC2, CFTR, and Orai/STIM), which participate in the regulation of transport, hormone release, neuroexcitability, inflammation, cell proliferation, and apoptosis. SGK1-sensitive ion channels participate in the regulation of renal Na(+) retention and K(+) elimination, blood pressure, gastric acid secretion, cardiac action potential, hemostasis, and neuroexcitability. A common (∼3-5% prevalence in Caucasians and ∼10% in Africans) SGK1 gene variant is associated with increased blood pressure and body weight as well as increased prevalence of type II diabetes and stroke. SGK1 further contributes to the pathophysiology of allergy, peptic ulcer, fibrosing disease, ischemia, tumor growth, and neurodegeneration. The effect of SGK1 on channel activity is modest, and the channels do not require SGK1 for basic function. SGK1-dependent ion channel regulation may thus become pathophysiologically relevant primarily after excessive (pathological) expression. Therefore, SGK1 may be considered an attractive therapeutic target despite its broad range of functions.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tuebingen, Gmelinstrasse 5, 72076 Tuebingen, Germany.
| | | |
Collapse
|