1
|
Tawfik SM, Farag AA, Abd-Elaal AA. Fluorescence Naphthalene Cationic Schiff Base Reusable Paper as a Sensitive and Selective for Heavy Metals Cations Sensor: RSM, Optimization, and DFT Modelling. J Fluoresc 2024; 34:2139-2155. [PMID: 37713015 PMCID: PMC11445315 DOI: 10.1007/s10895-023-03426-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Heavy metals are particularly damaging contaminants in the environment, and even trace concentrations represent a risk to human health due to their toxicity. To detect the heavy metals of Mn2+ and Co2+ ions, a novel selective reusable paper-based Fluorescence naked-eye sensor based on naphthalene cationic Schiff base (NCSB) was synthesized and confirmed using FT-IR, 1 H-NMR, and MS tools. Based on a blue to colorless color change in the aqueous solution, the NCSB sensor is utilized to Mn2+ and Co2+ cations selectively among other metal ions (Fe2+, Cu2+, Mg2+, Ni2+, Zn2+, Cd2+, Hg2+, Pb2+, Sn2+ and Cr3+). In the aqueous medium, the NCSB sensor displayed high sensitivity, with limits of detection (LOD) values of 0.014 µM (14.08 nM) and 0.041 µM (41.47 nM) for Mn2+ and Co2+ cations, respectively. The paper-based sensor naked-eye detected Mn2+ and Co2+ cations in water at concentrations as low as 0.65 µM (65 nM) and 0.086 µM (86 nM), respectively. It was discovered that 5 min of incubation time and a pH range of 7 to 11 were optimal for the complexation reaction between the Mn2+ and Co2+ ions and the NCSB sensor. Through a static quenching process, the interaction of the different metal ions with the Schiff base group in the NCSB molecule results in the development of a ground-state non-fluorescent complex. NCSB sensor was also successfully applied in analysis of Mn2+ and Co2+ in environmental water with good recoveries of 94.8-105.9%. The theoretical calculations based on density functional theory (DFT) studies are in support of experimental interpretations. The links between the input factors and the anticipated response were evaluated using the quadratic model of the response surface methodology (RSM) modeling.
Collapse
Affiliation(s)
- Salah M Tawfik
- Egyptian Petroleum Research Institute, Cairo, 11727, Egypt
| | - Ahmed A Farag
- Egyptian Petroleum Research Institute, Cairo, 11727, Egypt.
| | | |
Collapse
|
2
|
Arshad M, Williams L, Ajayan A, Joseph A. 2-hydroxy-1- Naphthaldehyde Based Colorimetric Probe for the Simultaneous Detection of Bivalent Copper and Nickel with High Sensitivity and Selectivity. J Fluoresc 2024:10.1007/s10895-024-03895-3. [PMID: 39155355 DOI: 10.1007/s10895-024-03895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
A neoteric colorimetric probe based on 2-hydroxy-1-naphthaldehyde (PMB3) was designed and synthesized for the real-time as well as on-site naked-eye detection of Cu2+/Ni2+ ions. Various physicochemical methods were employed to characterize the probe, and its colorimetric response to different metal ions was meticulously investigated. The probe, PMB3, exhibited a sensitive colorimetric response to Cu2+/Ni2+ ions among other competing metal ions, culminating in a prominent colour change from colourless to yellow. The stoichiometry of the ligand metal complexes was ascertained to be in a 1:1 ratio using Job's plot analysis, which was further corroborated by ESI-MS data. With detection limits of 4.56 µM for Cu2+ and 2.68 µM for Ni2+, the method was effectively extended to real sample analysis, ensuring propitious results that closely aligned with the actual values.
Collapse
Affiliation(s)
- Muhammed Arshad
- Department of Chemistry, University of Calicut, Calicut University, P O-673 635, Malappuram, Kerala, India
| | - Linda Williams
- Department of Chemistry, University of Calicut, Calicut University, P O-673 635, Malappuram, Kerala, India
| | - Athira Ajayan
- Department of Chemistry, University of Calicut, Calicut University, P O-673 635, Malappuram, Kerala, India
| | - Abraham Joseph
- Department of Chemistry, University of Calicut, Calicut University, P O-673 635, Malappuram, Kerala, India.
| |
Collapse
|
3
|
Ragavi SP, Thirumalai D, Asharani IV. A Review on Small Organic Colorimetric and Fluorescent Hosts for the Detection of Cobalt and Nickel Ion. J Fluoresc 2024:10.1007/s10895-024-03807-5. [PMID: 38884827 DOI: 10.1007/s10895-024-03807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
In recent years, there has been a notable increase in efforts to advance efficient hosts for detecting cobalt and nickel ions, driven by their extensive industrial applications and environmental significance. This review meticulously examines the progress made in small organic colorimetric and fluorescent hosts tailored specifically for the sensitive and selective detection of cobalt and nickel ions. It delves into a diverse range of molecular architectures, including organic ligands, elucidating their unique attributes such as sensitivity, selectivity, and response time. Moreover, the review precisely explores the underlying principles governing the colorimetric and fluorescent mechanisms employed by these hosts, shedding light on the intricate interactions between the sensing moieties and the target metal ions. Furthermore, it critically evaluates the practical applicability of these hosts, considering crucial factors such as detection limits, recyclability, and compatibility with complex sample matrices. Additionally, exploration extends to potential challenges and prospects in the field, emphasizing the imperative for ongoing innovation to address emerging environmental and analytical demands. Eventually, through this comprehensive examination, the review seeks to contribute to the ongoing endeavor to develop robust and efficient tools for monitoring and detecting cobalt and nickel metal ions in diverse analytical scenarios.
Collapse
Affiliation(s)
- S P Ragavi
- School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - D Thirumalai
- Department of Chemistry, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - I V Asharani
- School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
4
|
Hrichi H, Ali AM, Elkanzi NAA, Abdou A. A selective colorimetric chemosensor for detecting Ni(II) in aqueous solutions based on 4-[{[4-(3-chlorophenyl)-1,3-thiazol-2-yl]hydrazono}methyl]phenyl 4-methyl benzene sulfonate (CTHMBS). ANAL SCI 2024; 40:741-754. [PMID: 38308675 DOI: 10.1007/s44211-024-00511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 02/05/2024]
Abstract
Among the toxic heavy metals, Ni(II) can cause a variety of side effects on human health, such as allergy, cardiovascular and kidney diseases, lung fibrosis, lung, and nasal cancer. It is therefore critical from a public health and environmental perspective to determine and monitor Ni(II) ions in drinking water, foods, and environmental samples. In this study, a novel selective chemosensor (4-[{[4-(3-Chlorophenyl)-1,3-Thiazol-2-yl]Hydrazono}Methyl]phenyl4-methylBenzene Sulfonate (CTHMBS) was developed for the colorimetric detection of Ni(II) in aqueous medium. The presence of Ni(II) led to a distinct naked-eye color change from yellow to reddish-brown in aqueous solution. To examine the binding mechanism of CTHMBS to Ni(II), UV-vis spectroscopy analysis and DFT calculations were conducted. The detection limit of CTHMBS for Ni(II) was 11.87 µM, and the sensing ability of CTHMBS for Ni(II) was successfully carried out in real water samples.
Collapse
Affiliation(s)
- Hajer Hrichi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia.
| | - Ali M Ali
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Nadia A A Elkanzi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
- Chemistry Department, Faculty of Science, Aswan University, P.O. Box 81528, Aswan, Egypt
| | - Aly Abdou
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
5
|
Goswami N, Naithani S, Mangalam J, Goswami T, Dubey R, Kumar P, Kumar P, Kumar S. Fluorescent and chromogenic organic probes to detect group 10 metal ions: design strategies and sensing applications. Dalton Trans 2023; 52:14704-14732. [PMID: 37750386 DOI: 10.1039/d3dt01723k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Group 10 metals including Ni, Pd and Pt have been extensively applied in various essential aspects of human social life, material science, industrial manufactures, medicines and biology. The ionic forms of these metals are involved in several biologically important processes due to their strong binding capability towards different biomolecules. However, the mishandling or overuse of such metals has been linked to serious contamination of our ecological system, more specifically in soil and water bodies with acute consequences. Therefore, the detection of group 10 metal ions in biological as well as environmental samples is of huge significance from the human health point of view. Related to this, considerable efforts are underway to develop adequately efficient and facile methods to achieve their selective detection. Optical sensing of metal ions has gained increasing attention of researchers, particularly in the environmental and biological settings. Innovatively designed optical probes (fluorescent or colorimetric) are usually comprised of three basic components: an explicitly tailored receptor unit, a signalling unit and a clearly defined reporter unit. This review deals with the recent progress in the design and fabrication of fluorescent or colorimetric organic sensors for the detection of group 10 metal ions (Ni(II), Pd(II) and Pt(II)), with attention to the general aspects for design of such sensors.
Collapse
Affiliation(s)
- Nidhi Goswami
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Sudhanshu Naithani
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Jimmy Mangalam
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Tapas Goswami
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Ritesh Dubey
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Pramod Kumar
- Department of Chemistry, Mahamana Malviya College Khekra (Baghpat), C.C.S. University Meerut, India
| | - Pankaj Kumar
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Sushil Kumar
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| |
Collapse
|
6
|
Wang Q, Xu Q, Zhai S, Zhao Q, Liu W, Chen Z, Wang A. Understanding the coordination behavior of antibiotics: Take tetracycline as an example. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132375. [PMID: 37634383 DOI: 10.1016/j.jhazmat.2023.132375] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/23/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Gaining insight into the occurrence states of residual antibiotics is crucial to demystify their environmental behavior. However, the complexation of heteroatoms functioned on antibiotic molecules to metal ions in the water environment is not fully understood. This study reports that a fluorescence response was unexpectedly triggered by tetracycline (TC) and Al3+, serving as solid evidence to visualize the Al3+-TC coordination reaction. Differential electron absorption spectroscopy shows a quantifiable signal of the redshifted n-π* transition with a coordination reaction, which is also proportional to the fluorescence. The occurrence of Al3+-complexed TC also caused a split in retention time in liquid chromatogram. The TC ligands were re-released in the presence of stronger ligands competing for central Al3+. The complex ratio of Al3+-TC is confirmed to be 1:1 using Job's plot with a stability constant of 1.01 × 106. Quantum chemical computations coupled with Gibbs free energy analysis simulated the formation of octahedral Al3+-TC configuration through a spontaneous bidentate chelation. This study helps convey a broad consensus and opens a new door in the mechanistic study of metal-involved antibiotic transformation process, leading to a better understanding that can ultimately be essential to reach the final goal of alleviating the antibiotic crisis.
Collapse
Affiliation(s)
- Qiandi Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qiongying Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Siyuan Zhai
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Qindi Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Wenzong Liu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Aijie Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
7
|
Hooshmand SE, Baeiszadeh B, Mohammadnejad M, Ghasemi R, Darvishi F, Khatibi A, Shiri M, Hussain FHS. Novel probe based on rhodamine B and quinoline as a naked-eye colorimetric probe for dual detection of nickel and hypochlorite ions. Sci Rep 2023; 13:17038. [PMID: 37813911 PMCID: PMC10562415 DOI: 10.1038/s41598-023-44395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2023] Open
Abstract
This work demonstrates the design and straightforward syntheses of several novel probe-based on rhodamine B and 2-mercaptoquinoline-3-carbaldehydes as a naked-eye colorimetric probe, indicating a sensitive and selective recognition towards nickel (II) with a limit of detection 0.30 μmol L-1 (0.02 mg L-1). Further, by employing the oxidation property of hypochlorite (OCl-), this novel probe parallelly has been deployed to detect hypochlorite in laboratory conditions with a limit of detection of 0.19 μmol mL-1 and in living cells. Regarded to negligible cell toxicity toward mammalian cells, this probe has the potential to determine these analytes in in-vivo investigation and foodstuff samples.
Collapse
Affiliation(s)
- Seyyed Emad Hooshmand
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran
| | - Behnaz Baeiszadeh
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran
| | - Masoumeh Mohammadnejad
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran.
| | - Razieh Ghasemi
- Department of Nanotechnology, Jabir Ibn Hayyan Institute, Technical and Vocational Training Organization, Isfahan, Iran
| | - Farshad Darvishi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Morteza Shiri
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran.
| | - Faiq H S Hussain
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University-Erbil, Kurdistan Region, Iraq.
| |
Collapse
|
8
|
Bawa R, Negi S, Singh B, Pani B, Kumar R. A pyridine dicarboxylate based hydrazone Schiff base for reversible colorimetric recognition of Ni 2+ and PPi. RSC Adv 2023; 13:15391-15400. [PMID: 37223408 PMCID: PMC10201394 DOI: 10.1039/d3ra02021e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023] Open
Abstract
A pyridine dicarboxylate Schiff-base DAS was synthesized for cascade colorimetric recognition of Ni2+ and PPi. The selectivity and sensitivity of chemosensor DAS was investigated through colorimetric and UV-vis studies in MeOH-PBS (5 : 1, v/v, pH = 7.4). The chemosensor formed a 2 : 1 complex with Ni2+ metal ions with a binding constant of Ka = 3.07 × 103 M-2. Besides, a plausible sensing mechanism is confirmed by single crystal X-ray diffraction (SC-XRD), Job's plot and Benesi-Hildebrand plot (B-H plot) experiments. Furthermore, the DAS-Ni2+ ensemble formed 'in situ' was used to selectively recognise PPi. The limit of detection (LOD) of DAS for Ni2+ was found to be 0.14 μM and that of the DAS-Ni2+ ensemble for PPi was found to be 0.33 μM. Also, the potential of the chemosensor has been applied for solid state detection of Ni2+ as well as to mimic the 'INHIBIT' logic gate on the addition of Ni2+ ions and PPi.
Collapse
Affiliation(s)
- Rashim Bawa
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Swati Negi
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Bholey Singh
- Department of Chemistry, Swami Shraddhanand College, University of Delhi Delhi 110036 India
| | - Balaram Pani
- Department of Chemistry, Bhaskaracharya College of Applied Sciences, University of Delhi Delhi 110075 India
| | - Rakesh Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| |
Collapse
|
9
|
Christopher Leslee DB, Venkatachalam U, Gunasekaran J, Karuppannan S, Kuppannan SB. Synthesis of a quinoxaline-hydrazinobenzothiazole based probe-single point detection of Cu 2+, Co 2+, Ni 2+ and Hg 2+ ions in real water samples. Org Biomol Chem 2023; 21:4130-4143. [PMID: 37129970 DOI: 10.1039/d3ob00298e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A novel quinoxaline-hydrazinobenzothiazole based sensor was synthesized and characterized using NMR, FTIR, and Mass spectroscopy techniques. The sensor achieves the distinct "single-point" colorimetric and fluorescent detection of Cu2+, Co2+, Ni2+ and Hg2+ ions with distinguishable color changes from yellow to red, pale red, pale brown and orange, respectively. The UV-visible and fluorescence emission spectral investigation revealed the excellent single-point sensing ability of the probe towards four different heavy metal ions with a ratiometric response. Nanomolar levels of detection of about 1.16 × 10-7 M, 9.92 × 10-8 M, 8.21 × 10-8 M, and 1.14 × 10-7 M for Cu2+, Co2+, Ni2+ and Hg2+ ions, respectively, were achieved using our sensor, which are below the US-EPA permissible limits. Additionally, the sensor was utilized for naked eye detection under normal daylight. Quantitative determination of the metal ions in real water samples was also demonstrated.
Collapse
Affiliation(s)
- Denzil Britto Christopher Leslee
- Department of Chemistry, School of Physical Sciences, Periyar University, Periyar Palkalai Nagar, Salem, 636011, Tamil Nadu, India.
| | - Udhayadharshini Venkatachalam
- Department of Chemistry, School of Physical Sciences, Periyar University, Periyar Palkalai Nagar, Salem, 636011, Tamil Nadu, India.
| | - Jayapratha Gunasekaran
- Department of Chemistry, School of Physical Sciences, Periyar University, Periyar Palkalai Nagar, Salem, 636011, Tamil Nadu, India.
| | - Sekar Karuppannan
- Department of Science and Humanities (Chemistry), Anna University - University College of Engineering, Dindigul - 624622, Tamil Nadu, India
| | - Shanmuga Bharathi Kuppannan
- Department of Chemistry, School of Physical Sciences, Periyar University, Periyar Palkalai Nagar, Salem, 636011, Tamil Nadu, India.
| |
Collapse
|
10
|
Amira Solehah Pungut N, Hoe Tan C, Mat Saad H, Shin Sim K, Yin Xing Tiong S, Wei Ang C, Hau Gan C, Voon Kong K, Wai Tan K. A new cinnamaldehyde-rhodamine based dual chemosensor for Cu2+ and Fe3+ and its applicability in live cell imaging. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Nantapon T, Naweephattana P, Surawatanawong P, Saetear P, Chantarojsiri T, Ruangsupapichat N. Amino-coumarin-based colorimetric and fluorescent chemosensors capable of discriminating Co 2+, Ni 2+, and Cu 2+ ions in solution and potential utilization as a paper-based device. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121662. [PMID: 35905612 DOI: 10.1016/j.saa.2022.121662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
New chemosensors, L1-L3, based on the coumarin Schiff base scaffold with substituent modifications, have been designed and synthesized. The chemosensors L1-L3 exhibited the absorbance and fluorescence spectral changes that can discriminate Co2+, Ni2+, and Cu2+ ions. Sensor L1 demonstrated the ability to respond to Co2+, Ni2+, and Cu2+ ions. Remarkably, the slight modification of substituent on L2 has been observed to cause selective binding to Ni2+ and Cu2+ ions while L3 can specifically detect Cu2+ ions. The in-situ formation of metal and ligand complexes was determined by Job's plot analysis. The limit of detection and the sensing ability of all probes are estimated to be within the range of safe drinking water. Incorporation of the sensing compounds into a paper-based detection system using a laminated paper-based analytical device (LPAD) was demonstrated and found to be consistent to those obtained from the batchwise solution measurements.
Collapse
Affiliation(s)
- Thanayada Nantapon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phiphob Naweephattana
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phoonthawee Saetear
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Flow Innovation-Research for Science and Technology Laboratories (Firstlabs), Thailand
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nopporn Ruangsupapichat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
12
|
Zareh MM, Saleem NO, Abd-ElSattar A. A Ni-Sensor Based on Activated Charcoal Plastic Membrane. JOURNAL OF ANALYTICAL CHEMISTRY 2022; 77:1577-1585. [DOI: 10.1134/s1061934822120164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 09/02/2023]
|
13
|
Development of smart cotton fabrics immobilized with anthocyanin and potassium alum for colorimetric detection of bacteria. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Synthesis and recognition behavior studies of indole derivatives. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Kumar A, Virender, Saini M, Mohan B, Shayoraj, Kamboj M. Colorimetric and Fluorescent Schiff Base Sensors for Trace Detection of Pollutants and Biologically Significant Cations: A Review (2010-2021). Microchem J 2022. [DOI: 10.1016/j.microc.2022.107798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Parkavi R, Parthiban R, Kumar PS, Chandramohan A, Dinakaran K. Synthesis and characterization of 4-Halobenzylidene malanonitriles for optical detection of Nickel (II) ions in aqueous solution. CHEMOSPHERE 2022; 290:133248. [PMID: 34906523 DOI: 10.1016/j.chemosphere.2021.133248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
In this work, we have developed fluorescent detection techniques for the determination of Ni2+ ions in aqueous medium with sensitivity using metal coordinating fluorescent molecules namely 4-Halobenzylidene malanonitrile. The halogen substituted benzylidene malanonitile were synthesised Knoevenagel condensation reaction of various halogen substituted aromatic aldehydes with malanonitrile and products were characterised by IR and NMR spectroscopy. The obtained benzylidene malanonitiles and are exhibited a fluorescent emission with a peak of 430 nm, 440 nm and 448 nm for chloro, bromo and fluoro substituted compounds, respectively. The intensity of optical emission of the studied molecules is increased proportional to the addition of Ni2+ ions. The effect of different halogen substitution on the fluorescence behaviour of benylidene malononitrile has also been investigated. The synthesised title compounds showed a lowest detection limit of 10-20 M for the Nickel (II) ions in aqueous solution under UV-Vis absorption spectra. The molecule 4- Bromobenzylidene malanonitrile exhibited a lowest detection limit of 10-19 M for the Nickel (II) ions in, aqueous solution, photoluminescence analysis.
Collapse
Affiliation(s)
- R Parkavi
- Department of Chemistry, Thiruvalluvar University, Vellore, 632115, India
| | - R Parthiban
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - A Chandramohan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - K Dinakaran
- Department of Chemistry, Thiruvalluvar University, Vellore, 632115, India.
| |
Collapse
|
17
|
Review article on “effects of ions on the fluorescence of coumarin derivatives”. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Bawa R, Deswal N, Negi S, Dalela M, Kumar A, Kumar R. Pyranopyrazole based Schiff base for rapid colorimetric detection of arginine in aqueous and real samples. RSC Adv 2022; 12:11942-11952. [PMID: 35481068 PMCID: PMC9017462 DOI: 10.1039/d2ra00091a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
A novel pyranopyrazole-based Schiff base PPS has been synthesized via a condensation reaction between aldehyde and hydrazide derivatives of pyranopyrazole.
Collapse
Affiliation(s)
- Rashim Bawa
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Nidhi Deswal
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Swati Negi
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Manu Dalela
- Stem Cell Facility (Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Amit Kumar
- Department of Chemistry, Dyal Singh College, University of Delhi, Delhi, 110003, India
| | - Rakesh Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
19
|
Huang PJ, Kumarasamy K, Devendhiran T, Chen YC, Dong TY, Lin MC. BODIPY-based hydroxypyridyl derivative as a highly Ni2+-selective fluorescent chemosensor. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Krajňáková J, Joniak J, Putala M, Górová R, Jurdáková H, Stankovičová H. Mild and highly efficient deacetylation of acetamido and acetoxy coumarins: A convenient and expeditious synthesis of substituted 3-aminocoumarins. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1968904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jana Krajňáková
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jakub Joniak
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Martin Putala
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Renáta Górová
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Helena Jurdáková
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Henrieta Stankovičová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
21
|
Ashraf A, Islam M, Khalid M, Davis AP, Ahsan MT, Yaqub M, Syed A, Elgorban AM, Bahkali AH, Shafiq Z. Naphthyridine derived colorimetric and fluorescent turn off sensors for Ni 2+ in aqueous media. Sci Rep 2021; 11:19242. [PMID: 34584124 PMCID: PMC8479070 DOI: 10.1038/s41598-021-98400-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/06/2021] [Indexed: 11/09/2022] Open
Abstract
Highly selective and sensitive 2,7-naphthyridine based colorimetric and fluorescence "Turn Off" chemosensors (L1-L4) for detection of Ni2+ in aqueous media are reported. The receptors (L1-L4) showed a distinct color change from yellow to red by addition of Ni2+ with spectral changes in bands at 535-550 nm. The changes are reversible and pH independent. The detection limits for Ni2+ by (L1-L4) are in the range of 0.2-0.5 µM by UV-Visible data and 0.040-0.47 µM by fluorescence data, which is lower than the permissible value of Ni2+ (1.2 µM) in drinking water defined by EPA. The binding stoichiometries of L1-L4 for Ni2+ were found to be 2:1 through Job's plot and ESI-MS analysis. Moreover the receptors can be used to quantify Ni2+ in real water samples. Formation of test strips by the dip-stick method increases the practical applicability of the Ni2+ test for "in-the-field" measurements. DFT calculations and AIM analyses supported the experimentally determined 2:1 stoichiometries of complexation. TD-DFT calculations were performed which showed slightly decreased FMO energy gaps due to ligand-metal charge transfer (LMCT).
Collapse
Affiliation(s)
- Abida Ashraf
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Islam
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Anthony P Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan.
| |
Collapse
|
22
|
Pungut NAS, Heng MP, Saad HM, Sim KS, Lee VS, Tan KW. From one to three, modifications of sensing behavior with solvent system: DFT calculations and real-life application in detection of multianalytes (Cu2+, Ni2+ and Co2+) based on a colorimetric Schiff base probe. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Joshi P, Ali SR, Rishu, Bhardwaj VK. Fluorescence modulation of naphthalene containing salicyl hydrazide-based receptor through aggregation-induced emission enhancement approach: Dual detection of lanthanum and cyanide ions in semi-aqueous medium. LUMINESCENCE 2021; 36:986-994. [PMID: 33590665 DOI: 10.1002/bio.4025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 11/08/2022]
Abstract
The sensing activity of naphthalene containing salicyl hydrazide-based fluorescence receptor has been improved through aggregation-induced enhanced emission mechanism approach in semi-aqueous medium. The receptor has been found to be selective toward La3+ with approximately 70-fold fluorescence enhancement due to a combined effect of keto-enol tautomerism inhibition and chelation enhanced fluorescence with a detection limit of 3.91 × 10-6 M. In addition, the receptor is also able to sense CN- with a detection limit of 3.55 × 10-6 M via deprotonation effect, justifying its multiple analyte sensing behaviour. Hence, the current analytical methodology improves the sensing activity of the probe and also provides a greener alternative for La3+ and CN- detection.
Collapse
Affiliation(s)
- Pooja Joshi
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, India.,Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital, India
| | - Shah Raj Ali
- Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital, India
| | - Rishu
- Department of Chemistry, Mehr Chand Mahajan DAV College for Women, Chandigarh, India
| | - Vimal K Bhardwaj
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, India.,Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, India
| |
Collapse
|
24
|
Tian X, Kumawat LK, Bull SD, Elmes RB, Wu L, James TD. Coumarin-based fluorescent probe for the detection of glutathione and nitroreductase. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Chakraborty S, Rayalu S. Detection of nickel by chemo and fluoro sensing technologies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118915. [PMID: 32971347 DOI: 10.1016/j.saa.2020.118915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/08/2020] [Accepted: 09/02/2020] [Indexed: 05/13/2023]
Abstract
Sensing technology for heavy metal detection is very crucial for recent decades as the detection method is very easy, rapid, and does not require any pre-treatment of the sample. Nickel is a trace element in the human body and basically a moderate toxic element. There is a limited number of chemo and fluoro sensors reported for nickel as compared to other transition metal ion. Therefore, there is a need for the detailed structure and property studies of the nickel-probes as the knowledge can help in the upcoming development of probes for the nickel. In this review, we have discussed about different colorimetric, fluorimetric and fluorescent chemosensor and their structure, characterization, detection limit, association constant, media, and bio-imaging studies if they are active.
Collapse
Affiliation(s)
- Shampa Chakraborty
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - Sadhana Rayalu
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
26
|
Mattison RL, Bowyer AA, New EJ. Small molecule optical sensors for nickel: The quest for a universal nickel receptor. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Wu L, Tian X, Groleau RR, Wang J, Han HH, Reeksting SB, Sedgwick AC, He XP, Bull SD, James TD. Coumarin-based fluorescent probe for the rapid detection of peroxynitrite ‘AND’ biological thiols. RSC Adv 2020; 10:13496-13499. [PMID: 35493005 PMCID: PMC9051425 DOI: 10.1039/d0ra02234a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022] Open
Abstract
A coumarin-based novel ‘AND’ logic fluorescent probe ROS-AHC has been developed for the simultaneous detection of ONOO− and biological thiols. ROS-AHC was shown to exhibit only a very small fluorescence response upon addition of a single GSH or ONOO− analyte. Exposure to both analytes, however, resulted in a significant fluorescence enhancement. A coumarin-based novel ‘AND’ logic fluorescent probe ROS-AHC has been developed for the simultaneous detection of ONOO− and biological thiols.![]()
Collapse
Affiliation(s)
- Luling Wu
- Department of Chemistry
- University of Bath
- Bath
- UK
| | - Xue Tian
- Department of Chemistry
- University of Bath
- Bath
- UK
| | | | - Jie Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Shaun B. Reeksting
- Materials and Chemical Characterization (MC2)
- University of Bath
- Bath BA2 7AY
- UK
| | | | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | | | | |
Collapse
|
28
|
Metal Cation Detection in Drinking Water. SENSORS 2019; 19:s19235134. [PMID: 31771173 PMCID: PMC6928949 DOI: 10.3390/s19235134] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022]
Abstract
Maintaining a clean water supply is of utmost importance for human civilization. Human activities are putting an increasing strain on Earth’s freshwater reserves and on the quality of available water on Earth. To ensure cleanliness and potability of water, sensors are required to monitor various water quality parameters in surface, ground, drinking, process, and waste water. One set of parameters with high importance is the presence of cations. Some cations can play a beneficial role in human biology, and others have detrimental effects. In this review, various lab-based and field-based methods of cation detection are discussed, and the uses of these methods for the monitoring of water are investigated for their selectivity and sensitivity. The cations chosen were barium, cadmium, chromium, copper, hardness (calcium, magnesium), lead, mercury, nickel, silver, uranium, and zinc. The methods investigated range from optical (absorbance/fluorescence) to electrical (potentiometry, voltammetry, chemiresistivity), mechanical (quartz crystal microbalance), and spectrometric (mass spectrometry). Emphasis is placed on recent developments in mobile sensing technologies, including for integration into microfluidics.
Collapse
|
29
|
Varadaraju C, Paulraj MS, Tamilselvan G, Muthu Vijayan Enoch IV, Srinivasadesikan V, Shyi-Long L. Evaluation of metal ion sensing behaviour of fluorescent probe along with its precursors: PET-CHEF mechanism, molecular logic gate behaviour and DFT studies. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00919-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Das M, Sarkar M. Bis‐Pyridyl Diimines as Selective and Ratiometric Chemosensor for Ni(II) and Cd(II) Metal Ions. ChemistrySelect 2019. [DOI: 10.1002/slct.201802924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Moyna Das
- Department of ChemistryBirla Institute of Technology and Science, PilaniPilani Campus, Rajasthan India
| | - Madhushree Sarkar
- Department of ChemistryBirla Institute of Technology and Science, PilaniPilani Campus, Rajasthan India
| |
Collapse
|
31
|
Manna AK, Chowdhury S, Patra GK. A novel hydrazide-based selective and sensitive optical chemosensor for the detection of Ni2+ ions: applications in live cell imaging, molecular logic gates and smart phone-based analysis. Dalton Trans 2019; 48:12336-12348. [DOI: 10.1039/c9dt02448d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel hydrazide-based optical sensor for Ni2+ ions was designed, which can be applied for recovery of contaminated water samples, smart phone-based analysis and live cell imaging.
Collapse
Affiliation(s)
- Amit Kumar Manna
- Department of Chemistry
- Guru GhasidasVishwavidyalaya
- Bilaspur (C.G)
- India
| | | | - Goutam K. Patra
- Department of Chemistry
- Guru GhasidasVishwavidyalaya
- Bilaspur (C.G)
- India
| |
Collapse
|
32
|
An electrochemical sensor and sorbent based on mutiwalled carbon nanotube supported ion imprinting technique for Ni(II) ion from electroplating and steel industries. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-018-0018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
33
|
Warrier SB, Kharkar PS. A coumarin based chemosensor for selective determination of Cu (II) ions based on fluorescence quenching. JOURNAL OF LUMINESCENCE 2018. [DOI: 10.1016/j.jlumin.2018.03.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
|
35
|
Xi H, Liu Q, Chen Z. Determination of nickel(II) at nanomolar levels using iodide-responsive gold-copper nanoparticles as colorimetric probes. Mikrochim Acta 2018; 185:88. [DOI: 10.1007/s00604-017-2647-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/28/2017] [Indexed: 10/18/2022]
|
36
|
Vinoth Kumar GG, Kesavan MP, Sankarganesh M, Sakthipandi K, Rajesh J, Sivaraman G. A Schiff base receptor as a fluorescence turn-on sensor for Ni2+ ions in living cells and logic gate application. NEW J CHEM 2018. [DOI: 10.1039/c7nj03784h] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new receptor (R) with easily available “off–on–off” colorimetric and fluorescent responses was synthesized and characterized using 1H NMR, 13C NMR, and ESI-MS studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Gandhi Sivaraman
- Institute for Stem Cell Biology and Regenerative Medicine
- Bangalore-560065
- India
| |
Collapse
|
37
|
Sheikh TA, Arshad MN, Rahman MM, Asiri AM, Marwani HM, Awual MR, Bawazir WA. Trace electrochemical detection of Ni2+ ions with bidentate N,N′-(ethane-1,2-diyl)bis(3,4-dimethoxybenzenesulfonamide) [EDBDMBS] as a chelating agent. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.05.024] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Momidi BK, Tekuri V, Trivedi DR. Multi-signaling thiocarbohydrazide based colorimetric sensors for the selective recognition of heavy metal ions in an aqueous medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 180:175-182. [PMID: 28284164 DOI: 10.1016/j.saa.2017.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
A series of colorimetric chemosensors R1-R6 have been developed from thiocarbohydrazide derivatives, for the selective detection of heavy metal ions. The structures of the receptors R1-R6 were well characterized by standard spectroscopic techniques like FT-IR, 1H NMR, and ESI-MS. The solid structure of receptor R1 and R2 were derived by single crystal X-ray diffraction (SC-XRD). The cation reorganization abilities of receptors R1-R6 were studied by UV-Vis spectroscopy. The receptors R1, R3 and R4 acts as a tremendous sensitive probe for heavy metal ions (Hg2+, Cd2+ and Pb2+) with the μM detection (R1 for Hg2+, 2.72, R3 for Cd2+, 3.22, R4 for Hg2+, Cd2+ & Pb2+, 0.70, 0.20 & 0.30μM) and the receptors R2, R5 &R6 are sensitive towards Cu2+ ions with the μM detection (3.34, 0.90 & 1.20μM) in an aqueous medium among all other tested cations. The receptor R4 shows a multi-color response towards Hg2+, Cu2+, Cd2+ and Pb2+ ions. The recognition mechanism, stoichiometric binding ratio and detection limit (DL) have been examined by UV-Visible spectroscopic titration experiments and Benesi-Hildebrand (B-H) plot, receptor R1-R6 sowed 1:1 binding ratio with good binding constant range of 103 to 105M-1 with Hg2+, Cu2+, Cd2+ and Pb2+ ions metal ions.
Collapse
Affiliation(s)
- Bharath Kumar Momidi
- Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK)-Surathkal, Mangalore 575 025, India
| | - Venkatadri Tekuri
- Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK)-Surathkal, Mangalore 575 025, India
| | - Darshak R Trivedi
- Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK)-Surathkal, Mangalore 575 025, India.
| |
Collapse
|
39
|
|
40
|
Hou L, Kong X, Wang Y, Chao J, Li C, Dong C, Wang Y, Shuang S. An anthraquinone-based highly selective colorimetric and fluorometric sensor for sequential detection of Cu2+ and S2− with intracellular application. J Mater Chem B 2017; 5:8957-8966. [DOI: 10.1039/c7tb01596h] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An anthraquinone-based highly selective colorimetric and fluorometric probe for sequential detection of Cu2+ and S2− with intracellular application is reported.
Collapse
Affiliation(s)
- Lingjie Hou
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Xiangyu Kong
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Yishou Wang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Jianbin Chao
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Chenzhong Li
- Nanobioengineering/Bioelectronics Lab
- Department of Biomedical Engineering
- Florida International University
- Miami
- USA
| | - Chuan Dong
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Yu Wang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| |
Collapse
|
41
|
Momidi BK, Tekuri V, Trivedi DR. Selective detection of mercury ions using benzothiazole based colorimetric chemosensor. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Tümay SO, Okutan E, Sengul IF, Özcan E, Kandemir H, Doruk T, Çetin M, Çoşut B. Naked-eye fluorescent sensor for Cu(II) based on indole conjugate BODIPY dye. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.05.056] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
A new click-derived tripodal receptor for fluorescence recognition of Ni2+ in aqueous solution. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Biswas S, Acharyya S, Sarkar D, Gharami S, Mondal TK. Novel pyridyl based azo-derivative for the selective and colorimetric detection of nickel(II). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 159:157-162. [PMID: 26845582 DOI: 10.1016/j.saa.2016.01.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/16/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
A highly sensitive and selective pyridyl based colorimetric chemosensor (H2L) for the efficient detection of Ni(2+) has been reported. The synthesized chemosensor H2L is highly efficient in detecting Ni(2+) even in the presence of other metal ions that commonly co-exist with Ni(2+). H2L also shows distinct color change from green to deep red visible under naked eye due to specific binding with Ni(2+). This color change is due to formation of a new band at 510 nm upon gradual addition of Ni(2+). The association constant has been found to be 1.27×10(5) M(-1) with limit of detection (LOD) of 8.3×10(-7) M. Electronic structure of the H2L-Ni(2+) complex and sensing mechanism have been interpreted theoretically by DFT and TDDFT calculations.
Collapse
Affiliation(s)
- Sujan Biswas
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Samik Acharyya
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Deblina Sarkar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | |
Collapse
|
45
|
Sarkar D, Pramanik AK, Mondal TK. Benzimidazole based ratiometric and colourimetric chemosensor for Ni(II). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:397-401. [PMID: 26348129 DOI: 10.1016/j.saa.2015.08.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/13/2015] [Accepted: 08/30/2015] [Indexed: 06/05/2023]
Abstract
A highly sensitive and selective benzimidazole based colourimetric chemosensor (HL) for the efficient detection of Ni(2+) has been reported. The synthesized chemosensor HL is highly efficient in detecting Ni(2+) over other metal ions that commonly coexist with Ni(2+) in physiological and environmental samples. HL also shows distinct color change from orange yellow to blue visible under the naked eye due to specific binding with Ni(2+). This color change corresponds to a large red shift of the UV-Vis spectrum from 403 nm to 600 nm with a distinct isosbestic point at around 500 nm. The cation sensing property of the receptor HL has been examined by UV-Vis spectroscopy. Electronic structure of the HL-Ni(2+) complex and sensing mechanism has been interpreted by DFT and TDDFT calculations.
Collapse
Affiliation(s)
- Deblina Sarkar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | | | |
Collapse
|
46
|
Ghosh AC, Weisz K, Schulzke C. Selective Capture of Ni2+Ions by Naphthalene- and Coumarin-Substituted Dithiolenes. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
DeVore II MA, Kerns SA, Gorden AEV. Characterization of Quinoxolinol Salen Ligands as Selective Ligands for Chemosensors for Uranium. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
48
|
An KL, Park KH, Jun K. A New Coumarin-Based Colorimetric and Fluorometric Sensor for Cu2+. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.7.2183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
|
50
|
Synthesis of coumarin derivatives containing 2-aminothiazole moiety and their recognition of metal ions. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-013-1528-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|