1
|
Ji W, Wang G, Wang B, Yan B, Liu L, Xu L, Ma T, Yao S, Fu Y, Zhang L, Zhai Q. A New Indium-Based MOF as the Highly Stable Luminescent Ultra- Sensitive Antibiotic Detection. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
2
|
Nabais AR, Ahmed S, Younis M, Zhou JX, Pereira JR, Freitas F, Mecerreyes D, Crespo JG, Huang MH, Neves LA, Tomé LC. Mixed matrix membranes based on ionic liquids and porous organic polymers for selective CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Wang Q, Liu JY, Wang TT, Liu YY, Zhang LX, Huo JZ, Ding B. Solvo-thermal synthesis of a unique cluster-based nano-porous zinc(II) luminescent metal-organic framework for highly sensitive detection of anthrax biomarker and dichromate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121132. [PMID: 35286888 DOI: 10.1016/j.saa.2022.121132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
In this work a flexible multi-dentate 4,4'-(1H-1,2,4-triazole-1-yl) methylene-bis(benzonic acid) (H2L) ligand has been employed, a unique cluster-based nano-porous luminescent zinc(II) metal-organic framework {[Zn(μ6-L)]·(DMAC)2}n (1) (DMAC = Dimethylacetamide) has been isolated under solvo-thermal conditions. The H2L ligand adopts hexa-dentate coordination modes via one triazole nitrogen atom and four aromatic carboxylate oxygen atoms, which bridge the neighboring six-coordinated ZnII centers, leading to a three-dimensional (3D) nano-porous metal organic framework. A PLATON program analysis suggests the total potential solvent area volume is 2028.9 Å3, which occupy 62.5% percent of the unit cell volume (3248.4 Å3). PXRD Patterns of the as-synthesized samples 1 have been determined confirming the purity of the bulky samples. Photo-luminescent properties indicate strong fluorescent emissions of 1 at the room temperature. Further photo-luminescent measurements show that 1 can exhibit highly sensitive real-time luminescence sensing of anthrax biomarker dipicolinic acid (DPA) with high quenching efficiency (KSV = 1.48 × 105 M-1) and low detection limit (0.298 μM (S/N = 3)). Meanwhile 1 also exhibits highly selective and sensitive luminescence sensing for Cr2O72- ions in aqueous solutions with high quenching efficiency KSV = 1.22 × 104 L·mol-1 and low detection limit (0.023 μM (S/N = 3)). Therefore 1 can be used a unique multi-functional 3D cluster-based metal organic material in sensitive detection and effective detection of environment pollutants and biomarker molecules.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Jing-Yi Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Tian-Tian Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yuan-Yuan Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Le-Xi Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jian-Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| |
Collapse
|
4
|
Wang JJ, Li LQ, Zhu ZH, Zheng TF, Xu H, Peng Y, Chen JL, Liu SJ, Wen HR. Facile fabrication and luminescence properties of a new Zn II coordination polymer-based fluorescent sensor toward antibiotics. NEW J CHEM 2022. [DOI: 10.1039/d2nj03797a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new ZnII-based coordination polymer could selectively and sensitively recognize NFT and DCN via turn-off effect. Interestingly, a mixed matrix film for visualizable sensing has been successfully developed.
Collapse
Affiliation(s)
- Jin-Jin Wang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Le-Qian Li
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Zi-Hao Zhu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| |
Collapse
|
5
|
Kujur S, Verma S, Kumar A, Sharma R, Pathak DD. A green polyol approach for the synthesis of Cu 2O NPs adhered on graphene oxide: a robust and efficient catalyst for 1,2,4-triazole and imidazo[1,2- a]pyridine synthesis. NEW J CHEM 2022. [DOI: 10.1039/d2nj00831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu2O NPs immobilized on graphene oxide are used as a heterogeneous catalyst for the synthesis of a series of 1,2,4-triazoles and imidazo[1,2-a]pyridines under solvent-free conditions.
Collapse
Affiliation(s)
- Shelly Kujur
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, India
| | - Shruti Verma
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, India
| | - Akash Kumar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, India
| | - Richa Sharma
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Devendra Deo Pathak
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, India
| |
Collapse
|
6
|
Ghosh S, Steinke F, Rana A, Biswas S. A fluorescent zirconium organic framework displaying rapid and nanomolar level detection of Hg(II) and nitroantibiotics. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01190a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solvothermal reaction of ZrCl4 with benzo[1,2-b:4,5-b’]dithiophene-2,6-dicarboxylic acid linker molecule in presence of trifluoro acetic acid modulator afforded the UiO-66 type of metal organic framework (MOF) (IITG-5, IITG = Indian...
Collapse
|
7
|
Hooriabad Saboor F, Nasirpour N, Shahsavari S, Kazemian H. The Effectiveness of MOFs for the Removal of Pharmaceuticals from Aquatic Environments: A Review Focused on Antibiotics Removal. Chem Asian J 2021; 17:e202101105. [PMID: 34941022 DOI: 10.1002/asia.202101105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/09/2021] [Indexed: 11/06/2022]
Abstract
There is an increasing level of various pollutants and their persistence in aquatic environments. The improper use of antibiotics and their inefficient metabolism in organisms result in their release into aquatic environments. Antibiotic abuse has led to hazardous effects on human health. Thereby, efficient removal of pharmaceuticals, particularly antibiotics, from wastewater and contaminated water bodies is greatly interested in international research communities. Metal-organic framework (MOF) materials, as a hybrid group of material containing metallic center and organic linkers, offer a porous structure that is highly efficient for removing different pollutants from contaminated water and wastewater streams. This article aims to review the recent advancement in using MOF-based adsorbents and catalysts for the removal of pharmaceuticals, especially antibiotics, from polluted water. Applying MOFs-based structures for removing antibiotics using photocatalytic removal and adsorptive removal techniques will be discussed and evaluated in this review paper. Various MOF-based materials such as functionalized MOFs, MOF-based composites, magnetic MOF-based composites, MOFs templated-metal oxide catalysts for removing pharmaceuticals, personal care products, and antibiotics from contaminated aqueous media are discussed. Furthermore, effective operational parameters on the adsorption, adsorption mechanisms, adsorption isotherms, and thermodynamic parameters are explained and discussed. Finally, in the concluding remarks, the challenges and future outlooks of using MOFs-based adsorbents and catalysts for removing antibiotics are summarized.
Collapse
Affiliation(s)
- Fahimeh Hooriabad Saboor
- University of Mohaghegh Ardabili, Department of Chemical Engineering, Universtiy Street, 1313156199, Ardabil, IRAN (ISLAMIC REPUBLIC OF)
| | - Niloofar Nasirpour
- University of Mohaghegh Ardabili Faculty of Engineering, Chemical Engineering, IRAN (ISLAMIC REPUBLIC OF)
| | - Shadab Shahsavari
- Islamic Azad University Varamin-Pishva Branch, chemical Engineering, IRAN (ISLAMIC REPUBLIC OF)
| | - Hossein Kazemian
- UNBC: University of Northern British Columbia, Northern Analytical Lab Service, CANADA
| |
Collapse
|
8
|
Afshar N, Hatamjafari F, Shiroudi A, Pourshamsian K, Oliaey AR. Synthesis and Characterization of Some New Indoline-Based
1,2,4-Triazole Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428020120179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Ding J, Zhang D, Liu Y, Zhan X, Lu Y, Zhou P, Zhang D. An Electrochemical Aptasensor for Pb 2+ Detection Based on Metal-Organic-Framework-Derived Hybrid Carbon. BIOSENSORS-BASEL 2020; 11:bios11010001. [PMID: 33375081 PMCID: PMC7822124 DOI: 10.3390/bios11010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022]
Abstract
A new double-shelled carbon nanocages material was synthesized and developed an aptasensor for determining Pb2+ in aqueous solution. Herein, nanoporous carbon materials derived from core–shell zeolitic imidazolate frameworks (ZIFs) demonstrated excellent electrochemical activity, stability, and high specificity surface area, consequently resulting in the strong binding with aptamers. The aptamer strands would be induced to form G-quadruplex structure when Pb2+ was introduced. Under optimal conditions, the aptasensor exhibited a good linear relationship of Pb2+ concentration ranging from 0.1 to 10 μg L−1 with the detection limits of 0.096 μg L−1. The feasibility was proved by detecting Pb2+ in spiked water samples and polluted soil digestion solution. The proposed aptasensor showed excellent selectivity and reproducibility, indicating promising applications in environmental monitoring.
Collapse
Affiliation(s)
- Jina Ding
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China; (J.D.); (D.Z.); (Y.L.); (X.Z.); (Y.L.); (D.Z.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongwei Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China; (J.D.); (D.Z.); (Y.L.); (X.Z.); (Y.L.); (D.Z.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China; (J.D.); (D.Z.); (Y.L.); (X.Z.); (Y.L.); (D.Z.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuejia Zhan
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China; (J.D.); (D.Z.); (Y.L.); (X.Z.); (Y.L.); (D.Z.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yitong Lu
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China; (J.D.); (D.Z.); (Y.L.); (X.Z.); (Y.L.); (D.Z.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China; (J.D.); (D.Z.); (Y.L.); (X.Z.); (Y.L.); (D.Z.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel.: +86-021-34205762
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China; (J.D.); (D.Z.); (Y.L.); (X.Z.); (Y.L.); (D.Z.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Khalil IE, Pan T, Shen Y, Zhang W. A water-stable luminescent coordination polymer for sensitive detection of nitroaromatic compounds. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Xiao L, Yang JM, Huang GY, Zhao Y, Zhu HB. Construction of efficient Mn-N-C oxygen reduction electrocatalyst from a Mn(II)-based MOF with N-rich organic linker. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Guo F, Su C, Fan Y, Shi W, Zhang X. Construction of a dual-response luminescent metal-organic framework with excellent stability for detecting Fe3+ and antibiotic with high selectivity and sensitivity. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Zhong WB, Li RX, Lv J, He T, Xu MM, Wang B, Xie LH, Li JR. Two isomeric In(iii)-MOFs: unexpected stability difference and selective fluorescence detection of fluoroquinolone antibiotics in water. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01490j] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fluorescence of the two new In(iii)-MOFs is selectively quenched by the fluoroquinolones, including ciprofloxacin, one of the most widely used antibiotics worldwide.
Collapse
Affiliation(s)
- Wen-Bin Zhong
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Ru-Xia Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Jie Lv
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Tao He
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Ming-Ming Xu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Bin Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| |
Collapse
|
14
|
Chen X, Huang J, Huang Y, Du J, Jiang Y, Zhao Y, Zhu H. Efficient Fe‐Co‐N‐C Electrocatalyst Towards Oxygen Reduction Derived from a Cationic Co
II
‐based Metal–Organic Framework Modified by Anion‐Exchange with Potassium Ferricyanide. Chem Asian J 2019; 14:995-1003. [DOI: 10.1002/asia.201801776] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Xiang‐Lan Chen
- School of Chemistry and Chemical EngineeringSoutheast University Nanjing 211189 China
| | - Jia‐Wei Huang
- School of Chemistry and Chemical EngineeringSoutheast University Nanjing 211189 China
| | - Yi‐Chen Huang
- School of Chemistry and Chemical EngineeringSoutheast University Nanjing 211189 China
| | - Jie Du
- School of Chemistry and Chemical EngineeringSoutheast University Nanjing 211189 China
| | - Yu‐Fei Jiang
- Coordination Chemistry InstituteState Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing National Laboratory of MicrostructuresNanjing University Nanjing 210023 China
| | - Yue Zhao
- Coordination Chemistry InstituteState Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing National Laboratory of MicrostructuresNanjing University Nanjing 210023 China
| | - Hai‐Bin Zhu
- School of Chemistry and Chemical EngineeringSoutheast University Nanjing 211189 China
| |
Collapse
|
15
|
Huang JW, Chen YB, Liu X, Huang YC, Ding YL, Xu Y, Yao HC, Zhu HB, Yang H. Anion exchange of a cationic Cd(ii)-based metal–organic framework with potassium ferricyanide towards highly active Fe3C-containing Fe/N/C catalysts for oxygen reduction. Chem Commun (Camb) 2019; 55:6930-6933. [DOI: 10.1039/c9cc02390a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An efficient Fe3C-containing Fe/N/C catalyst towards oxygen reduction was pyrolyzed from a cationic Cd(ii)-based metal–organic framework modified by anion-exchange with potassium ferricyanide.
Collapse
Affiliation(s)
- Jia-Wei Huang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Yu-Bin Chen
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai
- China
| | - Xiao Liu
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai
- China
| | - Yi-Chen Huang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Ye-Lin Ding
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Yang Xu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Hong-Chang Yao
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Hai-Bin Zhu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Hui Yang
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|
16
|
Xu Y, Liu Y, Liu X, Zhao Y, Wang Z, Sun W. Synthesis, Structure and Sensing Property of Novel Zinc(II) Framework with Mixed 3,3′,5,5′‐Tetra(1H‐imidazol‐1‐yl)biphenyl and 2,6‐Naphthalenedicarboxylate Ligands. Isr J Chem 2018. [DOI: 10.1002/ijch.201800138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yong‐Liang Xu
- College of Chemical and Environmental EngineeringYangtze University Jingzhou 434023 China
| | - Yi Liu
- Coordination Chemistry InstituteState Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing National Laboratory of MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Xiao‐Hui Liu
- Coordination Chemistry InstituteState Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing National Laboratory of MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Yue Zhao
- Coordination Chemistry InstituteState Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing National Laboratory of MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Zheng‐Liang Wang
- College of Chemical and Environmental EngineeringYangtze University Jingzhou 434023 China
| | - Wei‐Yin Sun
- College of Chemical and Environmental EngineeringYangtze University Jingzhou 434023 China
- Coordination Chemistry InstituteState Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing National Laboratory of MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| |
Collapse
|