1
|
Chemotherapeutic Potential of Saikosaponin D: Experimental Evidence. J Xenobiot 2022; 12:378-405. [PMID: 36547471 PMCID: PMC9782205 DOI: 10.3390/jox12040027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Saikosaponin D (SSD), an active compound derived from the traditional plant Radix bupleuri, showcases potential in disease management owing to its antioxidant, antipyretic, and anti-inflammatory properties. The toxicological effects of SSD mainly include hepatotoxicity, neurotoxicity, hemolysis, and cardiotoxicity. SSD exhibits antitumor effects on multiple targets and has been witnessed in diverse cancer types by articulating various cell signaling pathways. As a result, carcinogenic processes such as proliferation, invasion, metastasis, and angiogenesis are inhibited, whereas apoptosis, autophagy, and differentiation are induced in several cancer cells. Since it reduces side effects and strengthens anti-cancerous benefits, SSD has been shown to have an additive or synergistic impact with chemo-preventive medicines. Regardless of its efficacy and benefits, the considerations of SSD in cancer prevention are absolutely under-researched due to its penurious bioavailability. Diverse studies have overcome the impediments of inadequate bioavailability using nanotechnology-based methods such as nanoparticle encapsulation, liposomes, and several other formulations. In this review, we emphasize the association of SSD in cancer therapeutics and the discussion of the mechanisms of action with the significance of experimental evidence.
Collapse
|
2
|
Zhang Y, Yi D, Xu H, Tan Z, Meng Y, Wu T, Wang L, Zhao D, Hou Y. Dietary supplementation with sodium gluconate improves the growth performance and intestinal function in weaned pigs challenged with a recombinant Escherichia coli strain. BMC Vet Res 2022; 18:303. [PMID: 35933350 PMCID: PMC9356463 DOI: 10.1186/s12917-022-03410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background The purpose of this research is to determine the effects of sodium gluconate (SG) on the growth performance and intestinal function in weaned pigs challenged with a recombinant Escherichia coli strain expressing heat-stable type I toxin (STa). Results Pigs (n = 24, 21 days of age) were randomly allocated to three treatments: Control group (pigs were fed basal diet), STa group (pigs were fed basal diet and challenged with a recombinant E. coli strain expressing STa), and SG group (pigs were fed basal diet supplemented with 2500 mg/kg sodium gluconate and challenged with a recombinant E. coli strain expressing STa). The trial period lasted for 15 days. On days 12 and 13, pigs in the STa and SG groups were orally administered with the recombinant Escherichia coli strain, while those in the control group were orally administered with normal saline at the same volume. On day 15, blood, intestinal tissues and colonic contents were collected for further analysis. Results showed that dietary SG supplementation had a tendency to increase average daily gain, and reduced (P < 0.05) feed to gain ratio, plasma glucose concentration, and mean corpuscular hemoglobin concentration as compared with control group on days 0-10 of trial. Additionally, dietary SG supplementation attenuated(P < 0.05) the morphological abnormalities of small intestinal and the increase of the number of eosinophils in blood of pigs challenged with the recombinant Escherichia coli strain on day 15 of trial. Compared with control group, diarrhea rate and the number of eosinophils in blood and the concentrations of malondialdehyde in the jejunum were increased (P < 0.05). The height, width and surface area of the villi of the duodenum, the width and surface area of villi of jejunum and the height and width of villi of ileum were decreased (P < 0.05) in pigs challenged with the recombinant Escherichia coli strain in the STa group compared with those in control group on day 15 of trial. However, these adverse effects were ameliorated (P < 0.05) by SG supplementation in the SG group on day 15 of trial. Furthermore, dietary SG supplementation could reduce (P < 0.05) the total bacterial abundance in the colon, but SG did not restore the recombinant Escherichia coli-induced microbiota imbalance in colon. Conclusions In conclusion, dietary supplementation with SG could improve piglet growth performance and alleviate the recombinant Escherichia coli-induced intestinal injury, suggesting that SG may be a promising feed additive for swine.
Collapse
Affiliation(s)
- Yanyan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Haiwang Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zihan Tan
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuxuan Meng
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
3
|
Hu J, Li P, Shi B, Tie J. Effects and Mechanisms of Saikosaponin D Improving the Sensitivity of Human Gastric Cancer Cells to Cisplatin. ACS OMEGA 2021; 6:18745-18755. [PMID: 34337214 PMCID: PMC8319933 DOI: 10.1021/acsomega.1c01795] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/25/2021] [Indexed: 05/13/2023]
Abstract
Gastric cancer (GC) is the second leading cause of cancer deaths around the world. Chemoresistance is an important reason for poor prognosis of GC. Saikosaponin D (SSD) is a natural constituent from Radix Bupleuri and exhibits various activities including antitumors. This study investigated the effects and the mechanisms of SSD on cisplatin (cis-diamminedichloroplatinum, DDP) sensitivity of GC cells. Findings suggested that SSD could promote the inhibitory effect of DDP on proliferation and invasion and increase DDP-induced apoptosis in SGC-7901 and DDP-resistant cell line SGC-7901/DDP. We further identified that SSD increased levels of LC3 B and cleaved caspase 3 and decreased levels of p62, IKK β, p-IκB α, and NF-κB p65, suggesting that SSD might inhibit the IKK β/NF-κB pathway and induce both cell autophagy and apoptosis in SGC-7901 and SGC-7901/DDP. A further study indicated that SSD enhanced the effect of DDP-induced cleaved caspase 3 level rise and NF-κB pathway suppression, especially in SGC-7901/DDP cells. Conclusively, SSD enhanced DDP sensitivity of GC cells; the potential molecular mechanisms were that SSD-induced apoptosis and autophagy and inhibited the IKK β/NF-κB pathway in GC cells. These findings suggested that SSD might contribute to overcoming DDP resistance in GC treatment.
Collapse
Affiliation(s)
- Jianran Hu
- Department
of Biological Science and Technology, Jinzhong
University, Jinzhong 030619, China
- Department
of Biological Science and Technology, Changzhi
University, Changzhi 046011, China
| | - Ping Li
- Department
of Biological Science and Technology, Jinzhong
University, Jinzhong 030619, China
- Department
of Biological Science and Technology, Changzhi
University, Changzhi 046011, China
| | - Baozhong Shi
- Department
of Biological Science and Technology, Changzhi
University, Changzhi 046011, China
| | - Jun Tie
- Department
of Biological Science and Technology, Changzhi
University, Changzhi 046011, China
| |
Collapse
|
4
|
Yu X, Pan J, Shen N, Zhang H, Zou L, Miao H, Xing L. Development of Saikosaponin D Liposome Nanocarrier with Increased Hepatoprotective Effect Against Alcoholic Hepatitis Mice. J Biomed Nanotechnol 2021; 17:627-639. [PMID: 35057889 DOI: 10.1166/jbn.2021.3054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mortality rate of ethanol induced liver disease has substantially raised to alert level with an increasing use of alcohol, but development of definite hepatoprotective drug is still challenging. The efficacy of Saikosaponin D, one of the natural herbal medicine has been studied
in different diseases. Nonetheless, its clinical application is restricted by poor bioavailability, stability and solubility. This study sought to develop a Saikosaponin D loaded liposome via thin film hydration method. The surface morphology, encapsulation efficiency and drug loading capacity
were detected with transmission electron microscopy and HPLC, in vitro dissolution was via dialysis method, but efficacy and safety evaluation was through pharmacokinetics, while the assessment of hepatoprotective activity on alcohol induced acute hepatitis mice models was conducted.
The optimized liposomes showed significant greater therapeutic effect on liver, through decreased serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), total cholesterol (TC) and triglyceride (TG)
in liver homogenate. In contrast, levels of glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) were increased significantly. Pathological study exhibited remarkable alteration of hepatitis liver architecture to almost normal state after administration of Saikosaponin D
liposome. The increased hepatoprotective effect of Saikosaponin D liposome was observed during the attenuation of alcoholic hepatitis in mice, which might be ascribable to the anti-oxidative and anti-inflammatory properties of the drug. This study provides a theoretical basis for developing
advanced system of Saikosaponin D delivery for the promotion of the therapeutic effects of the liposome against various kinds of diseases.
Collapse
Affiliation(s)
- Xiao Yu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jielu Pan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Nan Shen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Haiyan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lu Zou
- Experiment Center for Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongyu Miao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lianjun Xing
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
5
|
Lv Y, Hou X, Zhang Q, Li R, Xu L, Chen Y, Tian Y, Sun R, Zhang Z, Xu F. Untargeted Metabolomics Study of the In Vitro Anti-Hepatoma Effect of Saikosaponin d in Combination with NRP-1 Knockdown. Molecules 2019; 24:molecules24071423. [PMID: 30978940 PMCID: PMC6480384 DOI: 10.3390/molecules24071423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
Saikosaponin d (SSd) is one of the main active ingredients in Radix Bupleuri. In our study, network pharmacology databases and metabolomics were used in combination to explore the new targets and reveal the in-depth mechanism of SSd. A total of 35 potential targets were chosen through database searching (HIT and TCMID), literature mining, or chemical similarity predicting (Pubchem). Out of these obtained targets, Neuropilin-1 (NRP-1) was selected for further research based on the degree of molecular docking scores and novelty. Cell viability and wound healing assays demonstrated that SSd combined with NRP-1 knockdown could significantly enhance the damage of HepG2. Metabolomics analysis was then performed to explore the underlying mechanism. The overall difference between groups was quantitatively evaluated by the metabolite deregulation score (MDS). Results showed that NRP-1 knockdown exhibited the lowest MDS, which demonstrated that the metabolic profile experienced the slightest interference. However, SSd alone, or NRP-1 knockdown in combination with SSd, were both significantly influenced. Differential metabolites mainly involved short- or long-chain carnitines and phospholipids. Further metabolic pathway analysis revealed that disturbed lipid transportation and phospholipid metabolism probably contributed to the enhanced anti-hepatoma effect by NRP-1 knockdown in combination with SSd. Taken together, in this study, we provided possible interaction mechanisms between SSd and its predicted target NRP-1.
Collapse
Affiliation(s)
- Yingtong Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaoying Hou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Qianqian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruiting Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Yadong Chen
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Rong Sun
- Advanced Medical Research Institute, Shandong University, Jinan 250100, China.
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018. [PMID: 30466994 DOI: 10.1016/j.phymed.2018.09.174' and 2*3*8=6*8 and 'hgwn'='hgwn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Radix Bupleuri (RB) has been widely used in Chinese Traditional Medicine for over 2000 years and is currently marketed in China as Chai-Hu-Shu-Gan tablets and Xiao-Yao-Wan tablets. Saikosaponins (SSs, especially SSa, SSc and SSd), as the major bioactive compounds in RB, represent anti-inflammatory, anti-tumor, anti-oxidant, anti-viral and hepatoprotective effects. PURPOSE To summarize recent findings regarding to the extraction, detection, biosynthesis, metabolism, pharmacological/toxicological effects of SSs. METHODS Online academic databases (including PubMed, Google Scholar, Web of Science and CNKI) were searched using search terms of "Saikosaponin", "Radix Bupleuri", "Bupleurum" and combinations to include published studies of SSs primarily from 2003 to 2018. Several critical previous studies beyond this period were also included. RESULTS 354 papers were found and 165 papers were reviewed. SSs have drawn great attention for their anti-inflammation, anti-viral and anti-cancer effects and contradictory roles in the regulation of cell apoptosis, oxidative stress and liver fibrosis. Meanwhile, increased risks of overdose-induced acute or accumulation-related chronic hepatotoxicity of SSs and RB have also been reported. However, underlying mechanisms of SSs bioactivities, the metabolism of SSs and bioactivities of SSs metabolites are largely unknown. CONCLUSION This comprehensive review of SSs provides novel insights and perspectives on the limitations of current studies and the importance of metabolism study and the dose-pharmacological/toxic relationship of SSs for the future discovery of SSs-based therapeutic strategies and clinical safe practice.
Collapse
|
7
|
A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018. [PMID: 30466994 DOI: 10.1016/j.phymed.2018.09.174%' and 2*3*8=6*8 and 'alnw'!='alnw%] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Radix Bupleuri (RB) has been widely used in Chinese Traditional Medicine for over 2000 years and is currently marketed in China as Chai-Hu-Shu-Gan tablets and Xiao-Yao-Wan tablets. Saikosaponins (SSs, especially SSa, SSc and SSd), as the major bioactive compounds in RB, represent anti-inflammatory, anti-tumor, anti-oxidant, anti-viral and hepatoprotective effects. PURPOSE To summarize recent findings regarding to the extraction, detection, biosynthesis, metabolism, pharmacological/toxicological effects of SSs. METHODS Online academic databases (including PubMed, Google Scholar, Web of Science and CNKI) were searched using search terms of "Saikosaponin", "Radix Bupleuri", "Bupleurum" and combinations to include published studies of SSs primarily from 2003 to 2018. Several critical previous studies beyond this period were also included. RESULTS 354 papers were found and 165 papers were reviewed. SSs have drawn great attention for their anti-inflammation, anti-viral and anti-cancer effects and contradictory roles in the regulation of cell apoptosis, oxidative stress and liver fibrosis. Meanwhile, increased risks of overdose-induced acute or accumulation-related chronic hepatotoxicity of SSs and RB have also been reported. However, underlying mechanisms of SSs bioactivities, the metabolism of SSs and bioactivities of SSs metabolites are largely unknown. CONCLUSION This comprehensive review of SSs provides novel insights and perspectives on the limitations of current studies and the importance of metabolism study and the dose-pharmacological/toxic relationship of SSs for the future discovery of SSs-based therapeutic strategies and clinical safe practice.
Collapse
|
8
|
A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018. [PMID: 30466994 DOI: 10.1016/j.phymed.2018.09.174" and 2*3*8=6*8 and "mze9"="mze9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Radix Bupleuri (RB) has been widely used in Chinese Traditional Medicine for over 2000 years and is currently marketed in China as Chai-Hu-Shu-Gan tablets and Xiao-Yao-Wan tablets. Saikosaponins (SSs, especially SSa, SSc and SSd), as the major bioactive compounds in RB, represent anti-inflammatory, anti-tumor, anti-oxidant, anti-viral and hepatoprotective effects. PURPOSE To summarize recent findings regarding to the extraction, detection, biosynthesis, metabolism, pharmacological/toxicological effects of SSs. METHODS Online academic databases (including PubMed, Google Scholar, Web of Science and CNKI) were searched using search terms of "Saikosaponin", "Radix Bupleuri", "Bupleurum" and combinations to include published studies of SSs primarily from 2003 to 2018. Several critical previous studies beyond this period were also included. RESULTS 354 papers were found and 165 papers were reviewed. SSs have drawn great attention for their anti-inflammation, anti-viral and anti-cancer effects and contradictory roles in the regulation of cell apoptosis, oxidative stress and liver fibrosis. Meanwhile, increased risks of overdose-induced acute or accumulation-related chronic hepatotoxicity of SSs and RB have also been reported. However, underlying mechanisms of SSs bioactivities, the metabolism of SSs and bioactivities of SSs metabolites are largely unknown. CONCLUSION This comprehensive review of SSs provides novel insights and perspectives on the limitations of current studies and the importance of metabolism study and the dose-pharmacological/toxic relationship of SSs for the future discovery of SSs-based therapeutic strategies and clinical safe practice.
Collapse
|
9
|
Li X, Li X, Huang N, Liu R, Sun R. A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:73-87. [PMID: 30466994 PMCID: PMC7126585 DOI: 10.1016/j.phymed.2018.09.174] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/14/2018] [Accepted: 09/17/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Radix Bupleuri (RB) has been widely used in Chinese Traditional Medicine for over 2000 years and is currently marketed in China as Chai-Hu-Shu-Gan tablets and Xiao-Yao-Wan tablets. Saikosaponins (SSs, especially SSa, SSc and SSd), as the major bioactive compounds in RB, represent anti-inflammatory, anti-tumor, anti-oxidant, anti-viral and hepatoprotective effects. PURPOSE To summarize recent findings regarding to the extraction, detection, biosynthesis, metabolism, pharmacological/toxicological effects of SSs. METHODS Online academic databases (including PubMed, Google Scholar, Web of Science and CNKI) were searched using search terms of "Saikosaponin", "Radix Bupleuri", "Bupleurum" and combinations to include published studies of SSs primarily from 2003 to 2018. Several critical previous studies beyond this period were also included. RESULTS 354 papers were found and 165 papers were reviewed. SSs have drawn great attention for their anti-inflammation, anti-viral and anti-cancer effects and contradictory roles in the regulation of cell apoptosis, oxidative stress and liver fibrosis. Meanwhile, increased risks of overdose-induced acute or accumulation-related chronic hepatotoxicity of SSs and RB have also been reported. However, underlying mechanisms of SSs bioactivities, the metabolism of SSs and bioactivities of SSs metabolites are largely unknown. CONCLUSION This comprehensive review of SSs provides novel insights and perspectives on the limitations of current studies and the importance of metabolism study and the dose-pharmacological/toxic relationship of SSs for the future discovery of SSs-based therapeutic strategies and clinical safe practice.
Collapse
Affiliation(s)
- Xiaojiaoyang Li
- School of Advanced Medical Science, Shandong University, 44 Wenhuaxilu road, Jinan, Shandong 250012, China; Department of Microbiology and Immunology, Virginia Commonwealth University, 1217 E Marshall St. KMSB, Richmond, VA 23298, USA
| | - Xiaoyu Li
- Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong 250355, China
| | - Nana Huang
- School of Advanced Medical Science, Shandong University, 44 Wenhuaxilu road, Jinan, Shandong 250012, China; The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong 250033, China
| | - Runping Liu
- Department of Microbiology and Immunology, Virginia Commonwealth University, 1217 E Marshall St. KMSB, Richmond, VA 23298, USA.
| | - Rong Sun
- School of Advanced Medical Science, Shandong University, 44 Wenhuaxilu road, Jinan, Shandong 250012, China; The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong 250033, China; Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong 250355, China.
| |
Collapse
|
10
|
Li XQ, Song YN, Wang SJ, Rahman K, Zhu JY, Zhang H. Saikosaponins: a review of pharmacological effects. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:399-411. [PMID: 29726699 DOI: 10.1080/10286020.2018.1465937] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Over the past decades, a number of phytochemicals have been reported to possess potent pharmacological effects. Saikosaponins represent a group of oleanane derivatives, usually as glucosides, which are commonly found in medicinal plants Bupleurum spp., which have been used as traditional Chinese medicine for more than 1,000 years in China. Emerging evidence suggests that saikosaponins have many pharmacological effects, including sedation, anticonvulsant, antipyretic, antiviral, immunity, anti-inflammation, antitumor properties, protecting liver and kidney and so on. The present review provides a comprehensive summary and analysis of the pharmacological properties of saikosaponins, supporting the potential uses of saikosaponins as a medicinal agent.
Collapse
Affiliation(s)
- Xiao-Qin Li
- a School of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , China
- b Central Laboratory , Seventh People's Hospital of Shanghai University of TCM , Shanghai 200137 , China
| | - Ya-Nan Song
- b Central Laboratory , Seventh People's Hospital of Shanghai University of TCM , Shanghai 200137 , China
| | - Su-Juan Wang
- b Central Laboratory , Seventh People's Hospital of Shanghai University of TCM , Shanghai 200137 , China
| | - Khalid Rahman
- c Faculty of Science, School of Biomolecular Sciences , Liverpool John Moores University , Liverpool L3 3AF , UK
| | - Jian-Yong Zhu
- b Central Laboratory , Seventh People's Hospital of Shanghai University of TCM , Shanghai 200137 , China
| | - Hong Zhang
- a School of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , China
- b Central Laboratory , Seventh People's Hospital of Shanghai University of TCM , Shanghai 200137 , China
| |
Collapse
|
11
|
The Role of Saikosaponins in Therapeutic Strategies for Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8275256. [PMID: 29849917 PMCID: PMC5924972 DOI: 10.1155/2018/8275256] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/25/2018] [Indexed: 12/19/2022]
Abstract
As life expectancy increases, elderly populations tend to spend an increasing number of years in poor health, with chronic age-related diseases and disability. Therefore, the development of therapeutic strategies to treat or prevent multiple pathophysiological conditions in the elderly may improve health-adjusted life expectancy and alleviate the potential economic and social burdens arising from age-related diseases. Bioactive natural products might represent promising new drug candidates for the treatment of many chronic age-related diseases, including cancer, Alzheimer's disease, cardiovascular disease, obesity, and liver disease. Here, we discuss a therapeutic option using saikosaponins, which are triterpene saponins isolated from Bupleurum, against a variety of age-related diseases. Understanding the underlying mechanisms of natural products like saikosaponins in the treatment of age-related diseases may help in the development of diverse natural product-derived compounds that may be effective against a number of chronic health problems.
Collapse
|
12
|
Yuan B, Yang R, Ma Y, Zhou S, Zhang X, Liu Y. A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications. PHARMACEUTICAL BIOLOGY 2017; 55:620-635. [PMID: 27951737 PMCID: PMC6130612 DOI: 10.1080/13880209.2016.1262433] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/08/2016] [Accepted: 11/15/2016] [Indexed: 05/18/2023]
Abstract
CONTEXT Radix Bupleuri has been used in traditional Chinese medicine for over 2000 years with functions of relieving exterior syndrome, clearing heat, regulating liver-qi, and lifting yang-qi. More natural active compounds, especially saikosaponins, have been isolated from Radix Bupleuri, which possess various valuable pharmacological activities. OBJECTIVE To summarize the current knowledge on pharmacological activities, mechanisms and applications of extracts and saikosaponins isolated from Radix Bupleuri, and obtain new insights for further research and development of Radix Bupleuri. METHODS PubMed, Web of Science, Science Direct, Research Gate, Academic Journals and Google Scholar were used as information sources through the inclusion of the search terms 'Radix Bupleuri', 'Bupleurum', 'saikosaponins', 'Radix Bupleuri preparation', and their combinations, mainly from the year 2008 to 2016 without language restriction. Clinical preparations containing Radix Bupleuri were collected from official website of China Food and Drug Administration (CFDA). RESULTS AND CONCLUSION 296 papers were searched and 128 papers were reviewed. A broad spectrum of in vitro and in vivo research has proved that Radix Bupleuri extracts, saikosaponin a, saikosaponin d, saikosaponin c, and saikosaponin b2, exhibit evident anti-inflammatory, antitumor, antiviral, anti-allergic, immunoregulation, and neuroregulation activities mainly through NF-κB, MAPK or other pathways. 15 clinical preparations approved by CFDA remarkably broaden the application of Radix Bupleuri. The main side effect of Radix Bupleuri is liver damage when the dosage is excess, which indicates that the maximum tolerated dose is critical for clinical use of Radix Bupleuri extract and purified compounds.
Collapse
Affiliation(s)
- Bochuan Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yongsheng Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Zhou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaodong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
- CONTACT Ying LiuSchool of Chinese Pharmacy, Beijing University of Chinese Medicine, Wangjing Zhonghuan South Street, Chaoyang District, Beijing100102, China
| |
Collapse
|
13
|
Li P, Piao X, Ru Y, Han X, Xue L, Zhang H. Effects of adding essential oil to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:1617-26. [PMID: 25049525 PMCID: PMC4093040 DOI: 10.5713/ajas.2012.12292] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/29/2012] [Accepted: 07/15/2012] [Indexed: 11/27/2022]
Abstract
The objective of this study was to evaluate the effects of adding essential oils to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health. A total of 96 weaning pigs (8.37±1.58 kg) were allotted to one of three dietary treatments. The treatments consisted of an unsupplemented basal diet (negative control, NC) or similar diets supplemented with 0.01% of an essential oil product which contained 18% thymol and cinnamaldehyde (EOD) as well as a diet supplemented with 0.19% of an antibiotic mixture which provided 150 ppm chlortetracycline, 80 ppm colistin sulfate and 50 ppm kitasamycin (positive control, PC). Each treatment was provided to eight pens of pigs with four pigs per pen. Over the entire 35 d experiment, ADG and fecal score were improved (p<0.05) for pigs fed the PC and EOD compared with the NC. Dry matter and crude protein digestibility as well as lymphocyte proliferation for pigs fed the PC and EOD diets were increased significantly compared with NC (p<0.05). IGF-I levels in plasma were significantly increased (p<0.05) in pigs fed the PC diet compared with pigs fed the NC diet. Interleukin-6 concentration was lower (p<0.05) and the tumor necrosis factor-α level was higher (p<0.05) in the plasma of pigs fed the EOD diet than the NC diet. Plasma total antioxidant capacity level increased (p<0.05) in pigs fed the EOD diet compared with pigs fed the NC. Villus height to crypt depth ratio in the jejunum was greater (p<0.05) in pigs fed the PC and EOD diets than the NC. The numbers of E. coli in the cecum, colon and rectum were reduced (p<0.05) in pigs fed the PC and EOD diets compared with the control. In the colon, the ratio of Lactobacilli to E. coli was increased (p<0.05) in pigs fed the EOD diet compared with NC diet. Total aerobe numbers in the rectum were decreased (p<0.05) in pigs fed the PC and EOD diets compared with the control. Collectively, these results indicate that blends of essential oils could be a candidate for use as an alternative to traditional antibiotics in weaning pig diets.
Collapse
Affiliation(s)
- Pengfei Li
- Danisco Animal Nutrrition, Singapore , 117525, Singapore
| | - Xiangshu Piao
- Danisco Animal Nutrrition, Singapore , 117525, Singapore
| | - Yingjun Ru
- Danisco Animal Nutrrition, Singapore , 117525, Singapore
| | - Xu Han
- Danisco Animal Nutrrition, Singapore , 117525, Singapore
| | - Lingfeng Xue
- Danisco Animal Nutrrition, Singapore , 117525, Singapore
| | - Hongyu Zhang
- Danisco Animal Nutrrition, Singapore , 117525, Singapore
| |
Collapse
|