1
|
León G, Herrera M, Vargas M, Arguedas M, Sánchez A, Segura Á, Gómez A, Solano G, Corrales-Aguilar E, Risner K, Narayanan A, Bailey C, Villalta M, Hernández A, Sánchez A, Cordero D, Solano D, Durán G, Segura E, Cerdas M, Umaña D, Moscoso E, Estrada R, Gutiérrez J, Méndez M, Castillo AC, Sánchez L, Sánchez R, Gutiérrez JM, Díaz C, Alape A. Development and characterization of two equine formulations towards SARS-CoV-2 proteins for the potential treatment of COVID-19. Sci Rep 2021; 11:9825. [PMID: 33972631 PMCID: PMC8110969 DOI: 10.1038/s41598-021-89242-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/21/2021] [Indexed: 02/03/2023] Open
Abstract
In the current global emergency due to SARS-CoV-2 outbreak, passive immunotherapy emerges as a promising treatment for COVID-19. Among animal-derived products, equine formulations are still the cornerstone therapy for treating envenomations due to animal bites and stings. Therefore, drawing upon decades of experience in manufacturing snake antivenom, we developed and preclinically evaluated two anti-SARS-CoV-2 polyclonal equine formulations as potential alternative therapy for COVID-19. We immunized two groups of horses with either S1 (anti-S1) or a mixture of S1, N, and SEM mosaic (anti-Mix) viral recombinant proteins. Horses reached a maximum anti-viral antibody level at 7 weeks following priming, and showed no major adverse acute or chronic clinical alterations. Two whole-IgG formulations were prepared via hyperimmune plasma precipitation with caprylic acid and then formulated for parenteral use. Both preparations had similar physicochemical and microbiological quality and showed ELISA immunoreactivity towards S1 protein and the receptor binding domain (RBD). The anti-Mix formulation also presented immunoreactivity against N protein. Due to high anti-S1 and anti-RBD antibody content, final products exhibited high in vitro neutralizing capacity of SARS-CoV-2 infection, 80 times higher than a pool of human convalescent plasma. Pre-clinical quality profiles were similar among both products, but clinical efficacy and safety must be tested in clinical trials. The technological strategy we describe here can be adapted by other producers, particularly in low- and middle-income countries.
Collapse
Affiliation(s)
- Guillermo León
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - María Herrera
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Mariángela Vargas
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica.
| | - Mauricio Arguedas
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Andrés Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Aarón Gómez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Gabriela Solano
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Eugenia Corrales-Aguilar
- Virology-CIET (Research Center for Tropical Diseases), Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Kenneth Risner
- National Center for Biodefense and Infectious Diseases, George Mason University, Virginia, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Virginia, USA
| | - Charles Bailey
- National Center for Biodefense and Infectious Diseases, George Mason University, Virginia, USA
| | - Mauren Villalta
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Andrés Hernández
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Adriana Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Daniel Cordero
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Daniela Solano
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Gina Durán
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Eduardo Segura
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Maykel Cerdas
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Deibid Umaña
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Edwin Moscoso
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ricardo Estrada
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Jairo Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Marcos Méndez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ana Cecilia Castillo
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Laura Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ronald Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Cecilia Díaz
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Alberto Alape
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
2
|
da Costa CBP, Martins FJ, da Cunha LER, Ratcliffe NA, Cisne de Paula R, Castro HC. COVID-19 and Hyperimmune sera: A feasible plan B to fight against coronavirus. Int Immunopharmacol 2021; 90:107220. [PMID: 33302034 PMCID: PMC7678452 DOI: 10.1016/j.intimp.2020.107220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Since the very beginning of the COVID-19 pandemic, different treatment strategies have been explored. These mainly involve the development of antimicrobial, antiviral, and/or anti-inflammatory agents as well as vaccine production. However, other potential options should be more avidly investigated since vaccine production on a worldwide level, and the anti-vaccination movement, also known as anti-vax or vaccine hesitancy by many communities, are still real obstacles without a ready solution. This review presents recent findings on the potential therapeutic advantages of heterologous serotherapy for the treatment of COVID-19. We present not only the effective use in animal models of hyperimmune sera against this coronavirus but also strategies, and protocols for the production of anti-SARS-CoV-2 sera. Promising antigens are also indicated such as the receptor-binding domain (RBD) in SARS-CoV-2 S protein, which is already in phase 2/3 clinical trial, and the trimeric protein S, which was shown to be up to 150 times more potent than the serum from convalescent donors. Due to the high death rate, the treatment for those currently infected with coronavirus cannot be ignored. Therefore, the potential use of anti-SARS-CoV-2 hyperimmune sera should be carefully but urgently evaluated in phase 2/3 clinical studies.
Collapse
Affiliation(s)
- Camila B P da Costa
- Instituto Vital Brazil, Niterói, RJ 24230-410, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil
| | - Francislene J Martins
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil
| | | | - Norman A Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil; Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK
| | - Rafael Cisne de Paula
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil.
| | - Helena C Castro
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil; Programa de Pós-Graduação em Patologia, HUAP, UFF, RJ 24210-130, Brazil.
| |
Collapse
|
3
|
Song TZ, Zheng HY, Han JB, Jin L, Yang X, Liu FL, Luo RH, Tian RR, Cai HR, Feng XL, Liu C, Li MH, Zheng YT. Delayed severe cytokine storm and immune cell infiltration in SARS-CoV-2-infected aged Chinese rhesus macaques. Zool Res 2020; 41:503-516. [PMID: 32772513 PMCID: PMC7475018 DOI: 10.24272/j.issn.2095-8137.2020.202] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
As of June 2020, Coronavirus Disease 2019 (COVID-19) has killed an estimated 440 000 people worldwide, 74% of whom were aged ≥65 years, making age the most significant risk factor for death caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To examine the effect of age on death, we established a SARS-CoV-2 infection model in Chinese rhesus macaques ( Macaca mulatta) of varied ages. Results indicated that infected young macaques manifested impaired respiratory function, active viral replication, severe lung damage, and infiltration of CD11b + and CD8 + cells in lungs at one-week post infection (wpi), but also recovered rapidly at 2 wpi. In contrast, aged macaques demonstrated delayed immune responses with a more severe cytokine storm, increased infiltration of CD11b + cells, and persistent infiltration of CD8 + cells in the lungs at 2 wpi. In addition, peripheral blood T cells from aged macaques showed greater inflammation and chemotaxis, but weaker antiviral functions than that in cells from young macaques. Thus, the delayed but more severe cytokine storm and higher immune cell infiltration may explain the poorer prognosis of older aged patients suffering SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tian-Zhang Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Jian-Bao Han
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Xiang Yang
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Feng-Liang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Rong-Hua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ren-Rong Tian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Hou-Rong Cai
- Department of Respiratory and Critical Care Medicine, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Xiao-Li Feng
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Chao Liu
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Ming-Hua Li
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| |
Collapse
|
4
|
Santos WJ, Guiraldi LM, Lucheis SB. Should we be concerned about COVID-19 with nonhuman primates? Am J Primatol 2020; 82:e23158. [PMID: 32495390 PMCID: PMC7300441 DOI: 10.1002/ajp.23158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/24/2020] [Indexed: 01/12/2023]
Abstract
The coronavirus disease 2019 pandemic has radically changed the human activities worldwide. Although we are still learning about the disease, it is necessary that primatologists, veterinarians, and all that are living with nonhuman primates (NHP) be concerned about the probable health impacts as these animals face this new pandemic. We want to increase discussion with the scientific community that is directly involved with these animals, because preliminary studies report that NHP may become infected and develop symptoms similar to those in human beings.
Collapse
Affiliation(s)
- Wesley José Santos
- Department of Tropical Diseases, Medical SchoolSao Paulo State University (UNESP)BotucatuBrazil
| | - Lívia Maísa Guiraldi
- Department of Tropical Diseases, Medical SchoolSao Paulo State University (UNESP)BotucatuBrazil
| | - Simone Baldini Lucheis
- Department of Tropical Diseases, Medical SchoolSao Paulo State University (UNESP)BotucatuBrazil
- School of Veterinary Medicine and Animal ScienceSao Paulo State University (UNESP)BotucatuBrazil
| |
Collapse
|
5
|
Herbreteau CH, Jacquot F, Rith S, Vacher L, Nguyen L, Carbonnelle C, Lotteau V, Jolivet M, Raoul H, Buchy P, Saluzzo JF. Specific polyclonal F(ab')2 neutralize a large panel of highly pathogenic avian influenza A viruses (H5N1) and control infection in mice. Immunotherapy 2014; 6:699-708. [PMID: 24673720 DOI: 10.2217/imt.14.40] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIM There is still no specific therapy for infection with the highly pathogenic avian influenza A virus (HPAI) H5N1, which caused 39 human cases with a 64% fatality rate in 2013. MATERIALS & METHODS We prepared highly purified specific equine polyclonal immunoglobulin fragments (F(ab')2) against H5N1 and tested them for efficacy in vitro and with different administration schedules in H5N1-challenged BALB/c mice. RESULTS in vitro, F(ab')2 neutralized 21 different H5N1 strains from different areas, representative of 11 different clades and sub-clades and 9 years of evolution of the virus. In vivo mouse experiments identified that the most efficient administration protocol consists of five consecutive daily injections after infection; 10 mg/kg giving a 60% increase in survival. CONCLUSION These data demonstrate the ability of anti-H5N1 F(ab')2 to markedly reduce the mortality and morbidity associated with infection of mice with HPAI H5N1 virus, and their potential for human therapy.
Collapse
|
6
|
Louz D, Bergmans HE, Loos BP, Hoeben RC. Animal models in virus research: their utility and limitations. Crit Rev Microbiol 2012; 39:325-61. [PMID: 22978742 DOI: 10.3109/1040841x.2012.711740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viral diseases are important threats to public health worldwide. With the number of emerging viral diseases increasing the last decades, there is a growing need for appropriate animal models for virus studies. The relevance of animal models can be limited in terms of mimicking human pathophysiology. In this review, we discuss the utility of animal models for studies of influenza A viruses, HIV and SARS-CoV in light of viral emergence, assessment of infection and transmission risks, and regulatory decision making. We address their relevance and limitations. The susceptibility, immune responses, pathogenesis, and pharmacokinetics may differ between the various animal models. These complexities may thwart translating results from animal experiments to the humans. Within these constraints, animal models are very informative for studying virus immunopathology and transmission modes and for translation of virus research into clinical benefit. Insight in the limitations of the various models may facilitate further improvements of the models.
Collapse
Affiliation(s)
- Derrick Louz
- National Institute for Public Health and the Environment (RIVM), GMO Office , Bilthoven , The Netherlands
| | | | | | | |
Collapse
|
7
|
Nagata N, Iwata-Yoshikawa N, Taguchi F. Studies of severe acute respiratory syndrome coronavirus pathology in human cases and animal models. Vet Pathol 2010; 47:881-92. [PMID: 20664013 DOI: 10.1177/0300985810378760] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the severe acute respiratory syndrome (SARS) outbreak of 2003, approximately 10% of SARS patients developed progressive respiratory failure and died. Since then, several animal models have been established to study SARS coronavirus, with the aim of developing new antiviral agents and vaccines. This short review describes the pathologic features of SARS in relation to their clinical presentation in human cases. It also looks at animal susceptibility after experimental infection, animal models of SARS, and the pathogenesis of this disease. It seems that adaptation of the virus within the host animal and the subsequent abnormal immune responses may be key factors in the pathogenesis of this new and fatal respiratory disease. The proteases produced in the lung during inflammation could also play an important role for exacerbation of SARS in animals.
Collapse
Affiliation(s)
- N Nagata
- DVM, PhD, Department of Pathology, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo, Japan,
| | | | | |
Collapse
|
8
|
Cleri DJ, Ricketti AJ, Vernaleo JR. Severe acute respiratory syndrome (SARS). Infect Dis Clin North Am 2010; 24:175-202. [PMID: 20171552 PMCID: PMC7135483 DOI: 10.1016/j.idc.2009.10.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This article reviews the virology, history, pathology, epidemiology, clinical presentations, complications, radiology, laboratory testing, diagnosis, treatment, and prevention of severe respiratory distress syndrome, with reference to documented outbreaks of the disease.
Collapse
Affiliation(s)
- Dennis J Cleri
- Internal Medicine Residency Program, St Francis Medical Center, 601 Hamilton Avenue, Trenton, NJ 08629, USA.
| | | | | |
Collapse
|
9
|
White MR, Boland P, Tecle T, Gantz D, Sorenson G, Tornoe I, Holmskov U, McDonald B, Crouch EC, Hartshorn KL. Enhancement of antiviral activity of collectin trimers through cross-linking and mutagenesis of the carbohydrate recognition domain. J Innate Immun 2009; 2:267-79. [PMID: 20375547 DOI: 10.1159/000272313] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 10/05/2009] [Indexed: 12/28/2022] Open
Abstract
Surfactant protein D (SP-D) plays important roles in innate defense against respiratory viruses [including influenza A viruses (IAVs)]. Truncated trimers composed of its neck and carbohydrate recognition domains (NCRDs) bind various ligands; however, they have minimal inhibitory activity for IAV. We have sought to find ways to increase the antiviral activity of collectin NCRDs. Cross-linking of the SP-D NCRD with nonblocking monoclonal antibodies (mAbs) markedly potentiates antiviral activity. In the present report, we demonstrate that F(ab')2 [but not F(ab')1] fragments of a cross-linking mAb have similar effects. Hence, cross-linking activity, but not the Fc domain of the mAb, is needed for increased antiviral activity. In contrast, the Fc domain of the mAb was important for increasing viral uptake or respiratory burst responses of human neutrophils. Our NCRD constructs contain an S protein binding site. Herein, we show that a multivalent S protein complex caused cross-linking and also increased the antiviral activity of NCRDs. NCRDs of conglutinin and CL43 had greater intrinsic antiviral activity than those of SP-D or mannose-binding lectin. Based on motifs found in these serum collectins, we have constructed mutant versions of the human SP-D NCRD that have increased antiviral activity. These mutant NCRDs also had potentiated activity after cross-linking with F(ab')2 fragments or S protein complexes. Hence, the antiviral activity of NCRDs can be increased by 2 distinct, complementary strategies, namely cross-linking of NCRDs through various means and mutagenesis of CRD residues to increase viral binding. These findings may be relevant for antiviral therapy.
Collapse
Affiliation(s)
- Mitchell R White
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Recent antiviral strategies against human coronavirus-related respiratory illnesses. Curr Opin Pulm Med 2008; 14:248-53. [PMID: 18427249 DOI: 10.1097/mcp.0b013e3282f7646f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW The main purpose of this review is to summarize the current research (2006-2007) concerning the development of novel anticoronaviral strategies and compounds. RECENT FINDINGS Recent research led to the identification of several novel agents inhibiting coronaviral replication. The most promising compounds include carbohydrate-binding agents, neutralizing antibodies and drugs targeting a coronaviral envelope protein. SUMMARY Although initial outbreaks of coronavirus that causes severe acute respiratory syndrome (SARS-CoV) were controlled by public health measures, the development of vaccines and antiviral agents for SARS-CoV is essential for improving control and treatment of future outbreaks. Four years after the SARS-CoV epidemic, several compounds with an anticoronaviral activity have been identified.
Collapse
|
11
|
Current World Literature. Curr Opin Pulm Med 2008; 14:266-73. [DOI: 10.1097/mcp.0b013e3282ff8c19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|