1
|
Rodríguez-Moreno CB, Cañeque-Rufo H, Flor-García M, Terreros-Roncal J, Moreno-Jiménez EP, Pallas-Bazarra N, Bressa C, Larrosa M, Cafini F, Llorens-Martín M. Azithromycin preserves adult hippocampal neurogenesis and behavior in a mouse model of sepsis. Brain Behav Immun 2024; 117:135-148. [PMID: 38211636 PMCID: PMC7615685 DOI: 10.1016/j.bbi.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
The mammalian hippocampus can generate new neurons throughout life. Known as adult hippocampal neurogenesis (AHN), this process participates in learning, memory, mood regulation, and forgetting. The continuous incorporation of new neurons enhances the plasticity of the hippocampus and contributes to the cognitive reserve in aged individuals. However, the integrity of AHN is targeted by numerous pathological conditions, including neurodegenerative diseases and sustained inflammation. In this regard, the latter causes cognitive decline, mood alterations, and multiple AHN impairments. In fact, the systemic administration of Lipopolysaccharide (LPS) from E. coli to mice (a model of sepsis) triggers depression-like behavior, impairs pattern separation, and decreases the survival, maturation, and synaptic integration of adult-born hippocampal dentate granule cells. Here we tested the capacity of the macrolide antibiotic azithromycin to neutralize the deleterious consequences of LPS administration in female C57BL6J mice. This antibiotic exerted potent neuroprotective effects. It reversed the increased immobility time during the Porsolt test, hippocampal secretion of pro-inflammatory cytokines, and AHN impairments. Moreover, azithromycin promoted the synaptic integration of adult-born neurons and functionally remodeled the gut microbiome. Therefore, our data point to azithromycin as a clinically relevant drug with the putative capacity to ameliorate the negative consequences of chronic inflammation by modulating AHN and hippocampal-related behaviors.
Collapse
Affiliation(s)
- Carla B Rodríguez-Moreno
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Héctor Cañeque-Rufo
- Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Miguel Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julia Terreros-Roncal
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noemí Pallas-Bazarra
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Carlo Bressa
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcón, Madrid
| | - Mar Larrosa
- Department of Food Science and Nutrition, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Fabio Cafini
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain.
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
2
|
Straß S, Schwamborn A, Keppler M, Cloos N, Guezguez J, Guse JH, Burnet M, Laufer S. Synthesis, Characterization, and in vivo Distribution of Intracellular Delivered Macrolide Short-Chain Fatty Acid Derivatives. ChemMedChem 2021; 16:2254-2269. [PMID: 33787081 DOI: 10.1002/cmdc.202100139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 01/22/2023]
Abstract
Short-chain fatty acids (SCFAs) have a range of effects in metabolism and immune regulation. We have observed that delivery of SCFAs to lysosomes has potent immune regulatory effects, possibly as a surrogate signal for the presence of anaerobic organisms. To better understand the pharmacology of lysosomal SCFA donors, we investigated the distribution and metabolism of propionate and butyrate donors. Each analog (1 a and 2 a) can donate three SCFA equivalents via ester hydrolysis through six intermediate metabolites. The compounds are stabilized by low pH, and stability in cells is usually higher than in medium, but is cell-type specific. Butyrate derivatives were found to be more stable than propionates. Tri-esters were more stable than di- or mono-esters. The donors were surprisingly stable in vivo, and hydrolysis of each position was organ specific. Jejunum and liver caused rapid loss of 4'' esters. The gut metabolite pattern by i. v. differed from that of p.o. application, suggesting luminal and apical enzyme effects in the gut epithelium. Central organs could de-esterify the 11-position. Levels in lung relative to other organs were higher by p.o. than via i. v., suggesting that delivery route can influence the observed pharmacology and that gut metabolites distribute differently. The donors were largely eliminated by 24 h, following near linear decline in organs. The observed levels and distribution were found to be consistent with pharmacodynamic effects, particularly in the gut.
Collapse
Affiliation(s)
- Simon Straß
- Pharmaceutical Chemistry, Institute for Pharmaceutical Sciences, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.,Synovo GmbH, Paul-Ehrlich Straße 15, 72076, Tübingen, Germany
| | - Anna Schwamborn
- Synovo GmbH, Paul-Ehrlich Straße 15, 72076, Tübingen, Germany
| | - Manuel Keppler
- Synovo GmbH, Paul-Ehrlich Straße 15, 72076, Tübingen, Germany
| | - Natascha Cloos
- Synovo GmbH, Paul-Ehrlich Straße 15, 72076, Tübingen, Germany
| | - Jamil Guezguez
- Synovo GmbH, Paul-Ehrlich Straße 15, 72076, Tübingen, Germany
| | | | - Michael Burnet
- Synovo GmbH, Paul-Ehrlich Straße 15, 72076, Tübingen, Germany
| | - Stefan Laufer
- Pharmaceutical Chemistry, Institute for Pharmaceutical Sciences, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| |
Collapse
|
3
|
Reijnders TDY, Saris A, Schultz MJ, van der Poll T. Immunomodulation by macrolides: therapeutic potential for critical care. THE LANCET RESPIRATORY MEDICINE 2020; 8:619-630. [PMID: 32526189 DOI: 10.1016/s2213-2600(20)30080-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Abstract
Critical illness is associated with immune dysregulation, characterised by concurrent hyperinflammation and immune suppression. Hyperinflammation can result in collateral tissue damage and organ failure, whereas immune suppression has been implicated in susceptibility to secondary infections and reactivation of latent viruses. Macrolides are a class of bacteriostatic antibiotics that are used in the intensive care unit to control infections or to alleviate gastrointestinal dysmotility. Yet macrolides also have potent and wide-ranging immunomodulatory properties, which might have the potential to correct immune dysregulation in patients who are critically ill without affecting crucial antimicrobial defences. In this Review, we provide an overview of preclinical and clinical studies that point to the beneficial effects of macrolides in acute diseases relevant to critical care, and we discuss the possible underlying mechanisms of their immunomodulatory effects. Further studies are needed to explore the therapeutic potential of macrolides in critical illness, to identify subgroups of patients who might benefit from treatment, and to develop novel non-antibiotic macrolide derivatives with improved immunomodulatory properties.
Collapse
Affiliation(s)
- Tom D Y Reijnders
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
| | - Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands; Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands; Division of Infectious Diseases, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands.
| |
Collapse
|
4
|
Synergistic Antimicrobial Activity of Colistin in Combination with Rifampin and Azithromycin against Escherichia coli Producing MCR-1. Antimicrob Agents Chemother 2018; 62:AAC.01631-18. [PMID: 30224527 DOI: 10.1128/aac.01631-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
The lack of available antibiotics is a global public health problem due to the emergence of antimicrobial resistance. Effective therapeutic regimens are urgently needed against Escherichia coli strains that produce the colistin resistance gene mcr-1 and to inhibit the emergence of resistance. In this study, we assessed the antimicrobial activity of a series of concentrations of colistin-based combinations with rifampin and/or azithromycin against three strains of Escherichia coli, including colistin-resistant isolate MZ1501R, isolate HE1704R that produces MCR-1, and colistin-susceptible isolate MZ1509S Experiments were conducted with a medium inoculum of ∼107 CFU/ml over 48 h. Subsequently, the in vivo therapeutic effect was investigated using a neutropenic mouse thigh infection model. Almost all monotherapies showed unsatisfactory antibacterial activity against E. coli isolates producing MCR-1. In contrast, colistin in combination with rifampin or azithromycin resulted in an obvious decrease in the bacterial burden albeit with regrowth. More obviously, synergistic antimicrobial activity of colistin-based triple-combination therapy with rifampin and azithromycin was observed, resulting in a rapid and exhaustive antibacterial effect. In vivo treatments confirmed these findings, where mean decreases of 0.38 to 0.90 log10 CFU and 1.27 to 1.78 log10 CFU were noted after 24 h and 48 h of treatment, respectively, against colistin-resistant E. coli strains when 5 mg/kg of body weight of colistin was combined with rifampin and azithromycin. Colistin-based combinations with rifampin and azithromycin provide a more active therapeutic regimen than monotherapy or colistin-based double combinations against E. coli producing MCR-1.
Collapse
|
5
|
Speer EM, Dowling DJ, Xu J, Ozog LS, Mathew JA, Chander A, Yin D, Levy O. Pentoxifylline, dexamethasone and azithromycin demonstrate distinct age-dependent and synergistic inhibition of TLR- and inflammasome-mediated cytokine production in human newborn and adult blood in vitro. PLoS One 2018; 13:e0196352. [PMID: 29715306 PMCID: PMC5929513 DOI: 10.1371/journal.pone.0196352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/11/2018] [Indexed: 11/18/2022] Open
Abstract
Introduction Neonatal inflammation, mediated in part through Toll-like receptor (TLR) and inflammasome signaling, contributes to adverse outcomes including organ injury. Pentoxifylline (PTX), a phosphodiesterase inhibitor which potently suppresses cytokine production in newborn cord blood, is a candidate neonatal anti-inflammatory agent. We hypothesized that combinations of PTX with other anti-inflammatory agents, the steroid dexamethasone (DEX) or the macrolide azithromycin (AZI), may exert broader, more profound and/or synergistic anti-inflammatory activity towards neonatal TLR- and inflammasome-mediated cytokine production. Methods Whole newborn and adult blood was treated with PTX (50–200 μM), DEX (10−10–10−7 M), or AZI (2.5–20 μM), alone or combined, and cultured with lipopolysaccharide (LPS) (TLR4 agonist), R848 (TLR7/8 agonist) or LPS/adenosine triphosphate (ATP) (inflammasome induction). Supernatant and intracellular cytokines, signaling molecules and mRNA were measured by multiplex assay, flow cytometry and real-time PCR. Drug interactions were assessed based on Loewe's additivity. Results PTX, DEX and AZI inhibited TLR- and/or inflammasome-mediated cytokine production in newborn and adult blood, whether added before, simultaneously or after TLR stimulation. PTX preferentially inhibited pro-inflammatory cytokines especially TNF. DEX inhibited IL-10 in newborn, and TNF, IL-1β, IL-6 and interferon-α in newborn and adult blood. AZI inhibited R848-induced TNF, IL-1β, IL-6 and IL-10, and LPS-induced IL-1β and IL-10. (PTX+DEX) synergistically decreased LPS- and LPS/ATP-induced TNF, IL-1β, and IL-6, and R848-induced IL-1β and interferon-α, while (PTX+AZI) synergistically decreased induction of TNF, IL-1β, and IL-6. Synergistic inhibition of TNF production by (PTX+DEX) was especially pronounced in newborn vs. adult blood and was accompanied by reduction of TNF mRNA and enhancement of IL10 mRNA. Conclusions Age, agent, and specific drug-drug combinations exert distinct anti-inflammatory effects towards TLR- and/or inflammasome-mediated cytokine production in human newborn blood in vitro. Synergistic combinations of PTX, DEX and AZI may offer benefit for prevention and/or treatment of neonatal inflammatory conditions while potentially limiting drug exposure and toxicity.
Collapse
Affiliation(s)
- Esther M. Speer
- Department of Pediatrics, Division of Neonatology, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
- * E-mail:
| | - David J. Dowling
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jianjin Xu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
| | - Lukasz S. Ozog
- Department of Pediatrics, Division of Neonatology, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
| | - Jaime A. Mathew
- Department of Pediatrics, Division of Neonatology, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
| | - Avinash Chander
- Department of Pediatrics, Division of Neonatology, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
| | - Donglei Yin
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Precision Vaccine Program, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Emmet O'Brien M, Restrepo MI, Martin-Loeches I. Update on the combination effect of macrolide antibiotics in community-acquired pneumonia. Respir Investig 2015; 53:201-209. [PMID: 26344609 DOI: 10.1016/j.resinv.2015.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/23/2015] [Accepted: 05/27/2015] [Indexed: 06/05/2023]
Abstract
Community-acquired pneumonia (CAP) is a leading cause of death from an infectious cause worldwide. Guideline-concordant antibiotic therapy initiated in a timely manner is associated with improved treatment responses and patient outcomes. In the post-antibiotic era, much of the morbidity and mortality of CAP is as a result of the interaction between bacterial virulence factors and host immune responses. In patients with severe CAP, or who are critically ill, there is a lot of emerging observational evidence demonstrating improved survival rates when treatment using combination therapy with a β-lactam and a macrolide is initiated, as compared to other antibiotic regimes without a macrolide. Macrolides in combination with a β-lactam antibiotic provide broader coverage for the atypical organisms implicated in CAP, and may contribute to antibacterial synergism. However, it has been postulated that the documented immunomodulatory effects of macrolides are the primary mechanism for improved patient outcomes through attenuation of bacterial virulence factors and host systemic inflammatory responses. Despite concerns regarding the limitations of observational evidence and the lack of confirmatory randomized controlled trials, the potential magnitude of mortality benefits estimated at 20-50% cannot be overlooked. In light of recent data from a number of trials showing that combination treatment with a macrolide and a suitable second agent is justified in all patients with severe CAP, such treatment should be obligatory for those admitted to an intensive care setting.
Collapse
Affiliation(s)
- M Emmet O'Brien
- Multidisciplinary Intensive Care Research Organization, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland.
| | - Marcos I Restrepo
- South Texas Veterans Health Care System, Audie L. Murphy Memorial Veterans Hospital, Medicine, San Antonio, TX, USA.
| | - Ignacio Martin-Loeches
- Multidisciplinary Intensive Care Research Organization, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
7
|
Hussain S, Varelogianni G, Särndahl E, Roomans GM. N-acetylcysteine and azithromycin affect the innate immune response in cystic fibrosis bronchial epithelial cells in vitro. Exp Lung Res 2014; 41:251-60. [DOI: 10.3109/01902148.2014.934411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|