1
|
Rezaei B, Yari P, Sanders SM, Wang H, Chugh VK, Liang S, Mostufa S, Xu K, Wang JP, Gómez-Pastora J, Wu K. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304848. [PMID: 37732364 DOI: 10.1002/smll.202304848] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Nowadays, magnetic nanoparticles (MNPs) are applied in numerous fields, especially in biomedical applications. Since biofluidic samples and biological tissues are nonmagnetic, negligible background signals can interfere with the magnetic signals from MNPs in magnetic biosensing and imaging applications. In addition, the MNPs can be remotely controlled by magnetic fields, which make it possible for magnetic separation and targeted drug delivery. Furthermore, due to the unique dynamic magnetizations of MNPs when subjected to alternating magnetic fields, MNPs are also proposed as a key tool in cancer treatment, an example is magnetic hyperthermia therapy. Due to their distinct surface chemistry, good biocompatibility, and inducible magnetic moments, the material and morphological structure design of MNPs has attracted enormous interest from a variety of scientific domains. Herein, a thorough review of the chemical synthesis strategies of MNPs, the methodologies to modify the MNPs surface for better biocompatibility, the physicochemical characterization techniques for MNPs, as well as some representative applications of MNPs in disease diagnosis and treatment are provided. Further portions of the review go into the diagnostic and therapeutic uses of composite MNPs with core/shell structures as well as a deeper analysis of MNP properties to learn about potential biomedical applications.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Sean M Sanders
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Haotong Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Lubbock, MN, 55455, USA
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Lubbock, MN, 55455, USA
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kanglin Xu
- Department of Computer Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Lubbock, MN, 55455, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Lubbock, MN, 55455, USA
| | | | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
2
|
Tamboli QY, Patange SM, Mohanta YK, Patil AD, Ali R, Bushnak I, Zakde K. Moringa oleifera Gum-Assisted Synthesis and Characterization of CoAg xFe 2-xO 4: Insight into Structural, Magnetic, Optical, and Biomedical Properties. ACS OMEGA 2024; 9:3835-3845. [PMID: 38284047 PMCID: PMC10809381 DOI: 10.1021/acsomega.3c06578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
The sol-gel method was employed to prepare nano CoFe2O4 and silver-substituted CoFe2O4 nanohybrids (CoAgxFe2-xO4, x = 0, 0.1, 0.2, 0.3, 0.4) utilizing Moringa oleifera gum as biofuel. The morphology, size, shape, magnetic, optical, and functional groups of the crystallites were determined using various techniques such as UV-visible, Fourier transform infrared, X-ray diffraction, Rietveld, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, and photoluminescence. The produced nanoferrite has a spherical shape with cubic spinal structures. The optical properties were investigated in two different bands in the photoluminescence emission spectra at 469 and 493 nm. Saturation magnetization (Ms) and coercivity (Hc) decrease as the Ag content increases significantly. Furthermore, antibacterial (Gram-positive bacteria bacterial strains, Bacillus subtilis and Staphylococcus aureus, and Gram-negative bacterial strains, Pseudomonas aeruginosa, and Escherichia coli), antibiofilm activity (E. coli), and antioxidant (DPPH) activities were investigated. The substantial increase in the silver content offers a constructive impact on studied biomedical activities. These findings encourage additional research into the use of hybrid nanoparticles (an amalgamation of ferrite and a noble metal) in biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Qudsiya Y Tamboli
- Department of Basic and Applied Science, MGM University, Aurangabad 431001, Maharashtra, India
| | - Sunil M Patange
- Materials Science Research Laboratory, SKM, Gunjoti, Osmanabad 413613, Maharashtra, India
| | - Yugal Kishore Mohanta
- Nano-Biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Baridua, Ri-Bhoi, Techno City 793101, Meghalaya, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Asha D Patil
- Deshbhakt Anandrao Balawantrao Naik Art's and Science College, Chikhali, Sangli 415408, Maharashtra, India
| | - Rizwan Ali
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh 14811, Saudi Arabia
| | - Ibraheem Bushnak
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh 14811, Saudi Arabia
| | - Kranti Zakde
- Department of Basic and Applied Science, MGM University, Aurangabad 431001, Maharashtra, India
| |
Collapse
|
3
|
Hong TJ, Sivakumar C, Luo CW, Ho MS. Investigation of TiO 2 nanoparticle interactions in the fibroblast NIH-3T3 cells via liquid-mode atomic force microscope. Arch Toxicol 2023; 97:2893-2901. [PMID: 37612376 DOI: 10.1007/s00204-023-03585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Long before we recognized how significant they were, nanoparticles were already all around in the environment. Since then, an extensive number of synthetic nanoparticles have been engineered to improve our quality of life through rigorous scientific research on their uses in practically every industry, including semiconductor devices, food, medicine, and agriculture. The extensive usage of nanoparticles in commodities that come into proximity with human skin and internal organs through medicine has raised significant concerns over the years. TiO2 nanoparticles (NPs) are widely employed in a wide range of industries, such as cosmetics and food packaging. The interaction and internalization of TiO2 NPs in living cells have been studied by the scientific community for many years. In the present study, we investigated the cell viability, nanomechanical characteristics, and fluorescence response of NIH-3T3 cells treated with sterile DMEM TiO2 nanoparticle solution using a liquid-mode atomic force microscope and a fluorescence microscope. Two different sorts of response systems have been observed in the cells depending on the size of the NPs. TiO2 nanoparticles smaller than 100 nm support its initial stages cell viability, and cells internalize and metabolize NPs. In contrast, bigger TiO2 NPs (> 100 nm) are not completely metabolized and cannot impair cell survival. Furthermore, bigger NPs above 100 nm could not be digested by the cells, therefore hindering cell development, whereas below 100 nm TiO2 stimulated uncontrolled cell growth akin to cancerous type cells. The cytoskeleton softens as a result of particle internalization, as seen by the nanomechanical characteristics of the nanoparticle treated cells. According to our investigations, TiO2 smaller than 100 nm facilitates unintended cancer cell proliferation, whereas larger NPs ultimately suppress cell growth. Before being incorporated into commercial products, similar effects or repercussions that could result from employing different NPs should be carefully examined.
Collapse
Affiliation(s)
- Tz-Ju Hong
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | | | - Chih-Wei Luo
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 30076, Taiwan
- Institute of Physics and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials (TCECM), Ministry of Science and Technology, Taipei, 10601, Taiwan
| | - Mon-Shu Ho
- Department of Physics, National Chung Hsing University, Taichung City, 40227, Taiwan.
| |
Collapse
|
4
|
GhaderiShekhiAbadi P, Irani M, Noorisepehr M, Maleki A. Magnetic biosensors for identification of SARS-CoV-2, Influenza, HIV, and Ebola viruses: a review. NANOTECHNOLOGY 2023; 34:272001. [PMID: 36996779 DOI: 10.1088/1361-6528/acc8da] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Infectious diseases such as novel coronavirus (SARS-CoV-2), Influenza, HIV, Ebola, etc kill many people around the world every year (SARS-CoV-2 in 2019, Ebola in 2013, HIV in 1980, Influenza in 1918). For example, SARS-CoV-2 has plagued higher than 317 000 000 people around the world from December 2019 to January 13, 2022. Some infectious diseases do not yet have not a proper vaccine, drug, therapeutic, and/or detection method, which makes rapid identification and definitive treatments the main challenges. Different device techniques have been used to detect infectious diseases. However, in recent years, magnetic materials have emerged as active sensors/biosensors for detecting viral, bacterial, and plasmids agents. In this review, the recent applications of magnetic materials in biosensors for infectious viruses detection have been discussed. Also, this work addresses the future trends and perspectives of magnetic biosensors.
Collapse
Affiliation(s)
| | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Noorisepehr
- Environmental Health Engineering Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
5
|
Saini B, Krishnapriya R, Laishram D, Singh MK, Singhal R, Bandaru S, Sharma RK. Impact of gadolinium doping into the frustrated antiferromagnetic lithium manganese oxide spinel. iScience 2022; 26:105869. [PMID: 36647377 PMCID: PMC9839965 DOI: 10.1016/j.isci.2022.105869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Cubic spinel LiMn2O4 (LMO) are promising electrode materials for advanced technological devices owing to their rich electrochemical properties. Here, a series of Gd3+-doped LiMn2O4 were synthesized using a simple one-step sol-gel synthesis, and a systematized study on the effect of increasing Gd3+ concentration on magnetic properties is conferred. The Raman and density functional theory (DFT) calculations of the synthesized materials were correlated with the magnetic properties; we observed a high coercivity value for the doped LMO compared to pristine LMO, which scales down from 0.57T to 0.14T with an increase in Gd concentration. The samples exhibited paramagnetic (at 300K) to antiferromagnetic (at 5K) transition and variation in the magnetic moment due to the replacement of Mn+2 or Mn+3 ion by Gd+3 ion from the octahedral 16d lattice site. The observed phase transitions in the hysteresis curve below the Neel temperature (TN) at 5K are found to be due to the superexchange mechanism.
Collapse
Affiliation(s)
- Bhagirath Saini
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| | - R. Krishnapriya
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India,Mechanical and Aerospace Engineering Department, College of Engineering, United Arab Emirate University, Al Ain 15551, UAE
| | - Devika Laishram
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India,University College Dublin, School of Chemical and Bioprocess Engineering, Engineering Building, Belfield, Dublin 4, Ireland
| | - Manoj K. Singh
- Centre of Material Sciences, University of Allahabad, Prayagraj 211002, India
| | - Rahul Singhal
- Department of Physics and Engineering Physics, Central Connecticut State University, New Britain, CT 06050, USA
| | - Sateesh Bandaru
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China,Corresponding author
| | - Rakesh K. Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India,Corresponding author
| |
Collapse
|
6
|
Study of structural, optical, photocatalytic, electromagnetic, and biological properties Co0.75Mg0.25CexFe2−xO4 of Mg-Co nano ferrites. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Aram E, Moeni M, Abedizadeh R, Sabour D, Sadeghi-Abandansari H, Gardy J, Hassanpour A. Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203567. [PMID: 36296756 PMCID: PMC9611246 DOI: 10.3390/nano12203567] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 05/14/2023]
Abstract
Iron oxide nanoparticle (IONPs) have become a subject of interest in various biomedical fields due to their magnetism and biocompatibility. They can be utilized as heat mediators in magnetic hyperthermia (MHT) or as contrast media in magnetic resonance imaging (MRI), and ultrasound (US). In addition, their high drug-loading capacity enabled them to be therapeutic agent transporters for malignancy treatment. Hence, smartening them allows for an intelligent controlled drug release (CDR) and targeted drug delivery (TDD). Smart magnetic nanoparticles (SMNPs) can overcome the impediments faced by classical chemo-treatment strategies, since they can be navigated and release drug via external or internal stimuli. Recently, they have been synchronized with other modalities, e.g., MRI, MHT, US, and for dual/multimodal theranostic applications in a single platform. Herein, we provide an overview of the attributes of MNPs for cancer theranostic application, fabrication procedures, surface coatings, targeting approaches, and recent advancement of SMNPs. Even though MNPs feature numerous privileges over chemotherapy agents, obstacles remain in clinical usage. This review in particular covers the clinical predicaments faced by SMNPs and future research scopes in the field of SMNPs for cancer theranostics.
Collapse
Affiliation(s)
- Elham Aram
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan 49188-88369, Iran
| | - Masome Moeni
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Roya Abedizadeh
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
| | - Davood Sabour
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
| | - Hamid Sadeghi-Abandansari
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Jabbar Gardy
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (J.G.); (A.H.)
| | - Ali Hassanpour
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (J.G.); (A.H.)
| |
Collapse
|
8
|
Green Synthesis of Mn + Cu Bimetallic Nanoparticles Using Vinca rosea Extract and Their Antioxidant, Antibacterial, and Catalytic Activities. CRYSTALS 2022. [DOI: 10.3390/cryst12010072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This article outlines the preparation of manganese-doped copper nanoparticles (Mn + Cu NPs) using Vinca rosea (L.) leaf extract as a convenient and environmentally friendly substance. UV–vis, FT–IR, XRD, SEM–EDAX, and DLS instrumental techniques were employed to describe the physical and chemical properties of synthesized V. rosea extract-mediated Vr-Mn + Cu NPs. The synthesized Vr-Mn + Cu NPs were observed to be monodispersed and spherical, with an average size of 412 nm. The plant extract includes a variety of phytochemical components. The Vr-Mn + Cu NPs also have potential antioxidant and antibacterial properties against selected pathogens. The green synthesized Vr-Mn + Cu NPs showed a maximum inhibition zone of 16.33 ± 0.57 mm against E. coli. For dye degradation, MR, EBT, and MO showed the highest degradation percentage capabilities with Vr-Mn + Cu NP-based adsorbents, which were determined to be 78.54 ± 0.16, 87.67 ± 0.06, and 69.79 ± 0.36. The results clearly show that biosynthesized Vr-Mn + Cu NPs may be employed as an antioxidant, antibacterial, photocatalytic dye degradation, and catalytic agent, as well as being ecologically benign.
Collapse
|
9
|
Martins PM, Lima AC, Ribeiro S, Lanceros-Mendez S, Martins P. Magnetic Nanoparticles for Biomedical Applications: From the Soul of the Earth to the Deep History of Ourselves. ACS APPLIED BIO MATERIALS 2021; 4:5839-5870. [PMID: 35006927 DOI: 10.1021/acsabm.1c00440] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Precisely engineered magnetic nanoparticles (MNPs) have been widely explored for applications including theragnostic platforms, drug delivery systems, biomaterial/device coatings, tissue engineering scaffolds, performance-enhanced therapeutic alternatives, and even in SARS-CoV-2 detection strips. Such popularity is due to their unique, challenging, and tailorable physicochemical/magnetic properties. Given the wide biomedical-related potential applications of MNPs, significant achievements have been reached and published (exponentially) in the last five years, both in synthesis and application tailoring. Within this review, and in addition to essential works in this field, we have focused on the latest representative reports regarding the biomedical use of MNPs including characteristics related to their oriented synthesis, tailored geometry, and designed multibiofunctionality. Further, actual trends, needs, and limitations of magnetic-based nanostructures for biomedical applications will also be discussed.
Collapse
Affiliation(s)
- Pedro M Martins
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.,IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga 4710-057, Portugal
| | - Ana C Lima
- Centre/Department of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Sylvie Ribeiro
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Centre/Department of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Senentxu Lanceros-Mendez
- 3BCMaterials, Basque Centre for Materials and Applications, UPV/EHU Science Park, Leioa 48940, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Pedro Martins
- IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga 4710-057, Portugal.,Centre/Department of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| |
Collapse
|