1
|
Legorreta-Haquet MV, Santana-Sánchez P, Chávez-Sánchez L, Chávez-Rueda AK. The effect of prolactin on immune cell subsets involved in SLE pathogenesis. Front Immunol 2022; 13:1016427. [PMID: 36389803 PMCID: PMC9650038 DOI: 10.3389/fimmu.2022.1016427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/13/2022] [Indexed: 08/27/2023] Open
Abstract
The higher frequency of autoimmune diseases in the female population compared to males suggests that certain hormones, such as prolactin (PRL), play a role in determining the prevalence of autoimmunity in women, particularly during childbearing age. PRL can act not only as a hormone but also as a cytokine, being able to modulate immune responses. Hyperprolactinemia has been implicated in the pathogenesis of various autoimmune diseases where it may affect disease activity. One of the conditions where PRL has such a role is systemic lupus erythematosus (SLE). PRL regulates the proliferation and survival of both lymphoid and myeloid cells. It also affects the selection of T-cell repertoires by influencing the thymic microenvironment. In autoimmune conditions, PRL interferes with the activity of regulatory T cells. It also influences B cell tolerance by lowering the activation threshold of anergic B cells. The production of CD40L and cytokines, such as interleukin IL-6, are also promoted by PRL. This, in turn, leads to the production of autoantibodies, one of the hallmarks of SLE. PRL increases the cytotoxic activity of T lymphocytes and the secretion of proinflammatory cytokines. The production of proinflammatory cytokines, particularly those belonging to the type 1 interferon (IFN) family, is part of the SLE characteristic genetic signature. PRL also participates in the maturation and differentiation of dendritic cells, promoting the presentation of autoantigens and high IFNα secretion. It also affects neutrophil function and the production of neutrophil traps. Macrophages and dendritic cells can also be affected by PRL, linking this molecule to the abnormal behavior of both innate and adaptive immune responses.This review aimed to highlight the importance of PRL and its actions on the cells of innate and adaptive immune responses. Additionally, by elucidating the role of PRL in SLE etiopathogenesis, this work will contribute to a better understanding of the factors involved in SLE development and regulation.
Collapse
Affiliation(s)
| | | | | | - Adriana Karina Chávez-Rueda
- Unidad de Investigación Médica en Inmunología (UIM) en Inmunología, Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social, México City, Mexico
| |
Collapse
|
2
|
Tufa DM, Shank T, Yingst AM, Trahan GD, Shim S, Lake J, Woods R, Jones K, Verneris MR. Prolactin Acts on Myeloid Progenitors to Modulate SMAD7 Expression and Enhance Hematopoietic Stem Cell Differentiation into the NK Cell Lineage. Sci Rep 2020; 10:6335. [PMID: 32286456 PMCID: PMC7156717 DOI: 10.1038/s41598-020-63346-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
Numerous cell types modulate hematopoiesis through soluble and membrane bound molecules. Whether developing hematopoietic progenitors of a particular lineage modulate the differentiation of other hematopoietic lineages is largely unknown. Here we aimed to investigate the influence of myeloid progenitors on CD34+ cell differentiation into CD56+ innate lymphocytes. Sorted CD34+ cells cultured in the presence of stem cell factor (SCF) and FMS-like tyrosine kinase 3 ligand (FLT3L) give rise to numerous cell types, including progenitors that expressed the prolactin receptor (PRLR). These CD34+PRLR+ myeloid-lineage progenitors were derived from granulocyte monocyte precursors (GMPs) and could develop into granulocytes in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) in vitro. Moreover, CD34+PRLR+ myeloid progenitors lacked lymphoid developmental potential, but when stimulated with prolactin (PRL) they increased the differentiation of other CD34+ cell populations into the NK lineage in a non-contact dependent manner. Both mRNA and protein analyses show that PRL increased mothers against decapentaplegic homolog 7 (SMAD7) in CD34+PRLR+ myeloid cells, which reduced the production of transforming growth factor beta 1 (TGF-β1), a cytokine known to inhibit CD56+ cell development. Thus, we uncover an axis whereby CD34+PRLR+ GMPs inhibit CD56+ lineage development through TGF-β1 production and PRL stimulation leads to SMAD7 activation, repression of TGF-β1, resulting in CD56+ cell development.
Collapse
Affiliation(s)
- Dejene M Tufa
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Tyler Shank
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Ashley M Yingst
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - George Devon Trahan
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Seonhui Shim
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Jessica Lake
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Renee Woods
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Kenneth Jones
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Michael R Verneris
- University of Colorado and Children's Hospital of Colorado, Department of Pediatrics, Center for Cancer and Blood Disorders. Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Liu Y, Zhang Z, Jin Q, Liu Y, Kang Z, Huo Y, He Z, Feng X, Yin J, Wu X, Wang H, Xu H. Hyperprolactinemia is associated with a high prevalence of serum autoantibodies, high levels of inflammatory cytokines and an abnormal distribution of peripheral B-cell subsets. Endocrine 2019; 64:648-656. [PMID: 30887277 DOI: 10.1007/s12020-019-01896-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Hyperprolactinemia (HPRL) has been reported in many autoimmune diseases. However, the serum autoantibody profile and peripheral B-cell subset distribution in women with HPRL are largely unknown. The current study aimed to investigate the autoantibody prevalence and cytokine levels as well as to further explore the B-cell subset distribution in women with HPRL. METHODS Sera from 202 women with HPRL and 97 healthy women were included in this study. All sera were examined for prolactin (PRL), anti-nuclear antibody (ANA), rheumatoid factor, anticardiolipin (ACL), immunoglobulin G, immunoglobulin M, complement 3, complement 4, interleukin 4 (IL-4) and interleukin 6 (IL-6). Peripheral blood was collected from 22 women with HPRL and 19 healthy women, and B-cell subsets were measured by flow cytometry. RESULTS At least one autoantibody was found in 47 out of 202 women with HPRL compared with 9 of 97 healthy women (p < 0.001). The levels of IL-4 (p < 0.0001) and IL-6 (p < 0.0001) were significantly higher in women with HPRL than in healthy women. The percentages of naive IgD+IgM- B cells (BND cells, p < 0.0001), antibody-secreting cells (p = 0.007) and unswitched memory B cells (p = 0.004) among the total B cells from HPRL women were significantly higher than those from healthy women. CONCLUSIONS Women with HPRL had a higher prevalence of autoantibodies, higher serum levels of IL-4 and IL-6, and more BND cells, antibody-secreting B cells and unswitched memory B cells than healthy women. These data imply that a high level of PRL is associated with autoimmune diseases.
Collapse
Affiliation(s)
- Yaoyang Liu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhiguo Zhang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qianmei Jin
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zijian Kang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yongbao Huo
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhengwen He
- Department of Laboratory Diagnosis, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xu Feng
- Department of Reproductive Medical Center, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian Yin
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Huaizhou Wang
- Department of Laboratory Diagnosis, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Legorreta-Herrera M. The Influence of Prolactin on the Immune Response to Parasitic Diseases. ACTA ACUST UNITED AC 2018. [DOI: 10.3233/nib-170131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Martha Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México
| |
Collapse
|
5
|
El Tahlawi SM, El Eishi NH, Kahhal RK, Hegazy RA, El Hanafy GM, Abdel Hay RM, Shaker OG. Do Prolactin and its Receptor Play a Role in Alopecia Areata? Indian J Dermatol 2018; 63:241-245. [PMID: 29937561 PMCID: PMC5996625 DOI: 10.4103/ijd.ijd_590_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Context: Studying the link between prolactin and autoimmunity has gained much ground over the past years. Its role played in alopecia areata (AA) is not clear yet, as previous reports yielded controversial results. Aims: This study aimed to measure the serum level of prolactin and to detect the expression of its receptor in AA, in an attempt to highlight its possible role in the pathogenesis of this disease. Subjects and Methods: A case-control study of 30 AA patients and 20 controls from outpatient clinic were undertaken. Every patient was subjected to history taking and clinical examination to determine the severity of alopecia tool (SALT) score. Blood samples were taken from patients and controls to determine the serum prolactin level. Scalp biopsies were obtained from the lesional skin of patients and normal skin of controls for assessment of the prolactin receptor. Statistical Analysis: Depending upon the type of data, t-test, analysis of variance test, Chi-square, receiver operator characteristic curve were undertaken. Results: On comparing the serum prolactin level between patients and controls, no significant difference was found, while the mean tissue level of prolactin receptor was significantly higher in patients than in controls. In patients, a significant positive correlation was found between the prolactin receptor and the SALT score. Conclusions: Prolactin plays a role in AA, and this role is probably through the prolactin receptors rather than the serum prolactin level.
Collapse
Affiliation(s)
- Samar M El Tahlawi
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen H El Eishi
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rima K Kahhal
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rehab A Hegazy
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ghada M El Hanafy
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania M Abdel Hay
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Recalde G, Moreno-Sosa T, Yúdica F, Quintero CA, Sánchez MB, Jahn GA, Kalergis AM, Mackern-Oberti JP. Contribution of sex steroids and prolactin to the modulation of T and B cells during autoimmunity. Autoimmun Rev 2018. [DOI: 10.1016/j.autrev.2018.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Mackern-Oberti JP, Jara EL, Riedel CA, Kalergis AM. Hormonal Modulation of Dendritic Cells Differentiation, Maturation and Function: Implications for the Initiation and Progress of Systemic Autoimmunity. Arch Immunol Ther Exp (Warsz) 2016; 65:123-136. [PMID: 27585815 DOI: 10.1007/s00005-016-0418-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/04/2016] [Indexed: 01/09/2023]
Abstract
Hormonal homeostasis is crucial for keeping a competent and healthy immune function. Several hormones can modulate the function of various immune cells such as dendritic cells (DCs) by influencing the initiation of the immune response and the maintenance of peripheral tolerance to self-antigens. Hormones, such as estrogens, prolactin, progesterone and glucocorticoids may profoundly affect DCs differentiation, maturation and function leading to either a pro-inflammatory or an anti-inflammatory (or tolerogenic) phenotype. If not properly regulated, these processes can contribute to the pathogenesis of autoimmune disease. An unbalanced hormonal status may affect the production of pro-inflammatory cytokines, the expression of activating/inhibitory receptors and co-stimulatory molecules on conventional and plasmacytoid DCs (pDCs), conferring susceptibility to develop autoimmunity. Estrogen receptor (ER)-α signaling in conventional DCs can promote IFN-α and IL-6 production and induce the expression of CD40, CD86 and MHCII molecules. Furthermore, estrogen modulates the pDCs response to Toll-like receptor ligands enhancing T cell priming. During lupus pathogenesis, ER-α deficiency decreased the expression of MHC II on pDCs from the spleen. In contrast, estradiol administration to lupus-prone female mice increased the expression of co-stimulatory molecules, enhanced the immunogenicity and produced large amounts of IL-6, IL-12 and TNF-α by bone marrow-derived DCs. These data suggest that estradiol/ER signaling may play an active role during lupus pathology. Similarly, understanding hormonal modulation of DCs may favor the design of new therapeutic strategies based on autologous tolerogenic DCs transfer, especially in sex-biased systemic autoimmune diseases. In this review, we discuss recent data relative to the role of different hormones (estrogen, prolactin, progesterone and glucocorticoids) in DC function during systemic autoimmune pathogenesis.
Collapse
Affiliation(s)
- Juan Pablo Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, Mendoza, Argentina. .,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina. .,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Evelyn L Jara
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Millennium Institute of Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Departamento de Endocrinología, Facultad de Medicina, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile. .,INSERM U1064, Nantes, France.
| |
Collapse
|
8
|
Triggianese P, Perricone C, Perricone R, De Carolis C. Prolactin and natural killer cells: evaluating the neuroendocrine-immune axis in women with primary infertility and recurrent spontaneous abortion. Am J Reprod Immunol 2014; 73:56-65. [PMID: 25345488 DOI: 10.1111/aji.12335] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022] Open
Abstract
PROBLEM An association between serum prolactin (PRL) and peripheral blood natural killer (NK) cells has been described in healthy women. We explored for the first time the PRL response to the thyrotrophin-releasing hormone (TRH) test and the association between PRL and NK cells in women with reproductive failure. METHODS A total of 130 women [31 primary infertility, 69 recurrent spontaneous abortion (RSA), and 30 fertile women] were evaluated by a TRH test to analyze the following: basal PRL (bPRL), peak-time PRL, PRL absolute and relative increase, decline-time PRL. Hyperprolactinaemia (HPRL) was defined as bPRL ≥15 ng/mL. NK cells were characterized by immunophenotyping. RESULTS Significantly higher bPRL levels were found in the infertile women than in controls. Both the infertile and the RSA women showed significantly elevated NK levels. bPRL levels correlated with NK cells in HPRL-infertile women. CONCLUSIONS In patients with HPRL, an association between NK cell and bPRL results. The dynamic test in the infertile women would help in the management of the pregnancy impairment.
Collapse
Affiliation(s)
- Paola Triggianese
- Department of 'Medicina dei Sistemi', Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | | | | | | |
Collapse
|
9
|
van der Sluis RJ, van den Aardweg T, Reuwer AQ, Twickler MT, Boutillon F, Van Eck M, Goffin V, Hoekstra M. Prolactin receptor antagonism uncouples lipids from atherosclerosis susceptibility. J Endocrinol 2014; 222:341-50. [PMID: 25063756 DOI: 10.1530/joe-14-0343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pituitary-derived hormone prolactin has been suggested to stimulate the development of atherosclerosis and cardiovascular disease through its effects on metabolism and inflammation. In this study, we aimed to challenge the hypothesis that inhibition of prolactin function may beneficially affect atherosclerosis burden. Hereto, atherosclerosis-susceptible LDL receptor (Ldlr) knockout mice were transplanted with bone marrow from transgenic mice expressing the pure prolactin receptor antagonist Del1-9-G129R-hPRL or their non-transgenic littermates as control. Recipient mice expressing Del1-9-G129R-hPRL exhibited a decrease in plasma cholesterol levels (-29%; P<0.05) upon feeding a Western-type diet (WTD), which could be attributed to a marked decrease (-47%; P<0.01) in the amount of cholesterol esters associated with pro-atherogenic lipoproteins VLDL/LDL. By contrast, Del1-9-G129R-hPRL-expressing mice did not display any change in the susceptibility for atherosclerosis after 12 weeks of WTD feeding. Both the absolute atherosclerotic lesion size (223 ± 33 × 10(3) μm(2) for Del1-9-G129R-hPRL vs 259 ± 32 × 10(3) μm(2) for controls) and the lesional macrophage and collagen contents were not different between the two groups of bone marrow recipients. Importantly, Del1-9-G129R-hPRL exposure increased levels of circulating neutrophils (+91%; P<0.05), lymphocytes (+55%; P<0.05), and monocytes (+43%; P<0.05), resulting in a 49% higher (P<0.01) total blood leukocyte count. In conclusion, we have shown that prolactin receptor signaling inhibition uncouples the plasma atherogenic index from atherosclerosis susceptibility in Ldlr knockout mice. Despite an associated decrease in VLDL/LDL cholesterol levels, application of the prolactin receptor antagonist Del1-9-G129R-hPRL does not alter the susceptibility for initial development of atherosclerotic lesions probably due to the parallel increase in circulating leukocyte concentrations.
Collapse
Affiliation(s)
- Ronald J van der Sluis
- Division of BiopharmaceuticsGorlaeus Laboratories, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333CC Leiden, The NetherlandsLaboratory for Microbiology and Infection ControlAmphia Hospital, Breda, The NetherlandsDepartment EndocrinologyDiabetology and Metabolic Diseases, Antwerp University Hospital, Antwerp, BelgiumInsermUnit 1151,Prolactin/Growth Hormone Pathophysiology Laboratory, Faculty of Medicine, Institut Necker Enfants Malades (INEM), University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Tim van den Aardweg
- Division of BiopharmaceuticsGorlaeus Laboratories, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333CC Leiden, The NetherlandsLaboratory for Microbiology and Infection ControlAmphia Hospital, Breda, The NetherlandsDepartment EndocrinologyDiabetology and Metabolic Diseases, Antwerp University Hospital, Antwerp, BelgiumInsermUnit 1151,Prolactin/Growth Hormone Pathophysiology Laboratory, Faculty of Medicine, Institut Necker Enfants Malades (INEM), University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Q Reuwer
- Division of BiopharmaceuticsGorlaeus Laboratories, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333CC Leiden, The NetherlandsLaboratory for Microbiology and Infection ControlAmphia Hospital, Breda, The NetherlandsDepartment EndocrinologyDiabetology and Metabolic Diseases, Antwerp University Hospital, Antwerp, BelgiumInsermUnit 1151,Prolactin/Growth Hormone Pathophysiology Laboratory, Faculty of Medicine, Institut Necker Enfants Malades (INEM), University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marcel T Twickler
- Division of BiopharmaceuticsGorlaeus Laboratories, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333CC Leiden, The NetherlandsLaboratory for Microbiology and Infection ControlAmphia Hospital, Breda, The NetherlandsDepartment EndocrinologyDiabetology and Metabolic Diseases, Antwerp University Hospital, Antwerp, BelgiumInsermUnit 1151,Prolactin/Growth Hormone Pathophysiology Laboratory, Faculty of Medicine, Institut Necker Enfants Malades (INEM), University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Florence Boutillon
- Division of BiopharmaceuticsGorlaeus Laboratories, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333CC Leiden, The NetherlandsLaboratory for Microbiology and Infection ControlAmphia Hospital, Breda, The NetherlandsDepartment EndocrinologyDiabetology and Metabolic Diseases, Antwerp University Hospital, Antwerp, BelgiumInsermUnit 1151,Prolactin/Growth Hormone Pathophysiology Laboratory, Faculty of Medicine, Institut Necker Enfants Malades (INEM), University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Miranda Van Eck
- Division of BiopharmaceuticsGorlaeus Laboratories, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333CC Leiden, The NetherlandsLaboratory for Microbiology and Infection ControlAmphia Hospital, Breda, The NetherlandsDepartment EndocrinologyDiabetology and Metabolic Diseases, Antwerp University Hospital, Antwerp, BelgiumInsermUnit 1151,Prolactin/Growth Hormone Pathophysiology Laboratory, Faculty of Medicine, Institut Necker Enfants Malades (INEM), University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Vincent Goffin
- Division of BiopharmaceuticsGorlaeus Laboratories, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333CC Leiden, The NetherlandsLaboratory for Microbiology and Infection ControlAmphia Hospital, Breda, The NetherlandsDepartment EndocrinologyDiabetology and Metabolic Diseases, Antwerp University Hospital, Antwerp, BelgiumInsermUnit 1151,Prolactin/Growth Hormone Pathophysiology Laboratory, Faculty of Medicine, Institut Necker Enfants Malades (INEM), University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Menno Hoekstra
- Division of BiopharmaceuticsGorlaeus Laboratories, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333CC Leiden, The NetherlandsLaboratory for Microbiology and Infection ControlAmphia Hospital, Breda, The NetherlandsDepartment EndocrinologyDiabetology and Metabolic Diseases, Antwerp University Hospital, Antwerp, BelgiumInsermUnit 1151,Prolactin/Growth Hormone Pathophysiology Laboratory, Faculty of Medicine, Institut Necker Enfants Malades (INEM), University Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
10
|
Reuwer AQ, Hoekstra M, Touraine P, Twickler MT, Goffin V. Is prolactin involved in the evolution of atherothrombotic disease? Expert Rev Endocrinol Metab 2012; 7:345-361. [PMID: 30780847 DOI: 10.1586/eem.12.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cardiovascular diseases (CVDs) account for approximately 30% of all deaths globally. The most important cause of CVD is atherothrombosis, in other words, narrowing of the arteries as a result of the deposition of cholesterol and other lipoid substances within the arterial wall. Several endocrine disorders have been linked to this pathological state. Recent clinical and experimental studies have suggested that prolactin, a pleiotropic pituitary hormone, may potentially contribute to CVD, either through direct modulation of local cellular processes within atherosclerotic plaques/thrombi and/or through influencing conventional cardiovascular metabolic risk factors. However, the precise role of prolactin in the pathology of CVD remains largely unknown. Here, the authors speculate whether prolactin-lowering treatment may become a future therapeutic approach in patients with elevated prolactin levels and concomitantly presenting with coexisting vascular disease or a significantly elevated risk for premature atherothrombotic vascular disease. Awareness of these new developments may also change our clinical opinions about therapeutic strategies in patients with prolactinomas.
Collapse
Affiliation(s)
- Anne Q Reuwer
- a Department of Vascular Medicine, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
- b Department of Internal Medicine, Tergooiziekenhuizen, 1201 DA Hilversum, The Netherlands.
| | - Menno Hoekstra
- c Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Philippe Touraine
- d Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Endocrinology and Reproductive Medicine, Pôle Cœur Métabolisme, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- e Université Pierre et Marie Curie, Site Pitié-Salpêtrière, Paris, France
- f INSERM, Unit 845, Faculty of Medicine, Research Center in Growth and Signaling, Team 'PRL/GH Pathophysiology', University Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Necker, Paris, France
| | - Marcel ThB Twickler
- a Department of Vascular Medicine, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
- g Department of Endocrinology, Diabetology and Metabolic Disease, Antwerp University Hospital, Wilrijkstraat, Edegem, Belgium
| | - Vincent Goffin
- f INSERM, Unit 845, Faculty of Medicine, Research Center in Growth and Signaling, Team 'PRL/GH Pathophysiology', University Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Necker, Paris, France
| |
Collapse
|
11
|
Properties of antibodies to a synthetic peptide representing an epitope shared by receptors of the type I cytokine family. Clin Exp Med 2012; 13:49-57. [PMID: 22294256 DOI: 10.1007/s10238-012-0177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 01/18/2012] [Indexed: 10/14/2022]
Abstract
Previous works from our laboratory demonstrated that the monoclonal antibody (MAb) called R7B4 is directed to an epitope shared by various receptors corresponding to the type I cytokine receptor family, containing the common motif WSXWS or the homologous F(Y)GEFS. Later a consensus peptide significantly recognized by the MAb was identified and synthesized (sequence HGYWSEWSPE). In the present work, an homologous of the consensus sequence (HHGYWSEWSPE) was conjugated to PADRE adjuvant to produce Ab that could simulate theMAb activity, that is, acting as hormone and/or cytokine antagonists. The covalently conjugated peptide-PADRE was a better immunogen than the consensus peptide alone according to the reactivity of sera from C57BL/6 immunized mice and, besides, no Ab to PADRE were detected. Furthermore, Ab to consensus peptide elicited after peptide-PADRE inoculation into mice behaved as immunomodulatory agents, since they improved the humoral response to a foreign antigen (in this case ovalbumin). In addition, the Ab inhibited the in vitro proliferation of various cell lines, mainly cells derived from human and mouse breast cancer. Thus, immunization with the conjugate peptide-PADRE prepared under the experimental conditions described herein originated immunomodulatory Ab that, in the future, could be tested in some pathological conditions.
Collapse
|
12
|
Multiple sclerosis attacks triggered by hyperprolactinemia. J Neurooncol 2009; 98:407-9. [DOI: 10.1007/s11060-009-0076-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 11/16/2009] [Indexed: 12/12/2022]
|
13
|
Yao G, Yang L, Hou Y. Phenotype and functions of spleen dendritic cells in RICK-knockout mice. Int Immunopharmacol 2009; 10:130-3. [PMID: 19853061 DOI: 10.1016/j.intimp.2009.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 10/20/2022]
Abstract
RICK (receptor-interacting caspase-like apoptosis-regulatory kinase), a protein kinase, promotes nuclear factor kappa B and caspase activation. Herein, in order to further learn the immune role of RICK, its gene in mice was knocked out. Then the phenotype, cytokine, endocytosis and stimulatory capacity of spleen dendritic cells (SDCs) from RICK(-) (knockout) and RICK(+) (wild type) mice were analyzed. Our results showed that the levels of I-Ad, CD11b, CD80 on SDCs from RICK(-) mice were higher while the levels of CD8alpha, CD40, CD45R were lower compared with those from RICK(+) mice; The intracellular levels of IL-4, IL-10, IL-12, IFN-gamma, and TNF-alpha in SDCs from RICK(-) mice were higher than those from RICK(+) mice; The endocytosis and stimulatory capacities of SDCs from RICK(-) mice were higher and lower than those from RICK(+) mice respectively. These data suggested that RICK had a profound influence on the maturation and functions of murine SDCs and subsequently regulated the organ immune responses.
Collapse
Affiliation(s)
- Genhong Yao
- Immunology and Reproductive Biology Lab, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PRChina
| | | | | |
Collapse
|
14
|
Prolactin and the Skin: A Dermatological Perspective on an Ancient Pleiotropic Peptide Hormone. J Invest Dermatol 2009; 129:1071-87. [DOI: 10.1038/jid.2008.348] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Nicot A. Gender and sex hormones in multiple sclerosis pathology and therapy. Front Biosci (Landmark Ed) 2009; 14:4477-515. [PMID: 19273365 DOI: 10.2741/3543] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several lines of evidence indicate that gender affects the susceptibility and course of multiple sclerosis (MS) with a higher disease prevalence and overall better prognosis in women than men. This sex dimorphism may be explained by sex chromosome effects and effects of sex steroid hormones on the immune system, blood brain barrier or parenchymal central nervous system (CNS) cells. The well known improvement in disease during late pregnancy has also been linked to hormonal changes and has stimulated recent clinical studies to determine the efficacy of and tolerance to sex steroid therapeutic approaches. Both clinical and experimental studies indicate that sex steroid supplementation may be beneficial for MS. This could be related to anti-inflammatory actions on the immune system or CNS and to direct neuroprotective properties. Here, clinical and experimental data are reviewed with respect to the effects of sex hormones or gender in the pathology or therapy of MS or its rodent disease models. The different cellular targets as well as some molecular mechanisms likely involved are discussed.
Collapse
|
16
|
Gupta V, Singh SM. ORIGINAL ARTICLE: Gender Dimorphism of Macrophage Response to GMCSF and IL-4 for Differentiation into Dendritic Cells. Am J Reprod Immunol 2008; 60:43-54. [DOI: 10.1111/j.1600-0897.2008.00589.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Jara LJ, Benitez G, Medina G. Prolactin, dendritic cells, and systemic lupus erythematosus. Autoimmun Rev 2008; 7:251-5. [DOI: 10.1016/j.autrev.2007.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Changes in the Ratio of Tc1/Tc2 and Th1/Th2 Cells but Not in Subtypes of NK-Cells in Preeclampsia. Int J Mol Sci 2007. [DOI: 10.3390/i8060492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Kim SI, Jeong YI, Jung ID, Lee JS, Lee CM, Yoon MS, Seong EY, Kim JI, Lee JD, Park YM. p-Coumaric acid inhibits indoleamine 2, 3-dioxygenase expression in murine dendritic cells. Int Immunopharmacol 2007; 7:805-15. [PMID: 17466914 DOI: 10.1016/j.intimp.2007.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 01/29/2007] [Accepted: 01/29/2007] [Indexed: 12/21/2022]
Abstract
Indoleamine 2, 3-dioxygenase (IDO), a key enzyme that catalyses the initial and rate-limiting step in the degradation of the tryptophan, is simultaneously expressed in murine dendritic cells and macrophages stimulated with interferon-gamma (IFN-gamma). In the present study, we investigated whether p-Coumaric acid (CA), which is suggested to exhibit antioxidant properties, could suppress the functional expression of IDO in murine bone marrow-derived dendritic cells (BMDCs) stimulated with IFN-gamma. Treatment with CA reduced intracellular expression of IDO mRNA and protein levels in IFN-gamma-activated murine BMDCs in vitro and in CD11c(+)CD8alpha(+) DCs of tumor-draining lymph node (TDLN) of tumor-bearing mice in vivo. Consequently, we obtained evidence that CA suppresses the functional activity of IDO, which catalyses oxidative catabolism of tryptophan, and significantly recovers the IDO-dependent T cell suppression. Activation of the signal transducer and activator of transcription 1 (STAT1) is important to be express IDO in IFN-gamma-stimulated murine BMDCs. To determine whether these inhibitory effects of CA are associated with the alteration of the signal transducer and activator of transcription 1 (STAT1) and IFN-gamma-inducible, dsRNA-activated serine/threonine protein kinase (PKR), BMDCs were pretreated with various concentrations of CA. We found that CA inhibited the activation of STAT1 in response to IFN-gamma. Based on our results, this study may account that CA could inhibit IDO expression by down-regulation of STAT1 activation in IFN-gamma-stimulated murine DCs.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Coumaric Acids/pharmacology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Immunologic Factors/pharmacology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Interferon-gamma/pharmacology
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Male
- Melanoma, Experimental/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Ovalbumin/immunology
- Propionates
- RNA, Messenger/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- STAT1 Transcription Factor/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Sang Il Kim
- Department of Obstetrics and Gynecology, College of Medicine, Pusan National University, Ami-Dong 1-10, Seo-Gu, Busan, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|