1
|
Wu XX, Law SK, Ma H, Jiang Z, Li YF, Au DCT, Wong CK, Luo DX. Bio-active metabolites from Chinese Medicinal Herbs for treatment of skin diseases. Nat Prod Res 2024:1-23. [PMID: 39155491 DOI: 10.1080/14786419.2024.2391070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Skin diseases have become serious issues to human health and affect one-third of the world's population according to the World Health Organisation (WHO). These consist of internal (endogenous) and external (exogenous) factors referring to genetics, hormones, and the body's immune system, as well as environmental situations, UV radiation, or environmental pollution respectively. Generally, Western Medicines (WMs) are usually treated with topical creams or strong medications for skin diseases that help superficially, and often do not treat the root cause. The relief may be instant and strong, sometimes these medicines have adverse reactions that are too strong to be able and sustained over a long period, especially steroid drug type. Chinese Medicinal Herbs (CMHs) are natural resources and relatively mild in the treatment of both manifestation and the root cause of disease. Nowadays, CMHs are attractive to many scientists, especially in studying their formulations for the treatment of skin diseases. METHODS The methodology of this review was searched in nine electronic databases including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without regard to language constraints. All eligible studies are analysed and summarised. RESULTS Based on the literature findings, some extracts or active metabolites divided from CMHs, including Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan, and Calendula officinalis L., are effective for the treatment and prevention of skin diseases because of a wide range of pharmacological activities, e.g. anti-bacterial, anti-microbial, anti-virus, and anti-inflammation to enhance the body's immune system. It is also responsible for skin whitening to prevent pigmentation and premature ageing through several mechanisms, such as regulation or inhibition of nuclear factor kappa B (IκB/NF-κB) signalling pathways. CONCLUSION This is possible to develop CMHs, such as Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan and Calendula officinalis L. The ratio of multiple CMH formulations and safety assessments on human skin diseases required studying to achieve better pharmacological activities. Nano formulations are the future investigation for CMHs to combat skin diseases.
Collapse
Affiliation(s)
- Xiao Xiao Wu
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Siu Kan Law
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Zhou Jiang
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Yi Fan Li
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Dawn Ching Tung Au
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Chun Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Di Xian Luo
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
- Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
2
|
Zhang X, Sun Y, Qi H, Feng J, Hou W, Liu Y. Comparative metabolomics study on areca nut from China and Southeast Asia (Thailand and Indonesia). PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:1022-1035. [PMID: 37813812 DOI: 10.1002/pca.3293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/02/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Areca nut is an economic crop and an important component in traditional Chinese medicine (TCM) and ethnomedicine. The crop is rich in alkaloids and flavonoids. Most previous studies have focused on the chemical components, especially alkaloids, in crops from certain areca nut-producing areas. OBJECTIVE The purpose of this study was to compare the differences in areca nut seeds in two main cultivation areas, identify differential metabolites, and evaluate seed quality in different production areas. METHODS A widely targeted metabolomics method based on ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QQQ-MS), combined with the TCM systems pharmacology (TCMSP) database and multivariate statistical analysis, was used in this study to maximise the differentiation between quality characteristics of areca nut seeds from China and Southeast Asian regions. RESULTS Altogether, 1031 metabolites were identified in areca nut seeds; by querying the TCMSP database, 375 metabolites were identified as the main active ingredients. Moreover, the research showed that the metabolic profiles of areca nut seeds from China (ASCN) and Southeast Asia (ASSA) exhibit significant differences, and the difference is mainly reflected in 318 compounds. The relative content of 146 metabolites in ASCN was significantly higher than that in ASSA. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) comparative analysis, areca nut seed metabolites in Chinese production areas were determined to have a wider metabolic pathway. CONCLUSION The areca nut seeds from cultivation areas possess many metabolites that are beneficial for health, including alkaloids, amino acids, phenolic acids, and lipids. Thus, compared with ASSA, ASCN have a higher medicinal value. This study provides a direction for the subsequent development and utilisation of areca nut seeds.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Yuanyuan Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huasha Qi
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Jian Feng
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Wencheng Hou
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Yangyang Liu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Spennato M, Roggero OM, Varriale S, Asaro F, Cortesi A, Kašpar J, Tongiorgi E, Pezzella C, Gardossi L. Neuroprotective Properties of Cardoon Leaves Extracts against Neurodevelopmental Deficits in an In Vitro Model of Rett Syndrome Depend on the Extraction Method and Harvest Time. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248772. [PMID: 36557905 PMCID: PMC9783035 DOI: 10.3390/molecules27248772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
This study investigates the bioactive properties of different extracts of cardoon leaves in rescuing neuronal development arrest in an in vitro model of Rett syndrome (RTT). Samples were obtained from plants harvested at different maturity stages and extracted with two different methodologies, namely Naviglio® and supercritical carbon dioxide (scCO2). While scCO2 extracts more hydrophobic fractions, the Naviglio® method extracts phenolic compounds and less hydrophobic components. Only the scCO2 cardoon leaves extract obtained from plants harvested in spring induced a significant rescue of neuronal atrophy in RTT neurons, while the scCO2 extract from the autumn harvest stimulated dendrite outgrowth in Wild-Type (WT) neurons. The scCO2 extracts were the richest in squalene, 3ß-taraxerol and lupeol, with concentrations in autumn harvest doubling those in spring harvest. The Naviglio® extract was rich in cynaropicrin and exerted a toxic effect at 20 µM on both WT and RTT neurons. When cynaropicrin, squalene, lupeol and 3ß-taraxerol were tested individually, no positive effect was observed, whereas a significant neurotoxicity of cynaropicrin and lupeol was evident. In conclusion, cardoon leaves extracts with high content of hydrophobic bioactive molecules and low cynaropicrin and lupeol concentrations have pharmacological potential to stimulate neuronal development in RTT and WT neurons in vitro.
Collapse
Affiliation(s)
- Mariachiara Spennato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Ottavia Maria Roggero
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127 Trieste, Italy
| | - Simona Varriale
- Department of Chemical Sciences, University Federico II of Naples, Via Cinthia, 4, 80126 Napoli, Italy
| | - Fioretta Asaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Angelo Cortesi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio 6/A, 34127 Trieste, Italy
| | - Jan Kašpar
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127 Trieste, Italy
| | - Cinzia Pezzella
- Department of Chemical Sciences, University Federico II of Naples, Via Cinthia, 4, 80126 Napoli, Italy
| | - Lucia Gardossi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- Correspondence:
| |
Collapse
|
4
|
Li L, Niu H, Zhan J, Tu Y, Jiang L, Zhao Y. Matrine attenuates bovine mammary epithelial cells inflammatory responses induced by Streptococcus agalactiae through inhibiting NF-κB and MAPK signaling pathways. Int Immunopharmacol 2022; 112:109206. [PMID: 36058035 DOI: 10.1016/j.intimp.2022.109206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022]
Abstract
Streptococcus agalactiae is one of the main pathogens associated with bovine mastitis. The invasion of S. agalactiae in bovine mammary epithelial cells (BMECs) has been implicated as a key event in the pathogenesis of mastitis. Matrine is known for its various pharmacological activities, such as immune response regulation and anti-inflammation. The primary aim of the research was to investigate the preventive effect of matrine on S. agalactiae-induced inflammation in BMECs along with underlying molecular mechanisms. Our data showed matrine at the concentrations of 50-100 μg/mL promoted BMECs proliferation without infection, and decreased cytotoxicity induced by S. agalactiae. Subsequently, BMECs were pre-treated with matrine (50, 75, or 100 μg/mL) for 24 h, followed by the infection with S. agalactiae for an additional 6 h. Pretreatment with matrine followed by S. agalactiae treatment decreased cell apoptosis of BMECs. Also, pretreatment of matrine to BMECs prevented the invasion of S. agalactiae. The mRNA abundances of IL-1β, IL-6, IL-8, and TNF-α were down-regulated in S. agalactiae-infected cells pretreated with matrine. In addition, the greater ratios of protein NF-κB p-p65/p65, p-IκBα/IκBα, p-38/38, and p-ERK/ERK induced by S. agalactiae were attenuated due to matrine treatment. Furthermore, pretreatment of BMECs with matrine impeded the degradation of TAK1 induced by S. agalactiae infection. These results suggest matrine could be a potential modulator in immune response of the mammary gland. In conclusion, matrine prevents cellular damage due to S. agalactiae infection by the modulation of NF-κB and MAPK signaling pathways and pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hui Niu
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jingwei Zhan
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yan Tu
- Beijing Key Laboratory of Dairy Cow Nutrition, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; Beijing Beinong Enterprise Management Co., Ltd., Beijing 102206, China.
| |
Collapse
|
5
|
Tan J, Zhang C, Pai H, Lu W. Heterologous Biosynthesis of Taraxerol by Engineered Saccharomyces cerevisiae. FEMS Microbiol Lett 2022; 369:6650882. [PMID: 35896500 DOI: 10.1093/femsle/fnac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Taraxerol is an oleanane-type pentacyclic triterpenoid compound distributed in many plant species that has good effects on the treatment of inflammation and tumors. However, the taraxerol content in medicinal plants is low, and chemical extraction requires considerable energy and time, so taraxerol production is a problem. It is a promising strategy to produce taraxerol by applying recombinant microorganisms. In this study, a Saccharomyces cerevisiae strain WKde2 was constructed to produce taraxerol with a titer of 1.85 mg·L-1, and the taraxerol titer was further increased to 12.51 mg·L-1 through multiple metabolic engineering strategies. The endoplasmic reticulum (ER) size regulatory factor INO2, which was reported to increase squalene and cytochrome P450-mediated 2,3-oxidosqualene production, was overexpressed in this study, and the resultant strain WTK11 showed a taraxerol titer of 17.35 mg·L-1. Eventually, the highest reported titer of 59.55 mg·L-1 taraxerol was achieved in a 5 L bioreactor. These results will serve as a general strategy for the production of other triterpenoids in yeast.
Collapse
Affiliation(s)
- Jinxiu Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Huihui Pai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.,Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300350, PR China.,Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen, 518071, PR China
| |
Collapse
|
6
|
The Biosynthesis and Medicinal Properties of Taraxerol. Biomedicines 2022; 10:biomedicines10040807. [PMID: 35453556 PMCID: PMC9025716 DOI: 10.3390/biomedicines10040807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Taraxerol is a pentacyclic triterpenoid that is actively produced by some higher plants as part of a defense mechanism. The biosynthesis of taraxerol in plants occurs through the mevalonate pathway in the cytosol, in which dimethylallyl diphosphate (DMAPP) and isopentyl pyrophosphate (IPP) are first produced, followed by squalene. Squalene is the primary precursor for the synthesis of triterpenoids, including taraxerol, β-amyrin, and lupeol, which are catalyzed by taraxerol synthase. Taraxerol has been extensively investigated for its medicinal and pharmacological properties, and various biotechnological approaches have been established to produce this compound using in vitro techniques. This review provides an in-depth summary of the hypothesized taraxerol biosynthetic pathway, the medicinal properties of taraxerol, and recent developments on tissue culture for the in vitro production of taraxerol.
Collapse
|
7
|
Kar P, Saleh-E-In MM, Jaishee N, Anandraj A, Kormuth E, Vellingiri B, Angione C, Rahman PKSM, Pillay S, Sen A, Naidoo D, Roy A, Choi YE. Computational profiling of natural compounds as promising inhibitors against the spike proteins of SARS-CoV-2 wild-type and the variants of concern, viral cell-entry process, and cytokine storm in COVID-19. J Cell Biochem 2022; 123:964-986. [PMID: 35342986 DOI: 10.1002/jcb.30243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
Abstract
The continuous spread and evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the rapid surge in infection cases in the coronavirus disease 2019 (COVID-19) evoke a dire need for effective therapeutics. In this study, we explored the inhibitory potential of a library of 605 phytocompounds, selected from Indian medicinal plants with reported antiviral and anti-inflammatory activities, against the receptor-binding domain of spike proteins of the SARS-CoV-2 wild-type and the variants of concern, including variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Our approach was based on extensive molecular docking, assessment of drug-likeness, and robust molecular dynamics simulations. We also identified promising inhibitory candidates against the host (human) proteins associated with SARS-CoV-2 spike activation and attachment, namely, ACE2 receptor, proteases TMPRSS2 and CTSL, and the endocytic regulator AAK1. In addition, we screened promising inhibitory compounds against the human proinflammatory cytokines- IL-6, IL-1β, TNF-α, and IFN-γ, that are associated with the adverse cytokine storm in COVID-19 patients. Our analysis returned an encouraging list of promising inhibitory candidates that includes: abietatriene against the spike proteins of the SARS-CoV-2 wild-type and the variants of concern; taraxerol against the human ACE2, CTSL and TNF-α; β-amyrin against the human TMPRSS2; cynaroside against the human AAK1 and IL-1β; and friedelin against the human IL-6 and IFN-γ. Our findings provide substantial evidence for the inhibitory potential of these compounds and encourage further in vitro and in vivo studies to validate their use as safe and effective therapeutics against COVID-19.
Collapse
Affiliation(s)
- Pallab Kar
- Molecular Cytogenetics Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, India
| | - Md Moshfekus Saleh-E-In
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, South Korea
| | - Nishika Jaishee
- Faculty of Natural Sciences, Mangosuthu University of Technology, Durban, South Africa
| | - Akash Anandraj
- Centre for Algal Biotechnology, Faculty of Natural Sciences, Mangosuthu University of Technology, Durban, South Africa
| | - Emil Kormuth
- Faculty of Natural Sciences, Mangosuthu University of Technology, Durban, South Africa
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK.,Centre for Digital Innovation, Teesside University, Middlesbrough, UK.,National Horizons Centre, Teesside University, Darlington, UK
| | | | | | - Arnab Sen
- Molecular Cytogenetics Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, India
| | - Devashan Naidoo
- Centre for Algal Biotechnology, Faculty of Natural Sciences, Mangosuthu University of Technology, Durban, South Africa
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Yong E Choi
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, South Korea
| |
Collapse
|
8
|
Andreadou EG, Katsipis G, Tsolaki M, Pantazaki AA. Involvement and relationship of bacterial lipopolysaccharides and cyclooxygenases levels in Alzheimer's Disease and Mild Cognitive Impairment patients. J Neuroimmunol 2021; 357:577561. [PMID: 34091099 DOI: 10.1016/j.jneuroim.2021.577561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022]
Abstract
This study reports elevated levels of bacterial lipopolysaccharides (LPSs) and cyclooxygenases (COX-1/2) in blood serum and cerebrospinal fluid (CSF) of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) patients compared to cognitively healthy individuals, indicating LPSs as promising biomarkers, especially in serum. LPSs, in both fluids, positively correlate with COX-1/2, Αβ42 and tau and negatively with mental state. Furthermore, COX-2 is the main determinant of LPSs presence in serum, whereas COX-1 in CSF. These results underline the significance of microbial/ inflammatory involvement in dementia and offer novel perspectives on the roles of LPSs and COX in pathogenesis of AD.
Collapse
Affiliation(s)
- Eleni G Andreadou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece.
| | - Georgios Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece
| | - Magda Tsolaki
- First Neurology Department, "AHEPA" University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece.
| |
Collapse
|
9
|
Mondal P, Natesh J, Abdul Salam AA, Thiyagarajan S, Meeran SM. Traditional medicinal plants against replication, maturation and transmission targets of SARS-CoV-2: computational investigation. J Biomol Struct Dyn 2020; 40:2715-2732. [PMID: 33150860 PMCID: PMC7651333 DOI: 10.1080/07391102.2020.1842246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
COVID-19 is an infectious pandemic caused by the SARS-CoV-2 virus. The critical components of SARS-CoV-2 are the spike protein (S-protein) and the main protease (Mpro). Mpro is required for the maturation of the various polyproteins involved in replication and transcription. S-protein helps the SARS-CoV-2 to enter the host cells through the angiotensin-converting enzyme 2 (ACE2). Since ACE2 is required for the binding of SARS-CoV-2 on the host cells, ACE2 inhibitors and blockers have got wider attention, in addition to S-protein and Mpro modulators as potential therapeutics for COVID-19. So far, no specific drugs have shown promising therapeutic potential against COVID-19. The current study was undertaken to evaluate the therapeutic potential of traditional medicinal plants against COVID-19. The bioactives from the medicinal plants, along with standard drugs, were screened for their binding against S-protein, Mpro and ACE2 targets using molecular docking followed by molecular dynamics. Based on the higher binding affinity compared with standard drugs, bioactives were selected and further analyzed for their pharmacological properties such as drug-likeness, ADME/T-test, biological activities using in silico tools. The binding energies of several bioactives analyzed with target proteins were relatively comparable and even better than the standard drugs. Based on Lipinski factors and lower binding energies, seven bioactives were further analyzed for their pharmacological and biological characteristics. The selected bioactives were found to have lower toxicity with a higher GI absorption rate and potent anti-inflammatory and anti-viral activities against targets of COVID-19. Therefore, the bioactives from these medicinal plants can be further developed as phytopharmaceuticals for the effective treatment of COVID-19.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Centre for Applied Nanosciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Saravanamuthu Thiyagarajan
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City Phase I, Electronic City, Bangalore, Karnataka, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
10
|
Supercritical CO2 extraction of V. vinifera leaves: Influence of cosolvents and particle size on removal kinetics and selectivity to target compounds. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Kar P, Sharma NR, Singh B, Sen A, Roy A. Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. J Biomol Struct Dyn 2020; 39:4774-4785. [PMID: 32552595 PMCID: PMC7309333 DOI: 10.1080/07391102.2020.1780947] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has rattled global public health, with researchers struggling to find specific therapeutic solutions. In this context, the present study employed an in silico approach to assess the inhibitory potential of the phytochemicals obtained from GC-MS analysis of twelve Clerodendrum species against the imperative spike protein, main protease enzyme Mpro and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. An extensive molecular docking investigation of the phytocompounds at the active binding pockets of the viral proteins revealed promising inhibitory potential of the phytochemicals taraxerol, friedelin and stigmasterol. Decent physicochemical attributes of the compounds in accordance with Lipinski’s rule of five and Veber’s rule further established them as potential therapeutic candidates against SARS-CoV-2. Molecular mechanics-generalized Born surface area (MM-GBSA) binding free energy estimation revealed that taraxerol was the most promising candidate displaying the highest binding efficacy with all the concerned SARS-CoV-2 proteins included in the present analysis. Our observations were supported by robust molecular dynamics simulations of the complexes of the viral proteins with taraxerol for a timescale of 40 nanoseconds. It was striking to note that taraxerol exhibited better binding energy scores with the concerned viral proteins than the drugs that are specifically targeted against them. The present results promise to provide new avenues to further evaluate the potential of the phytocompound taraxerol in vitro and in vivo towards its successful deployment as a SARS-CoV-2 inhibitor and combat the catastrophic COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Pallab Kar
- Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri, India
| | - Neeta Raj Sharma
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Bhupender Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Arnab Sen
- Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri, India
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| |
Collapse
|
12
|
Park SH. Ethyl Acetate Fraction of Adenophora triphylla var. japonica Inhibits Migration of Lewis Lung Carcinoma Cells by Suppressing Macrophage Polarization toward an M2 Phenotype. J Pharmacopuncture 2019; 22:253-259. [PMID: 31970023 PMCID: PMC6970570 DOI: 10.3831/kpi.2019.22.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/03/2023] Open
Abstract
Objectives It is reported that tumor-associated macrophages (TAMs) contribute to cancer progression by promoting tumor growth and metastasis. The purpose of this study is to investigate the effect of different fractions of Adenophora triphylla var. japonica (AT) on the polarization of macrophages into the M2 phenotype, a major phenotype of TAMs. Methods We isolated hexane, ethyl acetate, and butanol fractions from crude ethanol extract of AT. The cytotoxicity of AT in RAW264.7 cells was examined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RAW264.7 cells were polarized into the M2 phenotype by treatment with interleukin (IL)-4 and IL-13. The expression of M2 macrophage marker genes was detected by reverse transcription polymerase chain reaction (RT-PCR). The phosphorylation level of signal transducer and activator of transcription 6 (STAT6) was investigated by western blot analysis. The migration of Lewis lung carcinoma (LLC) cells was examined by transwell migration assay using conditioned media (CM) collected from RAW264.7 cells as a chemoattractant. Results Among various fractions of AT, the ethyl acetate fraction of AT (EAT) showed the most significant suppressive effect on the mRNA expression of M2 macrophage markers, including arginase-1, interleukin (IL)-10 and mannose receptor C type 1 (MRC-1), up-regulated by treatment of IL-4 and IL-13. In addition, EAT suppressed the phosphorylation of STAT6, a critical regulator of IL-4 and IL-13-induced M2 macrophage polarization. Finally, the increased migration of Lewis lung carcinoma (LLC) cells by CM from M2-polarized RAW264.7 cells was reduced by CM from RAW264.7 cells co-treated with EAT and M2 polarization inducers. Conclusion We demonstrated that EAT attenuated cancer cell migration through suppression of macrophage polarization toward the M2 phenotype. Additional preclinical or clinical researches are needed to evaluate its regulatory effects on macrophage polarization and anti-cancer activities.
Collapse
Affiliation(s)
- Shin-Hyung Park
- Departments of Pathology, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea
| |
Collapse
|
13
|
Meng Z, Si CY, Teng S, Yu XH, Li HY. Tanshinone IIA inhibits lipopolysaccharide‑induced inflammatory responses through the TLR4/TAK1/NF‑κB signaling pathway in vascular smooth muscle cells. Int J Mol Med 2019; 43:1847-1858. [PMID: 30816448 DOI: 10.3892/ijmm.2019.4100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
To aim of the present study was to determine whether Tanshinone IIA (Tan IIA) inhibits lipopolysaccharide (LPS)‑induced inflammation in vascular smooth muscle cells (VSMCs) from rats and elucidate the underlying molecular mechanism. VSMCs were primarily cultured and then treated with LPS (1 µg/l) and Tan IIA (25, 50 and 100 µmol/l) for 24 h. Monocyte chemoattractant protein (MCP)‑1, interleukin (IL)‑6 and tumor necrosis factor (TNF)‑α levels were detected by ELISA and reverse transcription‑quantitative polymerase chain reaction. Nitric oxide (NO) production was measured using the Griess reaction. The expression of Toll‑like receptor 4 (TLR4), nuclear factor (NF)‑κB (p65), and inducible NO synthase (iNOS), and the phosphorylation of transforming growth factor‑β‑activated kinase 1 (TAK1) were detected by western blot analysis. Tan IIA inhibited the LPS‑induced expression of MCP‑1, IL‑6, and TNF‑α in a concentration‑dependent manner and inhibited iNOS‑mediated NO production. In addition, Tan IIA suppressed the expression of TLR4, the phosphorylation of TAK1, and the nuclear translocation of NF‑κB (p65). The anti‑TLR4 antibody and TAK1 inhibitor 5Z‑7‑oxozeaenol partially attenuated the LPS‑induced expression of proinflammatory cytokines. In conclusion, Tan IIA inhibits LPS‑induced inflammatory responses in VSMCs in vitro through the partial suppression of the TLR4/TAK1/NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Zhe Meng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chun-Ying Si
- Department of Cardiology, The First Affiliated Hospital of Henan University of TCM, Zhengzhou, Henan 450003, P.R. China
| | - Shuai Teng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin-Hui Yu
- Department of Thoracic Surgery, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu 210023, P.R. China
| | - Hai-Yu Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
14
|
Itoh T, Katsurayama K, Efdi M, Ninomiya M, Koketsu M. Sentulic acid isolated from Sandoricum koetjape Merr attenuates lipopolysaccharide and interferon gamma co-stimulated nitric oxide production in murine macrophage RAW264 cells. Bioorg Med Chem Lett 2018; 28:3496-3501. [DOI: 10.1016/j.bmcl.2018.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/22/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
|
15
|
Berté TE, Dalmagro AP, Zimath PL, Gonçalves AE, Meyre-Silva C, Bürger C, Weber CJ, Dos Santos DA, Cechinel-Filho V, de Souza MM. Taraxerol as a possible therapeutic agent on memory impairments and Alzheimer's disease: Effects against scopolamine and streptozotocin-induced cognitive dysfunctions. Steroids 2018; 132:5-11. [PMID: 29355563 DOI: 10.1016/j.steroids.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/19/2017] [Accepted: 01/11/2018] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cognitive impairment and cholinergic neuronal death, characteristic of the effect of time on biochemical neuronal function. The use of medicinal plants as an alternative form of prevention, or even as a possible treatment of AD, is therefore interesting areas of research, since the standard drugs have many side effects. Taraxerol (TRX) is a triterpene that has been isolated from several plant species, and its various pharmacological properties have already been identified, such the acetylcholinesterase (AChE) inhibition activity in vitro. There is a lack of information in literature that confirms the effect of TRX in an animal AD-like model. Seeking to fill this gap in the literature, in the present work we assessed the effect of TRX on AChE activity in the animals' encephalon and hippocampus. We also investigated the effect of TRX (1.77 µM/side, 0.5 μL) isolated from leaves of Eugenia umbelliflora Berg. on aversive memory impairments induced by scopolamine (2 µg/side, 0.5 µL) infused into rat hippocampus, and the effect of TRX (0.89 and 1.77 µM/side, 0.5 μL) on aversive memory impairments induced by streptozotocin (STZ) (2.5 mg/mL, 2.0 µL) infused i.c.v. into mice, using the step-down inhibitory avoidance task. We found that TRX significantly inhibited AChE activity in the animal's hippocampus. Furthermore, TRX significantly improved scopolamine and STZ-induced memory impairment. Taking together, these results confirms its AChE activity inhibition in animals and indicate that TRX has anti-amnesic activity that may hold significant therapeutic value in alleviating certain memory impairments observed in AD.
Collapse
Affiliation(s)
- Talita Elisa Berté
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Ana Paula Dalmagro
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil.
| | - Priscila Laiz Zimath
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Ana Elisa Gonçalves
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Christiane Meyre-Silva
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Cristiani Bürger
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Carla J Weber
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Diogo Adolfo Dos Santos
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Valdir Cechinel-Filho
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Márcia M de Souza
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| |
Collapse
|
16
|
Khandaker M, Akter S, Imam MZ. Trichosanthes dioica Roxb.: A vegetable with diverse pharmacological properties. FOOD SCIENCE AND HUMAN WELLNESS 2018. [DOI: 10.1016/j.fshw.2017.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Yaoi X, Lu B, Lü C, Bai Q, Yan D, Xu H. Taraxerol Induces Cell Apoptosis through A Mitochondria-Mediated Pathway in HeLa Cells. CELL JOURNAL 2017; 19:512-519. [PMID: 28836414 PMCID: PMC5572297 DOI: 10.22074/cellj.2017.4543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/13/2016] [Indexed: 01/09/2023]
Abstract
Objective Taraxerol acetate has potent anti-cancer effects via the induction of apoptosis,
autophagy, cell cycle arrest, and inhibition of cell migration. However, whether taraxerol
induced apoptosis and its underlying mechanisms of action is not clear. In the present study,
we assess the effects of taraxerol on the mitochondrial apoptotic pathway and determine
the release of cytochrome c to the cytosol and activation of caspases. Materials and Methods In this experimental study, we mainly investigated the effect of
taraxerol on HeLa cells. We tested cell viability by the MTT assay and morphologic changes,
analyzed apoptosis by DAPI staining and flow cytometry. We also determined reactive
oxygen species (ROS) and mitochondrial membrane potential (MMP) using a Microplate
Reader. In addition, the apoptotic proteins were tested by Western blot. Results Taraxerol enhanced ROS levels and attenuated the MMP (Δψm) in HeLa cells.
Taraxerol induced apoptosis mainly via the mitochondrial pathway including the release
of cytochrome c to the cytosol and activation of caspases 9 and 3, and anti-poly (ADP-
ribose) polymerase (PARP). Taraxerol could induce the down-regulation of the anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax. It suppressed the PI3K/
Akt signaling pathway. Conclusion These results demonstrated that taraxerol induced cell apoptosis through a
mitochondria-mediated pathway in HeLa cells. Thus, taraxerol might be a potential anticervical cancer candidate.
Collapse
Affiliation(s)
- Xiangyang Yaoi
- Department of Biology and Food Engineering, Bengbu University, Bengbu, China
| | - Binyu Lu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Chaotian Lü
- Department of Biology and Food Engineering, Bengbu University, Bengbu, China
| | - Qin Bai
- Department of Biology and Food Engineering, Bengbu University, Bengbu, China
| | - Dazhong Yan
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hui Xu
- Department of Biology and Food Engineering, Bengbu University, Bengbu, China.
| |
Collapse
|
18
|
Khanra R, Bhattacharjee N, Dua TK, Nandy A, Saha A, Kalita J, Manna P, Dewanjee S. Taraxerol, a pentacyclic triterpenoid, from Abroma augusta leaf attenuates diabetic nephropathy in type 2 diabetic rats. Biomed Pharmacother 2017; 94:726-741. [PMID: 28802226 DOI: 10.1016/j.biopha.2017.07.112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/07/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Persistent hyperglycaemia coupled with inflammation plays an important role in the pathogenesis of diabetic nephropathy (DN). Present study examined the therapeutic potential of taraxerol isolated from the methanol extract of Abroma augusta leaf against DN using rodent model of type 2 diabetes (T2D). T2D was experimentally induced by high fat diet and a single low-single dose of streptozotocin (35mg/kg, i.p.). Accumulation of serum creatinine, urea, and uric acid, activation of lactate dehydrogenase and creatinin kinase, and release of urinary albumin represented the glomerular damage and the progression of nephropathy in T2D rats. Taraxerol (20mg/kg, p.o.) treatment significantly reinstated the aforementioned changes in biochemical parameters near to normalcy. Molecular mechanism studies demonstrated an impaired signaling cascade, IRS1/PI3K/Akt/AMPK/GLUT4/GSK3β, of glucose metabolism in the skeletal muscle and increase in serum levels of pro-inflammatory cytokines, CRP and MCP1 in T2D rats. Activation of polyol pathway, enhanced production of AGEs, up-regulation of NF-κB/PKCs/PARP signaling, and renal fibrosis was also observed in T2D rats. Taraxerol (20mg/kg, p.o.) treatment stimulated glucose metabolism in skeletal muscle, regulated blood glycaemic status and lipid profile in the sera, reduced the secretion of pro-inflammatory cytokines, and restored the renal physiology in T2D rats. Histological assessments were also in agreement with the above findings. Molecular docking study again supported the probable interactions of taraxerol with PKCβ, PKCδ, NF-κB, PARP, PI3K, IRS, Akt and AMPK. In silico ADME study predicted the drug-likeness character of taraxerol. Results suggest a possibility of taraxerol to be a new therapeutic agent for DN in future.
Collapse
Affiliation(s)
- Ritu Khanra
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun K Dua
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Ashis Nandy
- Department of Chemical Technology, University of Calcutta, Kolkata 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata 700009, India
| | - Jatin Kalita
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Prasenjit Manna
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India.
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
19
|
Odonne G, Houël E, Bourdy G, Stien D. Treating leishmaniasis in Amazonia: A review of ethnomedicinal concepts and pharmaco-chemical analysis of traditional treatments to inspire modern phytotherapies. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:211-230. [PMID: 28131912 DOI: 10.1016/j.jep.2017.01.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cutaneous and mucocutaneous leishmaniasis are neglected tropical diseases that occur in all intertropical regions of the world. Amazonian populations have developed an abundant knowledge of the disease and its remedies. Therefore, we undertook to review traditional antileishmanial plants in Amazonia and have developed new tools to analyze this somewhat dispersed information. MATERIAL AND METHODS A literature review of traditional remedies for cutaneous/mucocutaneous leishmaniasis in the Amazon was conducted and the data obtained was used to calculate distribution indexes designed to highlight the most relevant uses in Amazonia. The cultural distribution index represents the distribution rate of a given taxon among different cultural groups and was calculated as the ratio of the number of groups using the taxon to the total number of groups cited. The geographical distribution index allowed us to quantify spatial distribution of a taxon's uses in Amazonia and was calculated geometrically by measuring the average distance between the points where uses have been reported and the barycenter of those points. The general distribution index was defined as an arithmetic combination of the previous two and provides information on both cultural and spatial criteria. RESULTS 475 use reports, concerning 291 botanical species belonging to 83 families have been gathered depicted from 29 sources. Uses concern 34 cultural groups. While the use of some taxa appears to be Pan-Amazonian, some others are clearly restricted to small geographical regions. Particular attention has been paid to the recipes and beliefs surrounding treatments. Topical application of the remedies dominated the other means of administration and this deserves particular attention as the main treatments against Neotropical leishmaniasis are painful systemic injections. The data set was analyzed using the previously defined distribution indexes and the most relevant taxa were further discussed from a phytochemical and pharmacological point of view. CONCLUSIONS The Amazonian biodiversity and cultural heritage host a fantastic amount of data whose systematic investigation should allow a better large-scale understanding of the dynamics of traditional therapies and the consequent discovery of therapeutic solutions for neglected diseases. Distribution indices are indeed powerful tools for emphasizing the most relevant treatments against a given disease and should be very useful in the meta-analysis of other regional pharmacopeia. This focus on renowned remedies that have not yet benefitted from extended laboratory studies, could stimulate future research on new treatments of natural origin for leishmaniasis.
Collapse
Affiliation(s)
- Guillaume Odonne
- Laboratoire Ecologie, Evolution, Interactions des Systèmes Amazoniens (LEEISA), CNRS, Université de Guyane, IFREMER, 97300 Cayenne, France.
| | - Emeline Houël
- CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, 97300 Cayenne, France
| | | | - Didier Stien
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-sur-Mer, France
| |
Collapse
|
20
|
Khanra R, Dewanjee S, Dua TK, Bhattacharjee N. Taraxerol, a pentacyclic triterpene from Abroma augusta leaf, attenuates acute inflammation via inhibition of NF-κB signaling. Biomed Pharmacother 2017; 88:918-923. [PMID: 28178622 DOI: 10.1016/j.biopha.2017.01.132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/27/2022] Open
Abstract
Abroma augusta L. (Malvaceae) leaf is traditionally used to treat inflammatory disorders. In our laboratory, we have scientifically validated the anti-inflammatory effect of A. augusta leaf extract. In this study, it has been aimed to evaluate in vivo anti-inflammatory effect of taraxerol isolated from the methanol extract of A. augusta leaf. It was further intended to find out the probable mechanism of anti-inflammatory effect of taraxerol. The anti-inflammatory effect of taraxerol (5 and 10mg/kg, i.p.) was measured employing carrageenan-induced paw edema model of acute inflammation. The carrageenan injection resulted significant edema formation in the right paw when compared with un-injected left paw. However, taraxerol (10mg/kg) treatment could significantly (p<0.05-0.01) attenuate carrageenan induced paw edema 2h onward. The effect of taraxerol at the dose of 5mg/kg was found to be significant (p<0.05) only after 4h of carrageenan treatment. Taraxerol (10mg/kg) treatment could significantly (p<0.01) attenuate carrageenan mediated up-regulation in the levels of IL 1β, IL 6, IL 12 and TNF α in the right paw tissues. In search of molecular mechanism, taraxerol (10mg/kg) could significantly (p<0.05-0.01) reinstate carrageenan provoked NF-κB signaling and thereby caused significant down-regulation in the expressions of COX-2 (p<0.01) and iNOS (p<0.05). In conclusion, taraxerol would attenuate acute inflammation via inhibition of NF-κB signaling.
Collapse
Affiliation(s)
- Ritu Khanra
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Tarun K Dua
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
21
|
Intayoung P, Limtrakul P, Yodkeeree S. Antiinflammatory Activities of Crebanine by Inhibition of NF-κB and AP-1 Activation through Suppressing MAPKs and Akt Signaling in LPS-Induced RAW264.7 Macrophages. Biol Pharm Bull 2016; 39:54-61. [PMID: 26499331 DOI: 10.1248/bpb.b15-00479] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Crebanine, an aporphine alkaloid, displays various biological activities such as anticancer and antimicrobial activities. In this study, we further investigated the suppressive effect of crebanine on lipopolysaccharide (LPS)-induced expression of proinflammatory mediators and the molecular mechanisms underlying these activities in RAW264.7 macrophages. Crebanine inhibited the production of proinflammatory cytokines including interleukin-6 (IL-6) and tumor necrosis factor-alpha in LPS-induced RAW264.7 cells. Moreover, crebanine suppressed LPS-induced inducible nitric oxide (iNO) and prostaglandin E2 and reduced the expression of iNO synthase and cyclooxygenase-2 in RAW264.7 cells. Crebanine suppressed LPS-induced phosphorylation of Akt and mitogen-activated protein kinases (MAPKs), including extracellular signaling-regulated kinase 1/2, c-Jun NH2-terminal kinase, and p38 MAPK signaling. In addition, the specific inhibitor of MAPKs and Akt reduced the expression of IL-6 and NO production in LPS-induced macrophages. Furthermore, crebanine inhibited LPS-induced nuclear factor kappa B (NF-κB) activation by reducing the phosphorylation of p65 at Ser536 but not the p65 translocation to the nucleus and inhibitory factor kappa B alpha degradation. Crebanine also suppressed phosphorylation and nucleus translocation of activator protein-1 (AP-1). These observations suggest that the antiinflammatory properties of crebanine may stem from the inhibition of proinflammatory mediators via suppression of the NF-κB, AP-1, MAPKs, and Akt signaling pathways.
Collapse
|
22
|
Tetrahydroberberrubine attenuates lipopolysaccharide-induced acute lung injury by down-regulating MAPK, AKT, and NF-κB signaling pathways. Biomed Pharmacother 2016; 82:489-97. [PMID: 27470389 DOI: 10.1016/j.biopha.2016.05.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022] Open
|
23
|
Ou HL, Sun D, Peng YC, Wu YL. Novel effects of the cyclooxygenase-2-selective inhibitor NS-398 on IL-1β-induced cyclooxygenase-2 and IL-8 expression in human ovarian granulosa cells. Innate Immun 2016; 22:452-65. [PMID: 27312705 DOI: 10.1177/1753425916654011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/18/2016] [Indexed: 12/15/2022] Open
Abstract
Ovulation is a critical inflammation-like event that is central to ovarian physiology. IL-1β is an immediate early pro-inflammatory cytokine that regulates production of several other inflammatory mediators, such as cyclooxygenase 2 (COX)-2 and IL-8. NS-398 is a selective inhibitor of COX-2 bioactivity and thus this drug is able to mitigate the COX-2-mediated production of downstream prostaglandins and the subsequent inflammatory response. Here we have investigated the action of NS-398 using a human ovarian granulosa cell line, KGN, by exploring IL-1β-regulated COX-2 and IL-8 expression. First, NS-398, instead of reducing inflammation, appeared to further enhance IL-1β-mediated COX-2 and IL-8 production. Using selective inhibitors targeting various signaling molecules, MAPK and NF-κB pathways both seemed to be involved in the impact of NS-398 on IL-1β-induced COX-2 and IL-8 expression. NS-398 also promoted IL-1β-mediated NF-κB p65 nuclear translocation but had no effect on IL-1β-activated MAPK phosphorylation. Flow cytometry analysis demonstrated that NS-398, in combination with IL-1β, significantly enhanced cell cycle progression involving IL-8. Our findings demonstrate a clear pro-inflammatory function for NS-398 in the IL-1β-mediated inflammatory response of granulosa cells, at least in part, owing to its augmenting effect on the IL-1β-induced activation of NF-κB.
Collapse
Affiliation(s)
- Hui-Ling Ou
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - David Sun
- Department of Obstetrics and Gynecology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yen-Chun Peng
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yuh-Lin Wu
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
24
|
Pinto NDCC, Machado DC, da Silva JM, Conegundes JLM, Gualberto ACM, Gameiro J, Moreira Chedier L, Castañon MCMN, Scio E. Pereskia aculeata Miller leaves present in vivo topical anti-inflammatory activity in models of acute and chronic dermatitis. JOURNAL OF ETHNOPHARMACOLOGY 2015; 173:330-337. [PMID: 26226436 DOI: 10.1016/j.jep.2015.07.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaves of Pereskia aculeata Miller (Cactaceae), known as Barbados gooseberry, are used in Brazilian traditional medicine as emollients and to treat skin wounds and inflammation. This study investigated the topical anti-inflammatory activity of the hexane fraction (HF) obtained from the methanol extract of the leaves of this species in models of acute and chronic ear dermatitis in mice. MATERIAL AND METHODS Mice ear edema was induced by topical application of croton oil, arachidonic acid, capsaicin, ethyl-phenylpropiolate and phenol; and by subcutaneous injection of histamine. Ear biopsies were obtained to determine the levels of IL-1β, IL-6 and TNF-α cytokines by ELISA assay. Histopathological analysis was also performed to evaluate the HF activity in croton oil multiple application test. In addition, acute dermal irritation/corrosion test in rats was accomplished. HF chemical characterization was performed by GC-MS analysis. RESULTS HF intensively reduced the inflammatory process induced by all irritant agents used, except for arachidonic acid. This activity is related, at least in part, to the reduction of IL-6 and TNF-α cytokines levels. Moreover, when the glucocorticoid receptor antagonist mifepristone was used, HF failed to respond to the croton oil application.The results strongly suggested a glucocorticoid-like effect, which was reinforced by the presence of considerable amounts of sterol compounds identified in HF. The acute dermal irritaton/corrosion test showed no signs of toxicity. CONCLUSIONS This study showed that the acute and chronic anti-inflammatory activity of P. aculeata leaves is very promising, and corroborates to better understand their ethnopharmacological applications.
Collapse
Affiliation(s)
- Nícolas de Castro Campos Pinto
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Biological Science Institute, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG Brazil
| | - Danielle Cunha Machado
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Biological Science Institute, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG Brazil
| | - Josiane Mello da Silva
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Biological Science Institute, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG Brazil
| | - Jéssica Leiras Mota Conegundes
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Biological Science Institute, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG Brazil
| | - Ana Cristina Moura Gualberto
- Department of Parasitology, Microbiology and Immunology, Biological Sciences Institute, Federal University of Juiz de Fora, 36036 900, Juiz de Fora, MG, Brazil
| | - Jacy Gameiro
- Department of Parasitology, Microbiology and Immunology, Biological Sciences Institute, Federal University of Juiz de Fora, 36036 900, Juiz de Fora, MG, Brazil
| | - Luciana Moreira Chedier
- Department of Botany, Biological Science Institute, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG Brazil
| | | | - Elita Scio
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Biological Science Institute, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG Brazil.
| |
Collapse
|
25
|
Yoon YP, Lee HJ, Lee DU, Lee SK, Hong JH, Lee CJ. Effects of Lupenone, Lupeol, and Taraxerol Derived from Adenophora triphylla on the Gene Expression and Production of Airway MUC5AC Mucin. Tuberc Respir Dis (Seoul) 2015; 78:210-7. [PMID: 26175774 PMCID: PMC4499588 DOI: 10.4046/trd.2015.78.3.210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/09/2014] [Accepted: 01/26/2015] [Indexed: 11/24/2022] Open
Abstract
Background Adenophora triphylla var. japonica is empirically used for controlling airway inflammatory diseases in folk medicine. We evaluated the gene expression and production of mucin from airway epithelial cells in response to lupenone, lupeol and taraxerol derived from Adenophora triphylla var. japonica. Methods Confluent NCI-H292 cells were pretreated with lupenone, lupeol or taraxerol for 30 minutes and then stimulated with tumor necrosis factor α (TNF-α) for 24 hours. The MUC5AC mucin gene expression and production were measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Additionally, we examined whether lupenone, lupeol or taraxerol affects MUC5AC mucin production induced by epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA), the other 2 stimulators of airway mucin production. Results Lupenone, lupeol, and taraxerol inhibited the gene expression and production of MUC5AC mucin induced by TNF-α from NCI-H292 cells, respectively. The 3 compounds inhibited the EGF or PMA-induced production of MUC5AC mucin in NCI-H292 cells. Conclusion These results indicated that lupenone, lupeol and taraxerol derived from Adenophora triphylla var. japonica regulates the production and gene expression of mucin, by directly acting on airway epithelial cells. In addition, the results partly explain the mechanism of of Adenophora triphylla var. japonica as a traditional remedy for diverse inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Yong Pill Yoon
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jae Lee
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Dong-Ung Lee
- Division of Bioscience, Dongguk University, Gyeongju, Korea
| | - Sang Kook Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jang-Hee Hong
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Choong Jae Lee
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
26
|
Chien HY, Lu CS, Chuang KH, Kao PH, Wu YL. Attenuation of LPS-induced cyclooxygenase-2 and inducible NO synthase expression by lysophosphatidic acid in macrophages. Innate Immun 2015; 21:635-46. [DOI: 10.1177/1753425915576345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/12/2015] [Indexed: 01/09/2023] Open
Abstract
LPS can activate the inflammatory cascades by inducing various inflammatory mediators, such as prostaglandin E2 (PGE2) resulting from cyclooxygenase-2 (COX-2), and NO produced by inducible NO synthase (iNOS). Lysophosphatidic acid (LPA) has been demonstrated to participate in inflammation. This study aimed to clarify the impact and the involving mechanisms of LPA on LPS-incurred inflammation in macrophages. First, LPA appeared to attenuate LPS-induced protein and mRNA expression of COX-2 and iNOS genes, as well as production of PGE2 and NO. By using selective inhibitors targeting various signaling players, the inhibitory G protein alpha subunit (Gαi) seemed to be involved in the effect of LPA; p38, ERK and NF-κB were involved in the LPS-mediated COX-2/PGE2 pathway; and p38, JNK, phosphoinositide-3-kinase and NF-κB were involved in the LPS-mediated iNOS/NO pathway. LPA was able to diminish LPS-induced phosphorylation of p38 and Akt, as well as NF-κB p65 nuclear translocation. By utilization of inhibitors of COX-2 and iNOS, there appeared to be no modulation between the COX-2/PGE2 and the iNOS/NO signaling pathways. Our findings demonstrate a clear anti-inflammatory role of LPA acting via Gαi in LPS-mediated inflammatory response in macrophages, owing, at least in part, to its suppressive effect on LPS-induced activation of p38, Akt and NF-κB.
Collapse
Affiliation(s)
- Han-Yuan Chien
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Shen Lu
- Department of Neurosurgery, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Kun-Han Chuang
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pu-Hong Kao
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Lin Wu
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
27
|
Khanra R, Dewanjee S, K Dua T, Sahu R, Gangopadhyay M, De Feo V, Zia-Ul-Haq M. Abroma augusta L. (Malvaceae) leaf extract attenuates diabetes induced nephropathy and cardiomyopathy via inhibition of oxidative stress and inflammatory response. J Transl Med 2015; 13:6. [PMID: 25591455 PMCID: PMC4301895 DOI: 10.1186/s12967-014-0364-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/16/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Abroma augusta L. (Malvaceae) leaf is traditionally used to treat diabetes in India and Southern Asia. Therefore, current study was performed to evaluate the protective effect of defatted methanol extract of A. augusta leaves (AA) against type 2 diabetes mellitus (T2DM) and its associated nephropathy and cardiomyopathy in experimental rats. METHODS Antidiabetic activity of AA extracts (100 and 200 mg/kg, p.o.) was measured in streptozotocin-nicotinamide induced type 2 diabetic (T2D) rat. Fasting blood glucose level (at specific interval) and serum biochemical markers (after sacrifice) were measured. Redox status, transcription levels of signal proteins (NF-κB and PKCs), mitochondria dependent apoptotic pathway (Bad, Bcl-2, caspase cascade) and histological studies were performed in kidneys and hearts of controls and AA treated diabetic rats. RESULTS Phytochemical screening of extracts revealed the presence of taraxerol, flavonoids and phenolic compounds in the AA. T2D rats showed significantly (p < 0.01) elevated fasting blood glucose level. Alteration in serum lipid profile and release of membrane bound enzymes like lactate dehydrogenase and creatine kinase, which ensured the participation of hyperlipidemia and cell membrane disintegration in diabetic pathophysiology. T2DM caused alteration in the serum biochemical markers related to diabetic complications. T2DM altered the redox status, decreased the intracellular NAD and ATP concentrations in renal and myocardial tissues of experimental rats. Investigating the molecular mechanism, activation PKC isoforms was observed in the selected tissues. T2D rats also exhibited an up-regulation of NF-κB and increase in the concentrations of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) in the renal and cardiac tissues. The activation of mitochondria dependent apoptotic pathway was observed in renal and myocardial tissues of the T2D rats. However, Oral administration of AA at the doses of 100 and 200 mg/kg body weight per day could reduce hyperglycemia, hyperlipidemia, membrane disintegration, oxidative stress, vascular inflammation and prevented the activation of oxidative stress induced signaling cascades leading to cell death. Histological studies also supported the protective characteristics of AA. CONCLUSIONS Results suggest that AA could offer prophylactic role against T2DM and its associated reno- and cardio- toxicity.
Collapse
Affiliation(s)
- Ritu Khanra
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Tarun K Dua
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Ranabir Sahu
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | | | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, 84084, Italy.
| | - Muhammad Zia-Ul-Haq
- Office of Research, Innovation and Commercialization, Lahore College for Women University, Lahore, 54600, Pakistan.
| |
Collapse
|
28
|
Kamble SM, Goyal SN, Patil CR. Multifunctional pentacyclic triterpenoids as adjuvants in cancer chemotherapy: a review. RSC Adv 2014. [DOI: 10.1039/c4ra02784a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The protective adjuvants in chemotherapy.
Collapse
Affiliation(s)
- Sarika M. Kamble
- Drug Discovery Laboratory
- Department of Pharmacology
- R. C. Patel Institute of Pharmaceutical Education and Research
- Shirpur, Dist. Dhule, India
| | - Sameer N. Goyal
- Drug Discovery Laboratory
- Department of Pharmacology
- R. C. Patel Institute of Pharmaceutical Education and Research
- Shirpur, Dist. Dhule, India
| | - Chandragouda R. Patil
- Drug Discovery Laboratory
- Department of Pharmacology
- R. C. Patel Institute of Pharmaceutical Education and Research
- Shirpur, Dist. Dhule, India
| |
Collapse
|
29
|
Thang TD, Kuo PC, Huang GJ, Hung NH, Huang BS, Yang ML, Luong NX, Wu TS. Chemical constituents from the leaves of Annona reticulata and their inhibitory effects on NO production. Molecules 2013; 18:4477-86. [PMID: 23591927 PMCID: PMC6270106 DOI: 10.3390/molecules18044477] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/03/2013] [Accepted: 04/12/2013] [Indexed: 11/24/2022] Open
Abstract
In the present study, the chemical investigation of the leaves of Annona reticulata has resulted in the identification of nine compounds, including annonaretin A, (1), a new triterpenoid. The purified compounds were subjected to the examination of their effects on NO inhibition in LPS-activated mouse peritoneal macrophages and most of them exhibited significant NO inhibition, with IC50 values in the range of 48.6 ± 1.2 and 99.8 ± 0.4 μM.
Collapse
Affiliation(s)
- Tran Dinh Thang
- Department of Chemistry, Vinh University, Vinh 42000, Vietnam; E-Mail: (T.D.T.)
| | - Ping-Chung Kuo
- Department of Biotechnology, National Formosa University, Yunlin 632, Taiwan; E-Mail: (P.-C.K.)
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan
| | - Nguyen Huy Hung
- Department of Chemistry, Vinh University, Vinh 42000, Vietnam; E-Mail: (T.D.T.)
| | - Bow-Shin Huang
- Department of Biotechnology, National Formosa University, Yunlin 632, Taiwan; E-Mail: (P.-C.K.)
| | - Mei-Lin Yang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Ngo Xuan Luong
- Department of Natural Science, Hong Duc University, Thanhhoa 41000, Vietnam
| | - Tian-Shung Wu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-6-275-7575 (ext. 65333); Fax: +886-6-274-0552
| |
Collapse
|