1
|
Vadakkan K, Jose B, Mapranathukaran VO, Sathishkumar K, Ngangbam AK, Rumjit NP. Biofilm suppression of Pseudomonas aeruginosa by bio-engineered silver nanoparticles from Hellenia speciosa rhizome extract. Microb Pathog 2025; 198:107105. [PMID: 39527987 DOI: 10.1016/j.micpath.2024.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Bacterial biofilm, a persistent issue in healthcare equipment and typical infections, is exacerbated by the pathogenesis and antibiotic tolerance of Pseudomonas aeruginosa. This bacterium remains a significant concern in the global healthcare sector. Silver nanoparticles, with their potent antibacterial properties, have emerged as a promising solution. This study, therefore, is of utmost importance as it aims to delve into the parameters influencing the biogenic nanoparticle-assisted regulation of bacterial adherence by Pseudomonas aeruginosa. The nano-sized particles were bioengineered using Hellenia speciosa rhizome extracts, which mainly included biologically active components such as mequinol, 4-hydroxy-3-methylacetophenone, and phenol, 2,6-dimethoxy, supplemented with the formation of silver nanostructured materials. The nanoclusters were characterized by UV-Vis spectrophotometry, X-ray scattering, and scanning electron microscopy (SEM). According to a microtiter plate experiment, the nanoparticle degraded biofilms up to 94.41 % at dosages varied from 0 to 25 μg/ml. The light microscopy study and the interface architecture of biofilm suppression by electron microscopy demonstrated the nano-sized particle's potential to prevent bacterial adherence.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala, 680020, India; Manipur International University, Imphal, Manipur, 795140, India.
| | - Beena Jose
- Department of Chemistry, Vimala College (Autonomous), Thrissur, 680009, Kerala, India
| | | | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu, 602105, India
| | | | - Nelson Pynadathu Rumjit
- Marian Centre for Advanced Research, St. Mary's College (Autonomous), Thrissur, Kerala, 680020, India
| |
Collapse
|
2
|
Vadakkan K, Hemapriya J, Ngangbam AK, Sathishkumar K, Mapranathukaran VO. Biofilm inhibition of Staphylococcus aureus by silver nanoparticles derived from Hellenia speciosa rhizome extract. Microb Pathog 2024; 196:106933. [PMID: 39270757 DOI: 10.1016/j.micpath.2024.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Staphylococcus aureus is the most common cause of serious health conditions because of the formation of biofilm, which lowers antibiotic efficacy and enhances infection transmission and tenacious behavior. This bacteria is a major threat to the worldwide healthcare system. Silver nanoparticles have strong antibacterial characteristics and emerged as a possible alternative. This work is most relevant since it investigates the parameters influencing the biogenic nanoparticle-assisted control of bacterial biofilms by Staphylococcus aureus. Nanoparticles were fabricated utilizing Hellenia speciosa rhizome extracts, which largely comprised physiologically active components such as spirost-5-en-3-yl acetate, thymol, stigmasterol, and diosgenin, enhanced with the creation of silver nanocomposites. GC-MS, XRD, DLS, SEM, EDX, FTIR and TEM were used to investigate the characteristics of nanoparticles. The microtiter plate experiment showed that nanoparticles destroyed biofilms by up to 92.41 % at doses that ranged from 0 to 25 μg/ml. Fluorescence microscopy and SEM demonstrated the nanoparticles' capacity to prevent bacterial surface adhesion. EDX research revealed that the organic extract efficiently formed silver nanoparticles with considerable oxygen incorporation, which was attributed to phytochemicals that stabilize AgNPs and prevent accumulation. FTIR spectroscopy indicated the existence of hydroxyl, carbonyl, and carboxylate groups, which are essential for nanoparticle stability. TEM revealed that the AgNPs were spheroidal, with diameters ranging from 40 to 60 nm and an average of 46 nm. These results demonstrate the efficacy of H. speciosa extract in creating stable, well-defined AgNPs suited for a variety of applications. This work underlines the potential of green-synthesized AgNPs in biomedical applications, notably in the treatment of S. aureus biofilm-associated illnesses. The thorough characterization gives important information on the stability and efficiency of these biogenic nanoparticles.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala, 680020, India; Manipur International University, Imphal, Manipur, 795140, India.
| | - Janarthanam Hemapriya
- Department of Microbiology, DKM College for Women, Vellore, Tamil Nadu, 632001, India
| | | | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu, 602105, India.
| | | |
Collapse
|
3
|
Suriyakala G, Sathiyaraj S, Balasundaram M, Murugan K, Babujanarthanam R, Gandhi AD. Plumeria alba flower extract-mediated synthesis of recyclable chitosan-coated cadmium nanoparticles for pest control and dye degradation. Bioprocess Biosyst Eng 2023; 46:1483-1498. [PMID: 37552312 DOI: 10.1007/s00449-023-02915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
In the current scenario, many synthetic chemicals have used long-term to control pests and mosquitoes, leading to the resistance of strains and toxicity effect on human beings. To overcome the adverse problem in recent advances, the scientific community is looking into nanofabricated pesticides and mosquitoes. This study aims to synthesize the recyclable chitosan-coated cadmium nanoparticles (Ch-CdNps) using Plumeria alba flower extract, which was further applied for insecticidal and mosquitocidal activities. The synthesized Ch-CdNps were confirmed by UV spectroscopy and FTIR analysis. The XRD, TEM, and DLS results confirmed the crystallinity with a spherical shape at 80-100 nm. The insecticidal activity proves that Ch-CdNps inhibited Helicoverpa armigera and Spodoptera litura at 100 ppm. In mosquitocidal, LC50 values of larvicidal of 1st instar were 4.116, 4.33, and 4.564 µg/mL, and the remaining three stages of instars, pupicidal, adulticidal, longevity, fecundity, and ovicidal assays inhibit the Anopheles stephensi followed by Aedes aegypti and Culex quinquefasciatus. Further, the first-order kinetics of photocatalytic degradation of methylene blue and methyl orange was confirmed. Based on the obtained results, Ch-CdNps can inhibit the pest, mosquitoes, and photocatalytic degradation.
Collapse
Affiliation(s)
- Gunasekaran Suriyakala
- Department of Biotechnology, M.M.E.S. Women's Arts and Science College, Melvisharam, Vellore, 632509, Tamil Nadu, India
| | - Sivaji Sathiyaraj
- Nano and Energy Bioscience Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamil Nadu, India
| | - M Balasundaram
- Biochemistry Unit, Faculty of Medicine, AIMST University, Kedah, Malaysia
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Ranganathan Babujanarthanam
- Nano and Energy Bioscience Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamil Nadu, India
| | - Arumugam Dhanesh Gandhi
- Nano and Energy Bioscience Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamil Nadu, India.
| |
Collapse
|
4
|
Sharma I, Gupta P, Kango N. Synthesis and characterization of keratinase laden green synthesized silver nanoparticles for valorization of feather keratin. Sci Rep 2023; 13:11608. [PMID: 37463953 DOI: 10.1038/s41598-023-38721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
This study focuses on the efficient and cost-effective synthesis of silver nanoparticles (AgNPs) using plant extracts, which have versatile and non-toxic applications. The research objectives include synthesizing AgNPs from readily available plant extracts, optimizing their production and multi scale characterization, along with exploring their use for enzyme immobilization and mitigation of poultry feather waste. Among the plant extracts tested, the flower extract of Hibiscus rosa-sinensis (HF) showed the most potential for AgNP synthesis. The synthesis of HF-mediated AgNPs was optimized using response surface methodology (RSM) for efficient and environment friendly production. Additionally, the keratinase enzyme obtained from Bacillus sp. NCIM 5802 was covalently linked to AgNPs, forming a keratinase nanocomplex (KNC) whose biochemical properties were evaluated. The KNC demonstrated optimal activity at pH 10.0 and 60 °C and it displayed remarkable stability in the presence of various inhibitors, metal ions, surfactants, and detergents. Spectroscopic techniques such as FTIR, UV-visible, and X-ray diffraction (XRD) analysis were employed to investigate the formation of biogenic HF-AgNPs and KNC, confirming the presence of capping and stabilizing agents. The morphological characteristics of the synthesized AgNPs and KNC were determined using transmission electron microscopy (TEM) and particle size analysis. The study highlighted the antimicrobial, dye scavenging, and antioxidant properties of biogenic AgNPs and KNC, demonstrating their potential for various applications. Overall, this research showcases the effectiveness of plant extract-driven green synthesis of AgNPs and the successful development of keratinase-laden nanocomplexes, opening possibilities for their use in immobilizing industrial and commercial enzymes.
Collapse
Affiliation(s)
- Isha Sharma
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Pranshi Gupta
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India.
| |
Collapse
|
5
|
Algarni A, Fayomi A, Al Garalleh H, Afandi A, Brindhadevi K, Pugazhendhi A. Nanofabrication synthesis and its role in antibacterial, anti-inflammatory, and anticoagulant activities of AgNPs synthesized by Mangifera indica bark extract. ENVIRONMENTAL RESEARCH 2023; 231:115983. [PMID: 37137456 DOI: 10.1016/j.envres.2023.115983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023]
Abstract
The bio-based nanoparticles synthesis and assessment of their potential biomedical applications related research is rapidly emerging. The ability of an aqueous ethanolic bark extract of Mangifera indica to synthesize silver nanoparticles (AgNPs) as well as its antibacterial, anti-inflammatory, and anticancer activities were investigated in this study. Interestingly, the bark extract effectively synthesized the AgNPs, including an absorbance peak at 412 nm and sizes ranging from 56 to 89 nm. The Fourier Transform Infrared spectroscopy (FTIR) analysis confirmed that the presence of most essential functional groups belongs to the most bioactive compounds. Synthesized AgNPs showed fine antibacterial activity against the Urinary Tract Infection (UTI) causing bacterial pathogens such as Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus saprophyticus at 50 μg mL-1 concentrations. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of AgNPs against these pathogens were found as 12.5 ± 0.8 & 13 ± 0.6, 13.6 ± 0.5 & 14 ± 0.7, 11.5 ± 0.3 & 11.5 ± 0.4, 13 ± 0.8 & 13 ± 0.7, and 11.8 ± 0.4 & 12 ± 0.8 μg mL-1 respectively. Interestingly, this AgNPs also possesses outstanding anti-inflammatory and anticancer activities as studied against the egg albumin denaturation (85%) inhibition and MCF 7 (Michigan Cancer Foundation-7: breast cancer cells) cell line (cytotoxicity: 80.1%) at 50 μg mL-1 concentration. Similarly at 50 μg mL-1 concentration showed 75% of DPPH radical scavenging potential. These activities were dose dependent, and the findings suggest that the M. indica bark aqueous ethanolic extract synthesized AgNPs can be used as antibacterial, anti-inflammatory, and anticancer agents after in-vivo testing.
Collapse
Affiliation(s)
- Ali Algarni
- Department of Statistics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Aisha Fayomi
- Department of Statistics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology, Jeddah, 21361, Saudi Arabia
| | - Abdulkareem Afandi
- Department of Mathematical Science, College of Engineering, University of Business and Technology, Jeddah, 21361, Saudi Arabia
| | - Kathirvel Brindhadevi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
6
|
Santhoshkumar M, Perumal D, Narenkumar J, Ramachandran V, Muthusamy K, Alfarhan A, David E. Potential use of bio functionalized nanoparticles to attenuate triple negative breast cancer (MDA-MB-231 cells). Bioprocess Biosyst Eng 2023; 46:803-811. [PMID: 36977929 DOI: 10.1007/s00449-023-02858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
This study showed that bio-functional silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) were synthesized in aqueous extracts of Gymnema sylvestre leaves and tested for toxicity assessment against triple-negative breast cancer cells (TNBC). Biofunctional nanoparticle (NPs) samples were characterized using UV-Vis spectroscopy, FT-IR, XRD, SEM, and TEM. The results showed that the phytofabrication of AgNPs resulted in a dark brown, UV-vis maximum absorbance peak at 413 nm. The AgNPs were crystalline and spherical, with sizes ranging from 20 to 60 nm, as confirmed by the XRD pattern and TEM images. Another phytofabrication of ZnONPs exhibited a white precipitate corresponding to a UV-Vis maximum absorption peak at 377 nm and a fine micro flower morphology with a particle-sized tribution between 100 and 200 nm. In addition, FT-IR spectra showed that bioorganic compounds are associated with NPs that respond to reduced Ag+ ions and AgNPs tabilizers. Invitro cytotoxicity studies revealed the potent anti-cancer effects of phytofabricated AgNPs and ZnONPs on TNBC cells. Furthermore, the AO/EB double staining assay results proved that apoptotic cells are distinguished by greenish-yellow fluorescence of the cell nuclei with IC50 concentrations of 44 ± 0.8 µg/mL for AgNPs and 26.2 ± 0.5 µg/mL for ZnONPs, respectively. Based on our results, we expect that the anticancer function of the biofunctional NPs is due to the apoptotic activation of TNBC cells by increased ROS. Therefore, the presented study demonstrated that biofunctional AgNPs and ZnONPs have excellent prospects for the anti-cancer activity that can be used in pharmaceutical and medical fields.
Collapse
Affiliation(s)
- Murali Santhoshkumar
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, Tamilnadu, 632115, India
| | - Dhandapani Perumal
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, Tamilnadu, 632115, India
| | - Jayaraman Narenkumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, 600073, India.
- Department of Environmental & Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India.
| | - Vasudevan Ramachandran
- Department of Medical Science and Technology, University College of MAIWP International, Taman Batu Muda, Batu Caves, 68100, Kuala Lumpur, Malaysia
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Karnan Muthusamy
- Grassland and Forages Division, Rural Development Administration, National Institute of Animal Science, Cheonan, 31000, Korea
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, Tamilnadu, 632115, India.
| |
Collapse
|
7
|
Shobana N, Prakash P, Samrot AV, Saigeetha S, Sathiyasree M, Thirugnanasambandam R, Sridevi V, Basanta Kumar M, Gokul Shankar S, Dhiva S, Remya R. Nanotoxicity studies of Azadirachta indica mediated silver nanoparticles against Eudrilus eugeniae, Danio rerio and its embryos. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
8
|
Sonbol H, Mohammed AE, Korany SM. Soil Fungi as Biomediator in Silver Nanoparticles Formation and Antimicrobial Efficacy. Int J Nanomedicine 2022; 17:2843-2863. [PMID: 35795079 PMCID: PMC9250898 DOI: 10.2147/ijn.s356724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction and Objectives Biogenic agents in nanoparticles fabrication are gaining great interest due to their lower possible negative environmental impacts. The present study aimed to isolate fungal strains from deserts in Saudi Arabia and assess their ability in silver nanoparticles (AgNPs) fabrication and evaluate their antibacterial effect. Methods Soil fungi were identified using 18s rDNA, and their ability in NPs fabrication was assessed as extracellular synthesis, then UV-vis spectroscopy, dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy, and transmission electron microscopy were used for AgNPs characterization. The antibacterial activity of fungal-based NPs was assessed against one Gram-positive methicillin-resistant S. aureus (MRSA) and three Gram-negative bacteria (E. coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae). Ultrastructural changes caused by fungal-based NPs on K. pneumoniae were investigated using TEM along with SDS-PAGE for protein profile patterns. Results The three fungal isolates were identified as Phoma sp. (MN995524), Chaetomium globosum (MN995493), and Chaetomium sp. (MN995550), and their filtrate reduced Ag ions into spherical P-AgNPs, G-AgNPs, and C-AgNPs, respectively. DLS data showed an average size between 12.26 and 70.24 nm, where EDX spectrums represent Ag at 3.0 keV peak. G-AgNPs displayed strong antibacterial activities against Klebsiella pneumoniae, and the ultrastructural changes caused by NPs were noted. Additionally, SDS-PAGE analysis of treated K. pneumoniae revealed fewer bands compared to control, which could be related to protein degradation. Conclusion Present findings have consequently developed an eco-friendly approach in NPs formation by environmentally isolated fungal strains to yield NPs as antibacterial agents.
Collapse
Affiliation(s)
- Hana Sonbol
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shereen M Korany
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
9
|
Sher N, Ahmed M, Mushtaq N, Khan RA. Enhancing antioxidant, antidiabetic, and antialzheimer performance of
Hippeastrum hybridum
(L.) using silver nanoparticles. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Naila Sher
- Department of Biotechnology University of Science and Technology Bannu‐KPK Pakistan
| | - Mushtaq Ahmed
- Department of Biotechnology University of Science and Technology Bannu‐KPK Pakistan
| | - Nadia Mushtaq
- Department of Botany University of Science and Technology Bannu‐KPK Pakistan
| | - Rahmat Ali Khan
- Department of Biotechnology University of Science and Technology Bannu‐KPK Pakistan
| |
Collapse
|
10
|
Shyamalagowri S, Charles P, Manjunathan J, Kamaraj M, Anitha R, Pugazhendhi A. In vitro anticancer activity of silver nanoparticles phyto-fabricated by Hylocereus undatus peel extracts on human liver carcinoma (HepG2) cell lines. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Majeed M, Hakeem KR, Rehman RU. Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications- present insights and bottlenecks. CHEMOSPHERE 2022; 288:132527. [PMID: 34637861 DOI: 10.1016/j.chemosphere.2021.132527] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The phytocomponent conjugated silver nanoparticles (AgNPs) have been extensively explored for various therapeutic applications such as antimicrobial, antioxidant, anticancer, anti-inflammatory, antidiabetic and anticoagulant effects. The bio-conjugation of Ag-based nanomaterial with plant extracts reduces their toxicity to biological systems and enhances their therapeutic effectiveness. The diversity of phytochemicals or capping agents provided by the plant extracts and the small size and large surface area of AgNPs permits maximum adsorption of these capping agents onto their surfaces that further promote the therapeutic performance of phytoconjugated AgNPs in various biomedical applications. The mechanistic action involved in antimicrobial and anticancer functions of AgNPs is mainly dependent on the induction of reactive oxygen species (ROS) resulting in cellular apoptosis and necrosis. This review summarizes the recent studies of various plant extract assisted synthesis of AgNPs, potential biomedical applications with the possible mechanism of action and major shortcomings affecting their therapeutic efficacy.
Collapse
Affiliation(s)
- Mahak Majeed
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190005, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190005, India.
| |
Collapse
|
12
|
Suriyakala G, Sathiyaraj S, Devanesan S, AlSalhi MS, Rajasekar A, Maruthamuthu MK, Babujanarthanam R. Phytosynthesis of silver nanoparticles from Jatropha integerrima Jacq. flower extract and their possible applications as antibacterial and antioxidant agent. Saudi J Biol Sci 2022; 29:680-688. [PMID: 35197733 PMCID: PMC8848134 DOI: 10.1016/j.sjbs.2021.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/15/2022] Open
Abstract
Jatropha integerrima Jacq. flower extract was used for the synthesis of silver nanoparticles in the current study. Various spectroscopic analyses were used to characterize the synthesized nanoparticles (JIF-AgNPs). The antibacterial efficacy of JIF-AgNPs was studied by well diffusion and microdilution techniques. In addition, the impact of JIF-AgNPs on free radicals was evaluated. On the ultraviolet–visible spectrum, the nanoparticles exhibit the highest absorbance at 422 nm. Based on the Fourier transform infrared spectrum, phenols and amino acids were involved in capping the JIF-AgNPs. Crystalline sphere-shaped nanoparticles with an average size of 50.07 nm and zeta potential of −19.0 mV were confirmed by X-ray diffraction, transmission electron microscopy, and dynamic light scattering analysis respectively. The JIF-AgNPs exhibit the highest and lowest growth inhibitory activity towards E. coli and B. subtilis. The minimal inhibitory concentration of JIF-AgNPs against E. coli, K. pneumoniae, S. aureus, and B. subtilis were 2.5, 5.0, 5.0, and 7.5 μg/mL, respectively. The JIF-AgNPs exhibited significant radical scavenging activities against DPPH (IC50-32.5 ± 0.06 µg/mL), hydroxyl (IC50-25 ± 0.09 µg/mL), Superoxide (IC50-42.5 ± 0.13 µg/mL), and ABTs (IC50-33.5 ± 0.15 µg/mL). Thus, synthesized nanoparticles were a good alternative to develop an antibacterial and antioxidant agent.
Collapse
|
13
|
Muthusamy N, Kanniah P, Vijayakumar P, Murugan U, Raj DS, Sankaran U. Green-Inspired Fabrication of Silver Nanoparticles and Examine its Potential In-Vitro Cytotoxic and Antibacterial Activities. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02082-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Sathiyaraj S, Suriyakala G, Dhanesh Gandhi A, Babujanarthanam R, Almaary KS, Chen TW, Kaviyarasu K. Biosynthesis, characterization, and antibacterial activity of gold nanoparticles. J Infect Public Health 2021; 14:1842-1847. [PMID: 34690096 DOI: 10.1016/j.jiph.2021.10.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND In recent decades focus of research has been toward an alternative antibacterial agent because of growing bacterial resistance and side effects of antibacterial agents. In the current study, the antibacterial activity of gold nanoparticles has been evaluated on selected human pathogens. METHODS In this study, we used panchagavya (PG) to synthesize gold nanoparticles, and the resulting nanoparticles (PG-AuNPs) were characterized by several spectroscopic techniques. In addition, antibacterial activity of PG-AuNPs against Escherichia coli, Bacillus subtilis, and Klebsiella pneumoniae were studied by well diffusion method. RESULTS The synthesis of AuNPs was affirmed by a colour change, which was further validated by UV-vis spectra with a maximum absorption peak at 527 nm. Bandgap energy was calculated as 2.13 eV by Tauc method from the UV result. The presence of amino acids and proteins in PG was responsible for the conversion of gold ions to AuNPs, according to FTIR analysis. (111), (200), (220), and (311) crystallographic planes were observed by XRD; further crystalline nature was validated by SAED analysis. The size and zeta value were found to be 53.29 nm and -9.8 mV respectively. Spherical shaped nanoparticles and elemental structure of PG-AuNPs were confirmed by HRTEM and EDS analysis. The antibacterial activity of PG-AuNPs showed the maximum and minimum zone of inhibition against K. pneumoniae (17.12 ± 0.14 mm) and B. subtilis (11.42 ± 0.58 mm). CONCLUSION Antibacterial activity of PG-AuNPs was found to be strong against gram negative bacteria and moderate against gram positive bacteria. Based on the result, it was concluded that PG-AuNPs could be used to combat antibiotic drug resistance. Besides, in vitro and in vivo toxicity studies of PG-AuNPs should be conducted.
Collapse
Affiliation(s)
- Sivaji Sathiyaraj
- Nano and Energy Bioscience Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Gunasekaran Suriyakala
- Nano and Energy Bioscience Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Arumugam Dhanesh Gandhi
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Ranganathan Babujanarthanam
- Nano and Energy Bioscience Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India.
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - K Kaviyarasu
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS-National Research Foundation (NRF), 1 Old Faure Road, 7129, P.O. Box 722, Somerset West, Western Cape Province, South Africa.
| |
Collapse
|
15
|
Trak D, Arslan Y. Synthesis of silver nanoparticles using dried black mulberry ( Morus nigra L.) fruit extract and their antibacterial and effective dye degradation activities. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1980038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Diğdem Trak
- Chemistry Department, Faculty of Arts & Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Yasin Arslan
- Nanoscience and Nanotechnology Department, Faculty of Arts & Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
- Faculty of Science, Karabük University, Karabük, Turkey
| |
Collapse
|