1
|
Yashima M, Sato Y, Kazama I. Catechin synergistically potentiates mast cell-stabilizing property of caffeine. Allergy Asthma Clin Immunol 2021; 17:1. [PMID: 33407842 PMCID: PMC7789391 DOI: 10.1186/s13223-020-00502-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/08/2020] [Indexed: 08/30/2023] Open
Abstract
Caffeine and catechin, contained in coffee and tea, are commonly consumed substances worldwide. Studies revealed their health promoting functions, such as anti-oxidant, anti-cancer and anti-bacterial properties. Additionally, studies also revealed their roles in ameliorating the symptoms of allergic disorders, indicating their anti-allergic properties. In the present study, using the differential-interference contrast (DIC) microscopy, we examined the effects of caffeine and catechin on the degranulation from rat peritoneal mast cells. Both caffeine and catechin dose-dependently decreased the numbers of degranulating mast cells. At concentrations equal to or higher than 25 mM, caffeine and catechin markedly suppressed the numbers of degranulating mast cells. In contrast, at relatively lower concentrations, both substances did not significantly affect the numbers of degranulating mast cells. However, surprisingly enough, low concentrations of catechin (1, 2.5 mM) synergistically enhanced the suppressive effect of 10 mM caffeine on mast cell degranulation. These results provided direct evidence for the first time that caffeine and catechin dose-dependently inhibited the process of exocytosis. At relatively lower concentrations, caffeine or catechin alone did not stabilize mast cells. However, low concentrations of catechin synergistically potentiated the mast cell-stabilizing property of caffeine.
Collapse
Affiliation(s)
- Misaki Yashima
- Miyagi University, School of Nursing, 1-1 Gakuen, Taiwa-cho, Kurokawa-gun, Miyagi, 981-3298, Japan
| | - Yukine Sato
- Miyagi University, School of Nursing, 1-1 Gakuen, Taiwa-cho, Kurokawa-gun, Miyagi, 981-3298, Japan
| | - Itsuro Kazama
- Miyagi University, School of Nursing, 1-1 Gakuen, Taiwa-cho, Kurokawa-gun, Miyagi, 981-3298, Japan.
| |
Collapse
|
2
|
Synthesis and Antioxidative Activity of Piperine Derivatives Containing Phenolic Hydroxyl. J CHEM-NY 2020. [DOI: 10.1155/2020/2786359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Piperine was used in this study in its raw form, and different steps, such as amide hydrolysis and amidation, were used to synthesize piperine derivatives containing a phenolic hydroxyl group. DPPH and ABTS free radical scavenging assays were used to assess piperine derivative antioxidant activities. We constructed an AAPH oxidative stress erythrocyte model to study the effect of piperine derivatives on the hemolysis rate of oxidatively damaged erythrocytes as well as the hemoglobin oxidation rate. This AAPH model was also used to determine piperine derivative effects on antioxidant enzyme activity and malondialdehyde (MDA) content. Results showed that spectroscopic methods could synthesize and identify piperine derivatives containing phenolic hydroxyl groups (H-1∼H-3). Moreover, DPPH and ABTS assay results showed that piperine derivative free radical clearance rates were higher compared with the parent compound. Additionally, piperine derivatives (H-1∼H-3) were found to provide protection to AAPH oxidatively damaged erythrocytes in their ability to inhibit AAPH-induced erythrocyte lysis, while hemoglobin oxidation was higher compared with the parent compound. Piperine derivatives may protect intracellular glutathione peroxidase (GSH-Px) antioxidant enzyme system activities, safeguarding against oxidative damage. This study synthesized novel piperine derivatives for use as potential antioxidant agent candidates.
Collapse
|
3
|
Albuquerque AAS, Ferreira LG, Carvalho MTM, Capellini VK, Evora PRB, Celotto AC. Effects of NO/cGMP inhibitors in a rat model of anaphylactoid shock. ACTA ACUST UNITED AC 2020; 53:e8853. [PMID: 32130289 PMCID: PMC7057939 DOI: 10.1590/1414-431x20198853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/04/2019] [Indexed: 11/27/2022]
Abstract
Anaphylactic shock can be defined as an acute syndrome, and it is the most severe clinical manifestation of allergic diseases. Anaphylactoid reactions are similar to anaphylactic events but differ in the pathophysiological mechanism. Nitric oxide (NO) inhibitors during anaphylaxis suggest that NO might decrease the signs and symptoms of anaphylaxis but exacerbate associated vasodilation. Therefore, blocking the effects of NO on vascular smooth muscle by inhibiting the guanylate cyclase (GC) would be a reasonable strategy. This study aimed to investigate the effects of NO/cGMP pathway inhibitors methylene blue (MB), Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), and indigo carmine (IC) in shock induced by compound 48/80 (C48/80) in rats. The effect was assessed by invasive blood pressure measurement. Shock was initiated by C48/80 intravenous bolus injection 5 min before (prophylactic) or after (treatment) the administration of the inhibitors MB (3 mg/kg), L-NAME (1 mg/kg), and IC (3 mg/kg). Of the groups that received drugs as prophylaxis for shock, only the IC group did not present the final systolic blood pressure (SBP) better than the C48/80 group. Regarding shock treatment with the drugs tested, all groups had the final SBP similar to the C48/80group. Altogether, our results suggested that inhibition of GC and NO synthase in NO production pathway was not sufficient to revert hypotension or significantly improve survival.
Collapse
Affiliation(s)
- A A S Albuquerque
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - L G Ferreira
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - M T M Carvalho
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - V K Capellini
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.,Departamento de Biociências, Instituto de Saúde e Sociedade, Campus Baixada Santista, Universidade Federal de São Paulo, Santos, SP, Brasil
| | - P R B Evora
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A C Celotto
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.,Faculdade de Ciências da Saúde de Barretos Dr. Paulo Prata, Barretos, SP, Brasil
| |
Collapse
|
4
|
Chakraborty S, Ehsan I, Mukherjee B, Mondal L, Roy S, Saha KD, Paul B, Debnath MC, Bera T. Therapeutic potential of andrographolide-loaded nanoparticles on a murine asthma model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:102006. [PMID: 31059793 DOI: 10.1016/j.nano.2019.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/27/2019] [Accepted: 04/25/2019] [Indexed: 01/21/2023]
Abstract
Corticosteroids commonly prescribed in asthma show several side-effects. Relatively non-toxic andrographolide (AG) has an anti-asthmatic potential. But its poor bioavailability and short plasma half-life constrain its efficacy. To overcome them, we encapsulated AG in nanoparticle (AGNP) and evaluated AGNP for anti-asthmatic efficacy on murine asthma model by oral/pulmonary delivery. AGNP had 5.47% drug loading with a sustained drug release in vitro. Plasma and lung pharmacokinetic data showed predominantly improved AG-bioavailability upon AGNP administered orally/by pulmonary route. Cell numbers, IL-4, IL-5, and IL-13 levels in broncho-alveolar lavage fluid and serum IgE content were reduced significantly after administration of AGNP compared to free-AG treatment. AGNP-mediated suppression of NF-κβ was predominantly more compared to free-AG. Further, pulmonary route showed better therapeutic performance. In conclusion, AGNP effectively controlled mild and severe asthma and the pulmonary administration of AGNP was more efficacious than the oral route.
Collapse
Affiliation(s)
| | - Iman Ehsan
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| | - Laboni Mondal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Saheli Roy
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Krishna Das Saha
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Brahamacharry Paul
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Mita Chatterjee Debnath
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tanmoy Bera
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
5
|
Mathew G, Sharma A, Pickering RJ, Rosado CJ, Lemarie J, Mudgal J, Thambi M, Sebastian S, Jandeleit-Dahm KA, de Haan JB, Unnikrishnan MK. A novel synthetic small molecule DMFO targets Nrf2 in modulating proinflammatory/antioxidant mediators to ameliorate inflammation. Free Radic Res 2018; 52:1140-1157. [PMID: 30422019 DOI: 10.1080/10715762.2018.1533636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inflammation is a protective immune response against invading pathogens, however, dysregulated inflammation is detrimental. As the complex inflammatory response involves multiple mediators, including the involvement of reactive oxygen species, concomitantly targeting proinflammatory and antioxidant check-points may be a more rational strategy. We report the synthesis and anti-inflammatory/antioxidant activity of a novel indanedione derivative DMFO. DMFO scavenged reactive oxygen species (ROS) in in-vitro radical scavenging assays and in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. In acute models of inflammation (carrageenan-induced inflammation in rat paw and air pouch), DMFO effectively reduced paw oedema and leucocyte infiltration with an activity comparable to diclofenac. DMFO stabilised mast cells (MCs) in in-vitro A23187 and compound 48/80-induced assays. Additionally, DMFO stabilised MCs in an antigen (ovalbumin)-induced MC degranulation model in-vivo, without affecting serum IgE levels. In a model of chronic immune-mediated inflammation, Freund's adjuvant-induced arthritis, DMFO reduced arthritic score and contralateral paw oedema, and increased the pain threshold with an efficacy comparable to diclofenac but without being ulcerogenic. Additionally, DMFO significantly reduced serum TNFα levels. Mechanistic studies revealed that DMFO reduced proinflammatory genes (IL1β, TNFα, IL6) and protein levels (COX2, MCP1), with a concurrent increase in antioxidant genes (NQO1, haem oxygenase 1 (HO-1), Glo1, Nrf2) and protein (HO-1) in LPS-stimulated macrophages. Importantly, the anti-inflammatory/antioxidant effect on gene expression was absent in primary macrophages isolated from Nrf2 KO mice suggesting an Nrf2-targeted activity, which was subsequently confirmed using siRNA transfection studies in RAW macrophages. Therefore, DMFO is a novel, orally-active, safe (even at 2 g/kg p.o.), a small molecule which targets Nrf2 in ameliorating inflammation.
Collapse
Affiliation(s)
- Geetha Mathew
- a Department of Pharmacology, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India.,b Oxidative Stress Laboratory, Basic Science Domain , Baker Heart and Diabetes Institute , Melbourne , Australia.,c Department of Diabetes, the Alfred Centre , Monash University , Melbourne , Australia
| | - Arpeeta Sharma
- b Oxidative Stress Laboratory, Basic Science Domain , Baker Heart and Diabetes Institute , Melbourne , Australia
| | - Raelene J Pickering
- c Department of Diabetes, the Alfred Centre , Monash University , Melbourne , Australia
| | - Carlos J Rosado
- c Department of Diabetes, the Alfred Centre , Monash University , Melbourne , Australia
| | - Jeremie Lemarie
- b Oxidative Stress Laboratory, Basic Science Domain , Baker Heart and Diabetes Institute , Melbourne , Australia
| | - Jayesh Mudgal
- a Department of Pharmacology, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India
| | - Magith Thambi
- a Department of Pharmacology, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India
| | - Sarine Sebastian
- a Department of Pharmacology, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India
| | - Karin A Jandeleit-Dahm
- b Oxidative Stress Laboratory, Basic Science Domain , Baker Heart and Diabetes Institute , Melbourne , Australia.,c Department of Diabetes, the Alfred Centre , Monash University , Melbourne , Australia
| | - Judy B de Haan
- b Oxidative Stress Laboratory, Basic Science Domain , Baker Heart and Diabetes Institute , Melbourne , Australia
| | - Mazhuvancherry K Unnikrishnan
- d Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India
| |
Collapse
|
6
|
Kandhare AD, Aswar UM, Mohan V, Thakurdesai PA. Ameliorative effects of type-A procyanidins polyphenols from cinnamon bark in compound 48/80-induced mast cell degranulation. Anat Cell Biol 2017; 50:275-283. [PMID: 29354299 PMCID: PMC5768564 DOI: 10.5115/acb.2017.50.4.275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/21/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
Allergic diseases are a significant health concern in developing countries. Type-A procyanidin polyphenols from cinnamon (Cinnamomum zeylanicum Blume) bark (TAPP-CZ) possesses antiasthmatic and antiallergic potential. The present study was aimed at the possible anti-allergic mechanism of TAPP-CZ against the compound 48/80 (C48/80)–induced mast cell degranulation in isolated rat peritoneal mast cells (RPMCs). TAPP-CZ (1, 3, 10, and 30 µg/ml) was incubated for 3 hours with isolated, purified RPMCs. The C48/80 (1 µg/ml) was used to induce mast cell degranulation. The mast cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay whereas histamine, β-hexosaminidase (β-HEX), and interleukin-4 (IL-4) levels were determined in RPMCs. TAPP-CZ (3, 10, and 30 µg/ml) showed significant and dose-dependent decrease in a number of degranulated cells and levels of markers (histamine, β-HEX, and IL-4) as compared with C48/80 control. In conclusion, TAPP-CZ stabilizes mast cell and cause inhibition of the allergic markers such as histamine, IL-4, and β-HEX in IgE-mediated manner. The present study supports mast cell stabilization as a possible mechanism of action of TAPP-CZ against immune respiratory disorders such as asthma and allergic rhinitis.
Collapse
Affiliation(s)
- Amit D Kandhare
- Department of Scientific Affairs, Indus Biotech Private Limited, Pune, India
| | - Urmila M Aswar
- Department of Pharmacology, Sinhgad Institute of Pharmacy, Pune, India
| | - Vishwaraman Mohan
- Department of Scientific Affairs, Indus Biotech Private Limited, Pune, India
| | | |
Collapse
|
7
|
Choi YH, Song CH, Mun SP. Proanthocyanidin-rich Pinus radiata
bark extract inhibits mast cell-mediated anaphylaxis-like reactions. Phytother Res 2017; 32:290-297. [DOI: 10.1002/ptr.5973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/31/2017] [Accepted: 10/11/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Yun Ho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences; Chonbuk National University; Jeonju Jeonbuk 561-180 Republic of Korea
| | - Chang Ho Song
- Department of Anatomy, Medical School, Institute for Medical Sciences; Chonbuk National University; Jeonju Jeonbuk 561-180 Republic of Korea
| | - Sung Phil Mun
- Department of Wood Science and Technology, College of Agriculture and Life Sciences; Chonbuk National University; Jeonju Jeonbuk 54896 Republic of Korea
| |
Collapse
|
8
|
Piper nigrum extract ameliorated allergic inflammation through inhibiting Th2/Th17 responses and mast cells activation. Cell Immunol 2017; 322:64-73. [DOI: 10.1016/j.cellimm.2017.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/28/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023]
|
9
|
Chakraborty S, Kar N, Kumari L, De A, Bera T. Inhibitory effect of a new orally active cedrol-loaded nanostructured lipid carrier on compound 48/80-induced mast cell degranulation and anaphylactic shock in mice. Int J Nanomedicine 2017; 12:4849-4868. [PMID: 28744120 PMCID: PMC5511028 DOI: 10.2147/ijn.s132114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Type I hypersensitivity is an allergic reaction characterized by the overactivity of the immune system provoked by normally harmless substances. Glucocorticoids, anti-histamines, or mast cell stabilizers are the choices of treatment for type I hypersensitivity. Even though these drugs have the anti-allergic effect, they can have several side effects in prolong use. Cedrol is the main bioactive compound of Cedrus atlantica with anti-tumor, anti-oxidative, and platelet-activating factor inhibiting properties. METHODS In this study, the preparation and anti-anaphylactic effect of cedrol-loaded nanostructured lipid carriers (NLCs) were evaluated. NLCs were prepared using Compritol® 888 ATO and triolein as lipid phase and vitamin E d-α-tocopherylpolyethyleneglycol 1000 succinate, soya lecithin, and sodium deoxycholate as nanoparticle stabilizers. RESULTS The average diameter of cedrol-NLCs (CR-NLCs) was 71.2 nm (NLC-C1) and 91.93 nm (NLC-C2). The particle had negative zeta potential values of -31.9 mV (NLC-C1) and -44.5 mV (NLC-C2). Type I anaphylactoid reaction in the animal model is significantly reduced by cedrol and cedrol-NLC. This in vivo activity of cedrol resulted that cedrol suppressed compound 48/80-induced peritoneal mast cell degranulation and histamine release from mast cells. Furthermore, compound 48/80-evoked Ca2+ uptake into mast cells was reduced in a dose-dependent manner by cedrol and cedrol-NLC. Studies confirmed that the inhibition of type I anaphylactoid response in vivo in mice and compound 48/80-induced mast cell activation in vitro are greatly enhanced by the loading of cedrol into the NLCs. The safety of cedrol and CR-NLC was evaluated as selectivity index (SI) with prednisolone and cromolyn sodium as positive control. SI of CR-NLC-C2 was found to be 11.5-fold greater than both prednisolone and cromolyn sodium. CONCLUSION Administration of CR-NLC 24 hours before the onset of anaphylaxis can prevent an anaphylactoid reaction. NLCs could be a promising vehicle for the oral delivery of cedrol to protect anaphylactic reactions.
Collapse
Affiliation(s)
- Shreyasi Chakraborty
- Laboratory of Nanomedicine, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Nabanita Kar
- Laboratory of Nanomedicine, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Leena Kumari
- Laboratory of Nanomedicine, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Asit De
- Laboratory of Nanomedicine, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Tanmoy Bera
- Laboratory of Nanomedicine, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
10
|
Yıldırım HK, Dündar E. Potential of lactic acid bacteria as suppressors of wine allergies. BIO WEB OF CONFERENCES 2017. [DOI: 10.1051/bioconf/20170904009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Nishikawa H, Tsutsumi J, Kitani S. Anti-inflammatory and anti-oxidative effect of curcumin in connective tissue type mast cell. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
12
|
Hao Y, Piao X, Piao X. Saikosaponin-d inhibits β-conglycinin induced activation of rat basophilic leukemia-2H3 cells. Int Immunopharmacol 2012; 13:257-63. [PMID: 22580215 DOI: 10.1016/j.intimp.2012.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
β-Conglycinin is one of the major storage proteins in soybean and has been identified as a potential diagnostic marker for severe allergic reactions to soybean. Unfortunately, there is a lack of information on the signal transduction pathways of β-conglycinin induced mast cell activation and how to alleviate these allergic reactions. Bupleurum falcatum, a traditional oriental medicine, has been widely utilized in the treatment of influenza, fever, malaria and menstrual disorders. Furthermore, it has been reported that saikosaponins, the important principle of B. falcatum, possesses anti-allergic activities. Therefore, the present study investigated whether or not saikosaponin-d, an extract of B. falcatum, was effective in the treatment of allergic reactions cased by β-conglycinin, using a rat basophilic leukemia-2H3 cell line. There were multiple signaling pathways contributing to the development of β-conglycinin-mediated rat basophilic leukemia-2H3 cell activation. The intracellular calcium mobilization and tyrosine phosphorylation were early events, which in turn elicited reactive oxygen species production, gene activation of Cdc42 and c-Fos, and ultimately led to β-hexosaminidase release. Saikosaponin-d inhibited rat basophilic leukemia-2H3 cell degranulation by suppressing these critical incidents in the signal transduction pathway. These results suggest that saikosaponin-d exhibited anti-allergic activity and could become an effective herbal therapy for alleviating soybean allergy.
Collapse
Affiliation(s)
- Yue Hao
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China
| | | | | |
Collapse
|
13
|
Chung MJ, Kim JM, Lee S, Kim T, Kim D, Baek J, Kim T, Lee J, Kim K, Yoon JA, Choe M. Suppressive effects of Schizandra chinensis Baillon water extract on allergy-related cytokine generation and degranulation in IgE-antigen complex-stimulated RBL-2H3 cells. Nutr Res Pract 2012; 6:97-105. [PMID: 22586497 PMCID: PMC3349042 DOI: 10.4162/nrp.2012.6.2.97] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 01/04/2012] [Accepted: 02/01/2012] [Indexed: 01/13/2023] Open
Abstract
Schizandra chinensis Baillon is a traditional folk medicine plant that is used to treat and prevent several inflammatory diseases and cancer in Korea, but the underlying mechanisms involved in its anti-allergic activity are not fully understood. This study was designed to investigate mechanisms of anti-allergic activity of a Schizandra chinensis Baillon water extract (SCWE) in immunoglobulin E (IgE)-antigen complex-stimulated RBL2H3 cells and to assess whether gastric and intestinal digestion affects the anti-allergic properties of SCWE. Oxidative stress is an important consequence of the allergic inflammatory response. The antioxidant activities of SCWE increased in a concentration-dependent manner. RBL-2H3 cells were sensitized with monoclonal anti-dinitrophenol (DNP) specific IgE, treated with SCWE, and challenged with the antigen DNP-human serum albumin. SCWE inhibited β-hexosaminidase release and expression of interleukin (IL)-4, IL-13, and tumor necrosis factor-alpha (TNF-α) mRNA and protein in IgE-antigen complex-stimulated RBL2H3 cells. We found that digested SCWE fully maintained its antioxidant activity and anti-allergic activity against the IgE-antigen complex-induced activation of RBL-2H3 cells. SCWE may be useful for preventing allergic diseases, such as asthma. Thus, SCWE could be used as a natural functional ingredient for allergic diseases in the food and/or pharmaceutical industries.
Collapse
Affiliation(s)
- Mi Ja Chung
- The Nutraceutical Bio Brain Korea 21 Project Group, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Choi YH, Chai OH, Han EH, Choi SY, Kim HT, Song CH. Lipoic acid suppresses compound 48/80-induced anaphylaxis-like reaction. Anat Cell Biol 2010; 43:317-24. [PMID: 21267406 PMCID: PMC3026184 DOI: 10.5115/acb.2010.43.4.317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 11/27/2022] Open
Abstract
Alpha-lipoic acid (LA), a naturally occurring dithiol compound, is an essential cofactor in metabolic reactions involved in energy utilization. LA improves glycemic control, reduces diabetic polyneuropathies, atherosclerosis, and allergic inflammation. The effects of LA on mast cell-mediated anaphylactic reactions, however, are unknown. LA dose-dependently inhibited systemic and passive cutaneous anaphylaxis-like reactions in mice induced by compound 48/80, a condensation product of N-methyl-p-methoxyphenethylamine and formaldehyde. Pretreatment with LA, prior to induction of the systemic anaphylaxis-like reaction with compound 48/80, reduced plasma histamine levels in a dose-dependent manner. In our in vitro study, LA decreased histamine release from rat peritoneal mast cells (RPMCs) triggered by compound 48/80. Moreover, an increase in calcium uptake activated by compound 48/80 was inhibited by LA. LA also significantly elevated intracellular cyclic adenosine-3',5' monophosphate (cAMP) levels in RPMCs. This inhibition of mediator release from RPMCs may be due to inhibition of calcium uptake and augmentation of intracellular cAMP levels. Based on these results, we suggest that LA may be a potential remedy for allergy-related diseases.
Collapse
Affiliation(s)
- Yun Ho Choi
- Department of Anatomy, Chonbuk National University Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Korea
| | | | | | | | | | | |
Collapse
|
15
|
Nishikawa H, Kitani S. Inhibitory effect of ganglioside on mastoparan-induced cytotoxicity and degranulation in lipid raft of connective tissue type mast cell. J Biochem Mol Toxicol 2010; 25:158-68. [PMID: 21671308 DOI: 10.1002/jbt.20372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 07/22/2010] [Accepted: 08/21/2010] [Indexed: 12/16/2022]
Abstract
Antihistamine, the most important drug for Hymenoptera stinging, cannot attenuate cytotoxicity and mast cell direct activation by mastoparan that is the most abundant polypeptides in the venoms of social wasps. The aim of this study was to investigate whether gangliosides inhibit the effect of mastoparan on mast cells activation. The degranulation and cytotoxicity in canine cutaneous mastocytoma cells (CM-MC) were done by measurement of β-hexosaminidase release and MTT assay. Lipid raft was isolated with discontinuous sucrose gradient centrifuge for the analysis of distribution of Gα(q) and Gα(i) protein by western blotting. We found that mastoparan induced the degranulation in (CM-MC) via direct activation of Gα(i) and Gα(q) with a decrease in their amount in lipid raft. Ganglioside G(D1a) (disialoganglioside) and G(M1) (monosialoganglioside) strongly reduced the degranulation and cytotoxicity through stabilizing the structure of lipid raft domain. In addition, mastoparan generated intracellular reactive oxygen species (ROS) independently from cytotoxicity, through arachidonic cascade but not G-protein activations. Crude wasp venom showed cytotoxicity and induction of the release from CM-MC, which were potently reduced by gangliosides. We show here that mastoparan activates both Gα(i) and Gα(q) protein and that the exogenous ganglioside G(D1a) and G(M1) inhibit the degranulation and cytotoxicity through stabilizing lipid raft. Gangliosides have potentials to be therapeutic tool or clinical prophylaxis for wasp stinging.
Collapse
Affiliation(s)
- Hirofumi Nishikawa
- Department of Food Science and Technology, Graduate School of Marine Science and Technology, Tokyo
| | | |
Collapse
|
16
|
Tominaga T, Kawaguchi K, Kanesaka M, Kawauchi H, Jirillo E, Kumazawa Y. Suppression of type-I allergic responses by oral administration of grape marc fermented with Lactobacillus plantarum. Immunopharmacol Immunotoxicol 2010; 32:593-9. [PMID: 20136581 DOI: 10.3109/08923971003604786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We investigated the inhibitory effects of fermented grape marc (FGM), lyophilized fine powder of skin, and seeds of Vitis vinifera Koshu grape prepared by fermentation with Lactobacillus plantarum, on type-I allergic responses in mice. Repeated oral administration of FGM, but not non-fermented grape marc (GM), to BALB/c mice primed with ovalbumin (OVA) resulted in a significant reduction of serum IgE levels, compared with those of immunized controls. After OVA challenge, increased numbers of eosinophils in bronchial alveolar lavage fluids (BALF) significantly decreased by treatment with FGM but not with GM. For passive cutaneous anaphylaxis (PCA) reaction, BALB/c mice received intradermal sensitization with anti-OVA IgE serum and were challenged intravenously with OVA containing Evans blue at 24 h after IgE sensitization. Oral administration of FGM at 30 min before OVA challenge significantly suppressed the PCA reaction. On the other hand, Lactobacillus alone and non-fermented GM did not show any suppressive effects. Interestingly, FGM samples prepared from grapes for red wine, such as Negroamaro (rich in resveratrol) or Tannat (rich in oligomeric procyanidin), did not suppress the reaction. These results indicate that oral administration of FGM, prepared from Koshu grape for white wine but not from grapes for red wine, could suppress both phases of type-I allergic responses. A fraction extractable with acetone was responsible for the suppressive effects of FGM.
Collapse
Affiliation(s)
- Takanari Tominaga
- Department of Biosciences, Graduate School of Science, Kitasato University, Sagamihara, Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Kaneko M, Kanesaka M, Yoneyama M, Tominaga T, Jirillo E, Kumazawa Y. Inhibitory effects of fermented grape marc fromVitis viniferaNegroamaro on antigen-induced degranulation. Immunopharmacol Immunotoxicol 2010; 32:454-61. [DOI: 10.3109/08923970903513139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
|
19
|
Jeong JM. Antioxidative and Antiallergic Effects of Aronia (Aronia melanocarpa) Extract. ACTA ACUST UNITED AC 2008. [DOI: 10.3746/jkfn.2008.37.9.1109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|