1
|
de Souza Goncalves B, Sangani D, Nayyar A, Puri R, Irtiza M, Nayyar A, Khalyfa A, Sodhi K, Pillai SS. COVID-19-Associated Sepsis: Potential Role of Phytochemicals as Functional Foods and Nutraceuticals. Int J Mol Sci 2024; 25:8481. [PMID: 39126050 PMCID: PMC11312872 DOI: 10.3390/ijms25158481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The acute manifestations of coronavirus disease 2019 (COVID-19) exhibit the hallmarks of sepsis-associated complications that reflect multiple organ failure. The inflammatory cytokine storm accompanied by an imbalance in the pro-inflammatory and anti-inflammatory host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to severe and critical septic shock. The sepsis signature in severely afflicted COVID-19 patients includes cellular reprogramming and organ dysfunction that leads to high mortality rates, emphasizing the importance of improved clinical care and advanced therapeutic interventions for sepsis associated with COVID-19. Phytochemicals of functional foods and nutraceutical importance have an incredible impact on the healthcare system, which includes the prevention and/or treatment of chronic diseases. Hence, in the present review, we aim to explore the pathogenesis of sepsis associated with COVID-19 that disrupts the physiological homeostasis of the body, resulting in severe organ damage. Furthermore, we have summarized the diverse pharmacological properties of some potent phytochemicals, which can be used as functional foods as well as nutraceuticals against sepsis-associated complications of SARS-CoV-2 infection. The phytochemicals explored in this article include quercetin, curcumin, luteolin, apigenin, resveratrol, and naringenin, which are the major phytoconstituents of our daily food intake. We have compiled the findings from various studies, including clinical trials in humans, to explore more into the therapeutic potential of each phytochemical against sepsis and COVID-19, which highlights their possible importance in sepsis-associated COVID-19 pathogenesis. We conclude that our review will open a new research avenue for exploring phytochemical-derived therapeutic agents for preventing or treating the life-threatening complications of sepsis associated with COVID-19.
Collapse
Affiliation(s)
- Bruno de Souza Goncalves
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Darshan Sangani
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Aleen Nayyar
- Department of Medicine, Sharif Medical and Dental College, Lahore 55150, Pakistan;
| | - Raghav Puri
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Mahir Irtiza
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Asma Nayyar
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Abdelnaby Khalyfa
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Komal Sodhi
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Sneha S. Pillai
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| |
Collapse
|
2
|
Xu X, Xu X, Cao J, Ruan L. MicroRNA-1258 suppresses oxidative stress and inflammation in septic acute lung injury through the Pknox1-regulated TGF-β1/SMAD3 cascade. Clinics (Sao Paulo) 2024; 79:100354. [PMID: 38640751 PMCID: PMC11031721 DOI: 10.1016/j.clinsp.2024.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/16/2024] [Accepted: 03/18/2024] [Indexed: 04/21/2024] Open
Abstract
AIM The study was to clarify the mechanism of miR-1258 targeting Prep1 (pKnox1) to control Transforming Growth Factor β1 (TGF-β1)/SMAD3 pathway in septic Acute Lung Injury (ALI)-induced oxidative stress and inflammation. METHODS BEAS-2B cells and C57BL/6 mice were used to make in vitro and in vivo septic ALI models, respectively. miR-1258 expression was checked by RT-qPCR. After transfection in the in vitro experimental model, inflammation, oxidative stress, viability, and apoptosis were observed through ELISA, MTT, and flow cytometry. RESULTS In the in vivo model after miR-1258 overexpression treatment, inflammation, oxidative stress, and lung injury were further investigated. The targeting relationship between miR-1258 and Pknox1 was tested. Low miR-1258 was expressed in septic ALI patients, LPS-treated BEAS-2B cells, and mice. Upregulated miR-1258 prevented inflammation, oxidative stress, and apoptosis but enhanced the viability of LPS-treated BEAS-2B cells. The impact of upregulated miR-1258 on LPS-treated BEAS-2B cells was mitigated by inhibiting Pknox1 expression. MiR-1258 overexpression had the alleviating effects on inflammation, oxidative stress, and lung injury of LPS-injured mice through suppressing Pknox1 expression and TGF-β1/SMAD3 cascade activation. CONCLUSIONS The study concludes that miR-1258 suppresses oxidative stress and inflammation in septic ALI through the Pknox1-regulated TGF-β1/SMAD3 cascade.
Collapse
Affiliation(s)
- XiaoMeng Xu
- Guangzhou Hospital of Integrated Traditional and West Medicine, Department of Anesthesiology, Guangzhou City, Guangdong Province, China
| | - XiaoHong Xu
- Guangzhou Hospital of Integrated Traditional and West Medicine, Department of Pediatrics, Guangzhou City, Guangdong Province, China
| | - JinLiang Cao
- Guangzhou Hospital of Integrated Traditional and West Medicine, Department of Anesthesiology, Guangzhou City, Guangdong Province, China
| | - LuoYang Ruan
- Guangzhou Hospital of Integrated Traditional and West Medicine, Department of Anesthesiology, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
3
|
Zheng Z, Song X, Shi Y, Long X, Li J, Zhang M. Recent Advances in Biologically Active Ingredients from Natural Drugs for Sepsis Treatment. Comb Chem High Throughput Screen 2024; 27:688-700. [PMID: 37254548 DOI: 10.2174/1386207326666230529101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Sepsis refers to the dysregulated host response to infection; its incidence and mortality rates are high. It is a worldwide medical problem but there is no specific drug for it. In recent years, clinical and experimental studies have found that many monomer components of traditional Chinese medicine have certain effects on the treatment of sepsis. This paper reviews the advances in research on the active ingredients of traditional Chinese medicine involved in the treatment of sepsis in recent years according to their chemical structure; it could provide ideas and references for further research and development in Chinese materia medica for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Zheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Xiayinan Song
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanmei Shi
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofeng Long
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Jie Li
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Min Zhang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
4
|
Teng L, Zhang Y, Chen L, Shi G. Fabrication of a curcumin encapsulated bioengineered nano-cocktail formulation for stimuli-responsive targeted therapeutic delivery to enhance anti-inflammatory, anti-oxidant, and anti-bacterial properties in sepsis management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-25. [PMID: 37163302 DOI: 10.1080/09205063.2023.2181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This study aimed to fabricate an eco-friendly functionalized chitosan (CS) nanocarrier to establish a pH-responsive drug delivery system for the treatment of sepsis. Curcumin (Cur) and cerium oxide (CeO2) were loaded onto an octenylsuccinic anhydride (OSA)-functionalized CS nanoformulation (Cur@Ce/OCS) to achieve an effective nanocarrier (NC) for sepsis treatment. The physicochemical characteristics of the developed nanocarriers were determined using various characterization techniques. The developed CeO2-OCS nanoformulation has been showed effective anti-bacterial activity (∼97%) against G+ and G- bacterial pathogens, and also have improved drug loading (94% ± 2), and encapsulation efficiency (89.8% ± 1.5), with uniform spherical particles having an average diameter of between 100 and 150 nm. The in vivo experimental results establish that Cur-loaded Ce/OCS NPs could have enhanced therapeutic potential against lung infection model by reducing bacterial burden and extensively decreasing inflammatory responses in sepsis model. Additionally, we determined the in vivo biosafety of the nanoformulations by histological observation of different mouse organs (heart, liver, spleen, and kidney), and observed no signs of toxicity in the treatment groups. The findings of this study clearly demonstrate the therapeutic potential of pH-sensitive nanoplatforms in the management of infectious sepsis.
Collapse
Affiliation(s)
- Li Teng
- Department of Pharmacy, Yantai City Yantaishan Hospital, Yantai 264600, Shandong Province, China
| | - Yiliang Zhang
- Department of Pharmacy, Yantai City Yantaishan Hospital, Yantai 264600, Shandong Province, China
| | - Li Chen
- Second Department of Paediatrics, Zhumadian Women and Children's Hospital, Zhumadian 46300, Henan Province, PR China
| | - Ge Shi
- Second Department of Paediatrics, Zhumadian Women and Children's Hospital, Zhumadian 46300, Henan Province, PR China
| |
Collapse
|
5
|
Impacts of Curcumin Treatment on Experimental Sepsis: A Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2252213. [PMID: 36756300 PMCID: PMC9902115 DOI: 10.1155/2023/2252213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/27/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Background and Aims Sepsis is defined as a life-threatening organ dysfunction due to a dysregulated host immune response to an infection. Curcumin is a yellow polyphenol derived from the rhizome of Curcuma longa with anti-inflammatory and antioxidant properties scientifically proven, a condition that allowed its use as a tool in the treatment of sepsis. Thus, the purpose of this article was to systematically review the evidence on the impact of curcumin's anti-inflammatory effect on experimental sepsis. Methods For this, the PubMed, MEDLINE, EMBASE, Scopus, Web of Science, and LILACS databases were used, and the research was not limited to a specific publication period. Only original articles in English using in vivo experimental models (rats or mice) of sepsis induction performed by administration of lipopolysaccharide (LPS) or cecal ligation and perforation surgery (CLP) were included in the study. Studies using curcumin in dry extract or with a high degree of purity were included. At initial screening, 546 articles were selected, and of these, 223 were eligible for primary evaluation. Finally, 12 articles with full text met all inclusion criteria. Our results showed that curcumin may inhibit sepsis-induced complications such as brain, heart, liver, lungs, and kidney damage. Curcumin can inhibit inflammatory factors, prevent oxidative stress, and regulate immune responses in sepsis. Additionally, curcumin increased significantly the survival rates after experimental sepsis in several studies. The modulation of the immune response and mortality by curcumin reinforces its protective effect on sepsis and indicates a potential therapeutic tool for the treatment of sepsis.
Collapse
|
6
|
Mahomoodally MF, Aumeeruddy MZ, Legoabe LJ, Dall’Acqua S, Zengin G. Plants' bioactive secondary metabolites in the management of sepsis: Recent findings on their mechanism of action. Front Pharmacol 2022; 13:1046523. [PMID: 36588685 PMCID: PMC9800845 DOI: 10.3389/fphar.2022.1046523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis is a severe inflammatory response to systemic infection and is a threatening cause of death in intensive care units. In recent years, a number of studies have been conducted on the protective effect of natural products against sepsis-induced organ injury. However, a comprehensive review of these studies indicating the mechanisms of action of the bioactive compounds is still lacking. In this context, this review aimed to provide an updated analysis of the mechanism of action of plants' secondary metabolites in the management of sepsis. Scopus, Science Direct, Google Scholar, and PubMed were searched from inception to July 2022. A variety of secondary metabolites were found to be effective in sepsis management including allicin, aloin, cepharanthine, chrysin, curcumin, cyanidin, gallic acid, gingerol, ginsenoside, glycyrrhizin, hesperidin, kaempferol, narciclasine, naringenin, naringin, piperine, quercetin, resveratrol, rosmarinic acid, shogaol, silymarin, sulforaphane, thymoquinone, umbelliferone, and zingerone. The protective effects exerted by these compounds can be ascribed to their antioxidant properties as well as induction of endogenous antioxidant mechanisms, and also via the downregulation of inflammatory response and reduction of biochemical and inflammatory markers of sepsis. These findings suggest that these secondary metabolites could be of potential therapeutic value in the management of sepsis, but human studies must be performed to provide strength to their potential clinical relevance in sepsis-related morbidity and mortality reduction.
Collapse
Affiliation(s)
- Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam,Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam,*Correspondence: Mohamad Fawzi Mahomoodally, ; Stefano Dall’Acqua,
| | | | - Lesetja Jan Legoabe
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North West University, Potchefstroom, South Africa
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy,*Correspondence: Mohamad Fawzi Mahomoodally, ; Stefano Dall’Acqua,
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey
| |
Collapse
|
7
|
Rayat S, Ramezanidoraki N, Kazemi N, Modarressi MH, Falah M, Zardadi S, Morovvati S. Association study between polymorphisms in MIA3, SELE, SMAD3 and CETP genes and coronary artery disease in an Iranian population. BMC Cardiovasc Disord 2022; 22:298. [PMID: 35768776 PMCID: PMC9245199 DOI: 10.1186/s12872-022-02695-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Coronary artery disease (CAD) is the most common heart disease. Several studies have shown association between some polymorphism in different genes with CAD. Finding this association can be used in order to early diagnosis and prevention of CAD. Method 101 CAD patients with ≥ 50% luminal stenosis of any coronary vessel as case group and 111 healthy individuals as control group were selected. the polymorphisms were evaluated by ARMS-PCR and RFLP-PCR methods. Result The results of this study show that there is no significant association between rs17228212, rs17465637, and rs708272 and risk of CAD. But there is significant association between risk of CAD and rs5355 (p-value = 0.022) and rs3917406 (p-value = 0.006) in total cases, and rs5882 (p-value = 0.001) in male cases. Conclusions Our findings revealed a significant interaction between CETP SNPs and CETP activity for affecting HDL-C levels. The SELE gene is a known cell adhesion molecule with a significant role in inflammation. Studies about possible linkage between SELE gene polymorphisms and the development of CAD are conflicting. We have found a significant association between polymorphisms of SELE gene and risk of CAD.
Collapse
Affiliation(s)
- Sima Rayat
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Ramezanidoraki
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nima Kazemi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad H Modarressi
- Department of Medical Genetics, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, Iran
| | - Masoumeh Falah
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Safoura Zardadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeid Morovvati
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Wang YF, Li JW, Wang DP, Jin K, Hui JJ, Xu HY. Anti-Hyperglycemic Agents in the Adjuvant Treatment of Sepsis: Improving Intestinal Barrier Function. Drug Des Devel Ther 2022; 16:1697-1711. [PMID: 35693534 PMCID: PMC9176233 DOI: 10.2147/dddt.s360348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/28/2022] [Indexed: 12/19/2022] Open
Abstract
Intestinal barrier injury and hyperglycemia are common in patients with sepsis. Bacteria translocation and systemic inflammatory response caused by intestinal barrier injury play a significant role in sepsis occurrence and deterioration, while hyperglycemia is linked to adverse outcomes in sepsis. Previous studies have shown that hyperglycemia is an independent risk factor for intestinal barrier injury. Concurrently, increasing evidence has indicated that some anti-hyperglycemic agents not only improve intestinal barrier function but are also beneficial in managing sepsis-induced organ dysfunction. Therefore, we assume that these agents can block or reduce the severity of sepsis by improving intestinal barrier function. Accordingly, we explicated the connection between sepsis, intestinal barrier, and hyperglycemia, overviewed the evidence on improving intestinal barrier function and alleviating sepsis-induced organ dysfunction by anti-hyperglycemic agents (eg, metformin, peroxisome proliferators activated receptor-γ agonists, berberine, and curcumin), and summarized some common characteristics of these agents to provide a new perspective in the adjuvant treatment of sepsis.
Collapse
Affiliation(s)
- Yi-Feng Wang
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Jia-Wei Li
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Da-Peng Wang
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Ke Jin
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Jiao-Jie Hui
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Hong-Yang Xu
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Liu D, Long M, Gao L, Chen Y, Li F, Shi Y, Gu N. Nanomedicines Targeting Respiratory Injuries for Pulmonary Disease Management. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202112258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 01/02/2025]
Abstract
AbstractThe respiratory system holds crucial importance in the biology of vertebrate animals. Injuries of the respiratory system caused by viral infections (e.g., by COVID‐19, MERS, and SARS) can lead to severe or lethal conditions. So far there are no effective treatments for respiratory injuries. This represents a highly unmet clinical need, e.g., during the current COVID‐19 pandemic. Nanomedicines have high potential in the treatment of respiratory injuries. In this review, the pathology and clinical treatments of major respiratory injuries, acute lung injury, and acute respiratory distress syndrome are briefly summarized. The review primarily focuses on nanomedicines based on liposomes, solid lipid nanoparticles, polymeric nanoparticles, and inorganic nanoparticles, which are tested in preclinical models for the treatment of respiratory injuries. These nanomedicines are utilized to deliver a variety of therapeutic agents, including corticosteroids, statins, and nucleic acids. Furthermore, nanomedicines are also investigated for other respiratory diseases including chronic obstructive pulmonary disease and asthma. The promising preclinical results of various nanoformulations from these studies suggest the potential of nanomedicines for future clinical management of respiratory viral infections and diseases.
Collapse
Affiliation(s)
- Dong Liu
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Mengmeng Long
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biomedical Sciences and Medical Engineering Southeast University Nanjing 210009 P. R. China
| | - Leilei Gao
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Yanjun Chen
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Fang Li
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Yang Shi
- Institute for Experimental Molecular Imaging Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering Faculty of Medicine RWTH Aachen University 52074 Aachen Germany
| | - Ning Gu
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biomedical Sciences and Medical Engineering Southeast University Nanjing 210009 P. R. China
| |
Collapse
|
10
|
Miao Y, Wang M, Cai X, Zhu Q, Mao L. Leucine rich alpha-2-glycoprotein 1 (Lrg1) silencing protects against sepsis-mediated brain injury by inhibiting transforming growth factor beta1 (TGFβ1)/SMAD signaling pathway. Bioengineered 2022; 13:7316-7327. [PMID: 35264055 PMCID: PMC8973760 DOI: 10.1080/21655979.2022.2048775] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is key manifestation of sepsis which is responsible for increased morbidity and mortality. Leucine rich alpha-2-glycoprotein 1 (Lrg1) is a secreted protein implicated in a variety of diseases. We aimed to explore the effects and potential mechanism of Lrg1 on sepsis-mediated brain injury. A sepsis-induced brain damage mice model was established. Then, ELISA was utilized to detect the levels of inflammatory factors in brain tissues. Behavioral performance, spatial learning and memory of mice were evaluated by open field test and Morris water maze test. The number of neurons was tested by H&E staining. Lrg1 expression was evaluated by RT-qPCR and western blot. In vitro, mouse hippocampal neuronal cell line (HT22) was stimulated by lipopolysaccharide (LPS). After Lrg1 silencing, cell viability was determined using CCK-8 and cell apoptosis was assessed by TUNEL. The levels of inflammatory factors were detected by ELISA. Moreover, western blot was applied to analyze the expression of proteins in transforming growth factor beta1 (TGFβ1)/SMAD signaling. Results revealed that mice in the model group showed obvious behavioral changes. Lrg1 was highly expressed in the brain tissues of model mice. Besides, Lrg1 knockdown suppressed the inflammation and apoptosis of LPS-induced HT22 cells. Moreover, Lrg1 silencing caused the inactivation of TGFβ1/SMAD signaling. Rescue assays confirmed that TGFβ1 overexpression reversed the impacts of Lrg1 deletion on the inflammation and apoptosis in LPS-induced HT22 cells. Collectively, Lrg1 silencing alleviates brain injury in SAE via inhibiting TGFβ1/SMAD signaling, implying that Lrg1 might serve as a promising target for SAE treatment.
Collapse
Affiliation(s)
- Youhan Miao
- Department of Infectious Diseases, The Third People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Meihua Wang
- Department of Infectious Diseases, The Third People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Xiaojuan Cai
- Department of Infectious Diseases, The Third People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Qiqi Zhu
- Department of Infectious Diseases, The Third People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Liping Mao
- Department of Infectious Diseases, The Third People's Hospital of Nantong, Nantong, Jiangsu, China
| |
Collapse
|
11
|
Chen YL, Xie YJ, Liu ZM, Chen WB, Zhang R, Ye HX, Wang W, Liu XY, Chen HS. Omega-3 fatty acids impair miR-1-3p-dependent Notch3 down-regulation and alleviate sepsis-induced intestinal injury. Mol Med 2022; 28:9. [PMID: 35090386 PMCID: PMC8796544 DOI: 10.1186/s10020-021-00425-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
Background Sepsis is a troublesome syndrome that can cause intestinal injury and even high mortality rates. Omega-3 fatty acids (FAs) are known to protect against intestinal damage. Accordingly, the current study set out to explore if omega-3 FAs could affect sepsis-induced intestinal injury with the involvement of the microRNA (miR)-1-3p/Notch3-Smad axis. Methods First, cecal ligation and perforation (CLP) was performed to establish septic mouse models in C57BL/6J mice, and mouse intestinal epithelial MODE-K cells were induced by lipopolysaccharide (LPS) to establish sepsis cell models. The CLP-induced septic mice or LPS-exposed cells were subjected to treatment with Omega-3 FAs and activin (Smad signaling activator), miR-1-3p inhibitor and over-expressed/short hairpin RNA (oe-/sh)-Notch3 to explore their roles in inflammation, intestinal oxidative stress and cell apoptosis. A dual-luciferase reporter gene assay was further performed to verify the regulatory relationship between miR-1-3p and Notch3. Results Omega-3 FAs inhibited CLP-induced intestinal injury and ameliorated LPS-induced intestinal epithelial cell injury by down-regulating miR-1-3p, as evidenced by decreased levels of tumor necrosis factor-α, interleukin-1β (IL-1β) and IL-6, in addition to diminished levels of reactive oxygen species, malondialdehyde levels and superoxide dismutase activity. Furthermore, miR-1-3p could down-regulate Notch3, which inactivated the Smad pathway. Conclusion Collectively, our findings indicated that omega-3 FAs elevate the expression of Notch3 by down-regulating miR-1-3p, and then blocking the Smad pathway to alleviate intestinal epithelial inflammation and oxidative stress injury caused by sepsis. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00425-w.
Collapse
Affiliation(s)
- You-Lian Chen
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong Province, People's Republic of China
| | - Yin-Jing Xie
- Clinical Laboratory, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Zhen-Mi Liu
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong Province, People's Republic of China
| | - Wei-Bu Chen
- Clinical Laboratory, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Ru Zhang
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Hong-Xing Ye
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong Province, People's Republic of China
| | - Wei Wang
- Department of Endocrinology and Metabolism, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Xue-Yan Liu
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong Province, People's Republic of China
| | - Huai-Sheng Chen
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong Province, People's Republic of China.
| |
Collapse
|
12
|
Jiang J, Wang J, Li C, Mo L, Huang D. Hyperoxia induces alveolar epithelial cell apoptosis by regulating mitochondrial function through small mothers against decapentaplegic 3 (SMAD3) and extracellular signal-regulated kinase 1/2 (ERK1/2). Bioengineered 2021; 13:242-252. [PMID: 34898379 PMCID: PMC8805928 DOI: 10.1080/21655979.2021.2012953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Oxygen therapy and mechanical ventilation are widely used to treat and manage neonatal emergencies in critically ill newborns. However, they are often associated with adverse effects and result in conditions such as chronic lung disease and bronchopulmonary dysplasia. Hence, aclear understanding of the mechanisms underlying hyperoxia-induced lung damage is crucial in order to mitigate the side effects of oxygen-based therapy. Here, we have established an in vitro model of hyperoxia-induced lung damage in type II alveolar epithelial cells (AECIIs) and delineated the molecular basis of oxygen therapy-induced impaired alveolar development. Thus, AECIIs were exposed to a hyperoxic environment and their cell viability, cell cycle progression, apoptosis, mitochondrial integrity and dynamics, and energy metabolism were assessed. The results showed that hyperoxia has no significant effect as an inhibitor of SMAD3 and ERK1/2 in AECIIs, but leads to significant inhibition of cell viability. Further, hyperoxia was found to promote AECII apoptosis and mitochondrial, whereas chemical inhibition of SMAD3 or ERK1/2 further exacerbated the detrimental effects of hyperoxia in AECIIs. Overall, these findings presented herein demonstrate the critical role of SMAD/ERK signaling in the regulation of AECII behavior in varying oxygen environments. Thus, this study offers novel insights for the prevention of neonatal lung dysfunction in premature infants.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Pediatric Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Juan Wang
- Department of Pediatrics, Affiliated Hospital of Hebei University, Baoding, China
| | - Cen Li
- Department of Pediatric Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lianqin Mo
- Department of Pediatric Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Dong Huang
- Department of Pediatric Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
13
|
Curcumin Promotes the Expression of IL-35 by Regulating Regulatory T Cell Differentiation and Restrains Uncontrolled Inflammation and Lung Injury in Mice. Inflammation 2021; 43:1913-1924. [PMID: 32535666 DOI: 10.1007/s10753-020-01265-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Interleukin (IL)-35, which has an anti-inflammatory role in acute respiratory distress syndrome (ARDS)/acute lung injury (ALI), is relatively promising as a drug target. Studies have shown that curcumin may play a therapeutic role in ALI and enhance the suppressive function of regulatory T cells (Tregs). To illustrate the effect of curcumin on the regulation of Treg cell differentiation and expression of IL-35, we built a cecal ligation and puncture (CLP)-induced acute lung injury mouse mode with curcumin pretreatment. The expression of IL-35 in serum, severity of lung injury, IL-17A in lung tissue, survival rate, Treg-related cytokines levels in serum, nuclear factor-kappa B (NF-κB)'s nuclear translocation in lung tissue, and splenic CD4+CD25+FOXP3+ Tregs were assessed. Furthermore, the proportion of Tregs, STAT5, and IL-35 expression during naïve CD4+ T cell differentiation in vitro was measured. Compared with the CLP group, the increased IL-35 expression in CLP with the curcumin pretreatment (CLP + Cur) group was consistent with the decreased severity of lung injury, IL-17A protein levels in lung tissue, and Treg-related cytokines levels. Pretreatment with curcumin, the survival rate climbed to 50%, while the mortality rate was 100% in the CLP group. In addition, splenic CD4+CD25+FOXP3+ Treg cells increased in the CLP + Cur group. In vitro, CD4+CD25+FOXP3+ Treg cells from naïve CD4+ T cells, STAT5 proportion, and IL-35 expression increased after curcumin treatment. These findings showed that curcumin might regulate IL-35 by activating the differentiation of Treg cells to control the inflammation in acute lung injury.
Collapse
|
14
|
Huiyang Shengji Extract Improve Chronic Nonhealing Cutaneous through the TGF- β1/Smad3 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8881565. [PMID: 34211577 PMCID: PMC8208873 DOI: 10.1155/2021/8881565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Chronic nonhealing cutaneous wounds are a thorny problem in the field of surgery because of their prolonged and unhealed characteristics. Huiyang Shengji extract (HSE) is an extract of traditional Chinese medicine prescription for treating chronic wounds. This study aims to investigate the regulation of M1 macrophages on fibroblast proliferation and secretion and the intervention mechanism of Huiyang Shengji extract. We found that the effects of HSFs stimulated with paracrine factors from M1 macrophages were as follows: the proliferation of HSFs was reduced, the expression of MKI-67 was downregulated, and the content and gene expression of the inflammation factors and fibroblast MMPs were increased, while the content and gene expression of TIMP-1 are decreased, the content of human fibroblasts secreting type I collagen (COL1A1) and type III collagen (COL3A1) was decreased, and the TGF-β1/Smad3 signaling pathway was inhibited. Interestingly, HSE inhibited these effects of M1 macrophages on human fibroblasts after the intervention, and the inhibitory effect was related to the concentration. In conclusion, M1 macrophages caused changes in HSFs and secretion, while HSE has a specific regulatory effect on the proliferation and secretion of fibroblasts caused by M1 macrophages.
Collapse
|
15
|
Rattis BAC, Ramos SG, Celes MRN. Curcumin as a Potential Treatment for COVID-19. Front Pharmacol 2021; 12:675287. [PMID: 34025433 PMCID: PMC8138567 DOI: 10.3389/fphar.2021.675287] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease that rapidly spread throughout the world leading to high mortality rates. Despite the knowledge of previous diseases caused by viruses of the same family, such as MERS and SARS-CoV, management and treatment of patients with COVID-19 is a challenge. One of the best strategies around the world to help combat the COVID-19 has been directed to drug repositioning; however, these drugs are not specific to this new virus. Additionally, the pathophysiology of COVID-19 is highly heterogeneous, and the way of SARS-CoV-2 modulates the different systems in the host remains unidentified, despite recent discoveries. This complex and multifactorial response requires a comprehensive therapeutic approach, enabling the integration and refinement of therapeutic responses of a given single compound that has several action potentials. In this context, natural compounds, such as Curcumin, have shown beneficial effects on the progression of inflammatory diseases due to its numerous action mechanisms: antiviral, anti-inflammatory, anticoagulant, antiplatelet, and cytoprotective. These and many other effects of curcumin make it a promising target in the adjuvant treatment of COVID-19. Hence, the purpose of this review is to specifically point out how curcumin could interfere at different times/points during the infection caused by SARS-CoV-2, providing a substantial contribution of curcumin as a new adjuvant therapy for the treatment of COVID-19.
Collapse
Affiliation(s)
- Bruna A. C. Rattis
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Brazil
| | - Simone G. Ramos
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mara R. N. Celes
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Brazil
| |
Collapse
|
16
|
Bergmann CB, Beckmann N, Salyer CE, Hanschen M, Crisologo PA, Caldwell CC. Potential Targets to Mitigate Trauma- or Sepsis-Induced Immune Suppression. Front Immunol 2021; 12:622601. [PMID: 33717127 PMCID: PMC7947256 DOI: 10.3389/fimmu.2021.622601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
In sepsis and trauma, pathogens and injured tissue provoke a systemic inflammatory reaction which can lead to overwhelming inflammation. Concurrent with the innate hyperinflammatory response is adaptive immune suppression that can become chronic. A current key issue today is that patients who undergo intensive medical care after sepsis or trauma have a high mortality rate after being discharged. This high mortality is thought to be associated with persistent immunosuppression. Knowledge about the pathophysiology leading to this state remains fragmented. Immunosuppressive cytokines play an essential role in mediating and upholding immunosuppression in these patients. Specifically, the cytokines Interleukin-10 (IL-10), Transforming Growth Factor-β (TGF-β) and Thymic stromal lymphopoietin (TSLP) are reported to have potent immunosuppressive capacities. Here, we review their ability to suppress inflammation, their dynamics in sepsis and trauma and what drives the pathologic release of these cytokines. They do exert paradoxical effects under certain conditions, which makes it necessary to evaluate their functions in the context of dynamic changes post-sepsis and trauma. Several drugs modulating their functions are currently in clinical trials in the treatment of other pathologies. We provide an overview of the current literature on the effects of IL-10, TGF-β and TSLP in sepsis and trauma and suggest therapeutic approaches for their modulation.
Collapse
Affiliation(s)
- Christian B Bergmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Nadine Beckmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Christen E Salyer
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Marc Hanschen
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peter A Crisologo
- Division of Podiatric Medicine and Surgery, Critical Care, and Acute Care Surgery, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Charles C Caldwell
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Division of Research, Shriners Hospital for Children, Cincinnati, OH, United States
| |
Collapse
|
17
|
Yang P, Han J, Li S, Luo S, Tu X, Ye Z. miR-128-3p inhibits apoptosis and inflammation in LPS-induced sepsis by targeting TGFBR2. Open Med (Wars) 2021; 16:274-283. [PMID: 33623823 PMCID: PMC7885300 DOI: 10.1515/med-2021-0222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 01/12/2023] Open
Abstract
Background Sepsis is a systemic inflammatory response that can lead to the dysfunction of many organs. The aberrant expression of miRNAs is associated with the pathogenesis of sepsis. However, the biological functions of miR-128-3p in sepsis remain largely unknown, and its mechanism should be further investigated. This study aimed to determine the regulatory network of miR-128-3p and TGFBR2 in lipopolysaccharide (LPS)-induced sepsis. Methods The expression levels of miR-128-3p and transforming growth factor beta receptors II (TGFBR2) were detected by quantitative polymerase chain reaction (qPCR). The protein levels of TGFBR2, Bcl-2, Bax, cleaved caspase 3, Smad2, and Smad3 were measured by western blot. Cell apoptosis was analyzed by flow cytometry. Cytokine production was detected by enzyme-linked immunosorbent assay (ELISA). The binding sites of miR-128-3p and TGFBR2 were predicted by Targetscan online software and confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results The level of miR-128-3p was decreased, and TGFBR2 expression was increased in serum samples of sepsis patients and LPS-induced HK2 cells. Overexpression of miR-128-3p or knockdown of TGFBR2 ameliorated LPS-induced inflammation and apoptosis. Moreover, TGFBR2 was a direct target of miR-128-3p, and its overexpression reversed the inhibitory effects of miR-128-3p overexpression on inflammation and apoptosis in LPS-induced HK2 cells. Besides, overexpression of miR-128-3p downregulated TGFBR2 to suppress the activation of the Smad signaling pathway. Conclusion miR-128-3p could inhibit apoptosis and inflammation by targeting TGFBR2 in LPS-induced HK2 cells, which might provide therapeutic strategy for the treatment of sepsis.
Collapse
Affiliation(s)
- Peng Yang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, China
| | - Jianhua Han
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, 510630, Guangzhou, China
| | - Shigeng Li
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, 510630, Guangzhou, China
| | - Shaoning Luo
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, 510630, Guangzhou, China
| | - Xusheng Tu
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, 510630, Guangzhou, China
| | - Zhiqiang Ye
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, 510630, Guangzhou, China
| |
Collapse
|
18
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
19
|
Babaei F, Nassiri‐Asl M, Hosseinzadeh H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci Nutr 2020; 8:5215-5227. [PMID: 33133525 PMCID: PMC7590269 DOI: 10.1002/fsn3.1858] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
In late December 2019, the outbreak of respiratory illness emerged in Wuhan, China, and spreads worldwide. World Health Organization (WHO) named this disease severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by a new member of beta coronaviruses. Several medications are prescribed to patients, and some clinical trials are underway. Scientists are trying to find a specific drug against this virus. In this review, we summarize the pathogenesis, clinical features, and current treatments of coronavirus disease 2019 (COVID-19). Then, we describe the possible therapeutic effects of curcumin and its molecular mechanism against coronavirus-19. Curcumin, as an active constituent of Curcuma longa (turmeric), has been studied in several experimental and clinical trial studies. Curcumin has some useful clinical effects such as antiviral, antinociceptive, anti-inflammatory, antipyretic, and antifatigue effects that could be effective to manage the symptoms of the infected patient with COVID-19. It has several molecular mechanisms including antioxidant, antiapoptotic, and antifibrotic properties with inhibitory effects on Toll-like receptors, NF-κB, inflammatory cytokines and chemokines, and bradykinin. Scientific evidence suggests that curcumin could have a potential role to treat COVID-19. Thus, the use of curcumin in the clinical trial, as a new treatment option, should be considered.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Department of Clinical BiochemistrySchool of Medicine, Student Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
| | - Marjan Nassiri‐Asl
- Department of Pharmacology and Neurobiology Research CenterSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and ToxicologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
20
|
Yuan C, Gu J, Wu J, Yin J, Zhang M, Miao H, Li J. Circular RNA expression in the lungs of a mouse model of sepsis induced by cecal ligation and puncture. Heliyon 2020; 6:e04532. [PMID: 32760833 PMCID: PMC7393531 DOI: 10.1016/j.heliyon.2020.e04532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/23/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022] Open
Abstract
Circular RNAs (circRNAs) are novel endogenous RNAs with vital roles in the pathology of various diseases. However, their role in sepsis-induced lung injury is unknown. In this study, high-throughput gene sequencing was used to analyze the expression profiles of circRNAs in lung specimens of mice grouped by acute lung injury induced by cecal ligation and puncture (CLP) and sham. To identify differentially expressed circRNAs, the left lungs of sham (n = 3) and CLP (n = 3) mice were used for high-throughput sequencing. A total of 919 circRNAs were identified. Of these, 38 circRNAs showed significantly different expression levels between the groups (P < 0.05, fold change ≥2). The levels of 20 circRNAs were up-regulated and those of 18 others were down-regulated. In bioinformatics analysis of the source genes of these circRNAs, the genes were closely associated with the inflammatory response (e.g., the TGF-β, MAPK, Fc gamma R-mediated phagocytic, and VEGF pathways). Eight circRNAs with large intergroup differences, small intragroup differences, and high expression were selected for further validation by qRT-PCR. Two of the eight were significantly different. These two circRNAs were annotated with circRNA/miRNA interaction information downloaded from the TargetScan and miRanda databases and visualized. Our results provide novel insights into the roles of circRNAs in sepsis-induced acute lung injury.
Collapse
Affiliation(s)
- Caiyun Yuan
- Department of Pediatrics, Nantong Maternal and Child Health Care Hospital, Nantong, China
| | - Jie Gu
- Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhuan Wu
- Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiangwen Yin
- Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mengjie Zhang
- Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjun Miao
- Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Chai YS, Chen YQ, Lin SH, Xie K, Wang CJ, Yang YZ, Xu F. Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomed Pharmacother 2020; 125:109946. [DOI: 10.1016/j.biopha.2020.109946] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
|
22
|
Johnson S, Shaikh SB, Muneesa F, Rashmi B, Bhandary YP. Radiation induced apoptosis and pulmonary fibrosis: curcumin an effective intervention? Int J Radiat Biol 2020; 96:709-717. [PMID: 32149561 DOI: 10.1080/09553002.2020.1739773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by interstitial remodeling, leading to compromised lung function. Extra vascular fibrin deposition and abnormalities in the fibrinolysis are the major clinical manifestations of lung diseases such as acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS). ALI progresses to pulmonary fibrosis (PF) and makes patient's life miserable. Anti-fibrinolysis and apoptosis are involved in the progression of PF. Apoptotic markers are detectable within IPF lung tissue and senescent cell deletion can rejuvenate pulmonary health. Enhanced expression of p53 due to DNA damage is seen in irradiated lung tissue. The role of fibrinolytic components such as Urokinase Plasminogen activator (uPA), uPA receptor (uPAR) and Plasminogen activator inhibitor-1 (PAI-1) has been detailed in I. Curcumin is known to possess anti-inflammatory and anti-fibrotic effects. Radioprotective effect of curcumin enables it to attenuate radiation-induced inflammation and fibrosis. Understanding the mechanism of radioprotective effect of curcumin in radiation-induced PF and apoptosis can lead to the development of an effective therapeutic to combat acute lung injury and fibrosis.
Collapse
Affiliation(s)
- Shilpa Johnson
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sadiya B Shaikh
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Fatheema Muneesa
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Barki Rashmi
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
23
|
Karimi A, Ghodsi R, Kooshki F, Karimi M, Asghariazar V, Tarighat-Esfanjani A. Therapeutic effects of curcumin on sepsis and mechanisms of action: A systematic review of preclinical studies. Phytother Res 2019; 33:2798-2820. [PMID: 31429161 DOI: 10.1002/ptr.6467] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/28/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Sepsis is a complex disease that begins with an infectious disorder and causes excessive immune responses. Curcumin is considered as an active component of turmeric that can improve the condition in sepsis due to its anti-inflammatory and antioxidant properties. PubMed, Embase, Google Scholar, Web of Science, and Scopus databases were searched. Searching was not limited to a specific publication period. Only English-language original articles, which had examined the effect of curcumin on sepsis, were included. At first, 1,098 articles were totally found, and 209 articles were selected after excluding duplicated data; 46 articles were remained due to the curcumin effects on sepsis. These included 23 in vitro studies and 23 animal studies. Our results showed that curcumin and various analogs of curcumin can have an inhibitory effect on sepsis-induced complications. Curcumin has the ability to inhibit the inflammatory, oxidative coagulation factors, and regulation of immune responses in sepsis. Despite the promising evidence of the therapeutic effects of curcumin on the sepsis complication, further studies seem necessary to investigate its effect and possible mechanisms of action in human studies.
Collapse
Affiliation(s)
- Arash Karimi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Ghodsi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fateme Kooshki
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozhdeh Karimi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Asghariazar
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Lin S, Wu H, Wang C, Xiao Z, Xu F. Regulatory T Cells and Acute Lung Injury: Cytokines, Uncontrolled Inflammation, and Therapeutic Implications. Front Immunol 2018; 9:1545. [PMID: 30038616 PMCID: PMC6046379 DOI: 10.3389/fimmu.2018.01545] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/21/2018] [Indexed: 12/24/2022] Open
Abstract
Acute respiratory distress syndrome/acute lung injury (ALI) was described in 1967. The uncontrolled inflammation is a central issue of the syndrome. The regulatory T cells (Tregs), formerly known as suppressor T cells, are a subpopulation of T cells. Tregs indirectly limits immune inflammation-inflicted tissue damage by employing multiple mechanisms and creating the appropriate immune environment for successful tissue repair. And it plays a central role in the resolution of ALI. Accordingly, for this review, we will focus on Treg populations which are critical for inflammatory immunity of ALI, and the effect of interaction between Treg subsets and cytokines on ALI. And then explore the possibility of cytokines as beneficial factors in inflammation resolution of ALI.
Collapse
Affiliation(s)
- Shihui Lin
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Wu
- Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA, United States
| | - Chuanjiang Wang
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhibo Xiao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Xu
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Cheng K, Yang A, Hu X, Zhu D, Liu K. Curcumin Attenuates Pulmonary Inflammation in Lipopolysaccharide Induced Acute Lung Injury in Neonatal Rat Model by Activating Peroxisome Proliferator-Activated Receptor γ (PPARγ) Pathway. Med Sci Monit 2018; 24:1178-1184. [PMID: 29480285 PMCID: PMC5839073 DOI: 10.12659/msm.908714] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background This study aimed to investigate the therapeutic effect of curcumin in lipopolysaccharide (LPS) induced neonatal acute lung injury (ALI) and the possibly associated molecular mechanisms. Material/Methods ALI neonatal animal model was established by using LPS. Curcumin and/or peroxisome proliferator-activated receptor γ (PPARγ) inhibitor BADGE (bisphenol A diglycidyl ether) were administrated to animals. Lung edema was evaluated by PaO2 and lung wet/dry weight ratio (W/D) measurements. EMSA was used to determine the PPARγ activity. Levels of high-mobility group box 1 (HMGB1), secretory receptor for advanced glycation end products (RAGE), tumor necrosis factor α (TNFα), interleukin 6 (IL6), and transforming growth factor β1 (TGFβ1) in bronchoalveolar lavage fluid (BALF) were examined by ELISA. Western blotting was used to evaluate the expression levels of HMGB1, RAGE, heme oxygenase 1 (HO1), TNFα, IL6, and TGFβ1 in lung tissue. Results Curcumin administration significantly improved lung function by increasing PaO2 and decreasing W/D in neonatal ALI rats. Curcumin treatment upregulated the PPARγ activity and expression level of HO1 which were suppressed in lung tissue of neonatal ALI rats. Elevated levels of HMGB1, RAGE, TNFα, IL6, and TGFβ1 in both lung tissue and BALF from neonatal ALI rats were decreased dramatically by curcumin treatment. PPARγ inhibitor BADGE administration impaired curcumin’s alleviation on lung edema, inhibitory effects on inflammatory cytokine expression and recovery of PPARγ/HO1 signaling activation. Conclusions Curcumin alleviated lung edema in LPS-induced ALI by inhibiting inflammation which was induced by PPARγ/HO1 regulated-HMGB1/RAGE pro-inflammatory pathway.
Collapse
Affiliation(s)
- Keping Cheng
- Department of Neonatology, Zhejiang Yongkang Women and Children's Health Service Hospital, Yongkang, Zhejiang, China (mainland)
| | - Aijuan Yang
- Department of Neonatology, Zhejiang Yongkang Women and Children's Health Service Hospital, Yongkang, Zhejiang, China (mainland)
| | - Xiaohui Hu
- Department of Neonatology, Zhejiang Yongkang Women and Children's Health Service Hospital, Yongkang, Zhejiang, China (mainland)
| | - Dongbo Zhu
- Department of Neonatology, Zhejiang Yongkang Women and Children's Health Service Hospital, Yongkang, Zhejiang, China (mainland)
| | - Kaizhong Liu
- Department of Critical Care Medicine, Zhejiang Cancer Hospital , Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
26
|
Peng X, Dai C, Liu Q, Li J, Qiu J. Curcumin Attenuates on Carbon Tetrachloride-Induced Acute Liver Injury in Mice via Modulation of the Nrf2/HO-1 and TGF-β1/Smad3 Pathway. Molecules 2018; 23:E215. [PMID: 29351226 PMCID: PMC6017508 DOI: 10.3390/molecules23010215] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 01/14/2023] Open
Abstract
This study aimed to investigate the protective effect of curcumin against carbon tetrachloride (CCl₄)-induced acute liver injury in a mouse model, and to explain the underlying mechanism. Curcumin at doses of 50, 100 and 200 mg/kg/day were administered orally once daily for seven days prior to CCl₄ exposure. At 24 h, curcumin-attenuated CCl₄ induced elevated serum transaminase activities and histopathological damage in the mouse's liver. Curcumin pre-treatment at 50, 100 and 200 mg/kg significantly ameliorated CCl₄-induced oxidative stress, characterized by decreased malondialdehyde (MDA) formations, and increased superoxide dismutase (SOD), catalase (CAT) activities and glutathione (GSH) content, followed by a decrease in caspase-9 and -3 activities. Curcumin pre-treatment significantly decreased CCl₄-induced inflammation. Furthermore, curcumin pre-treatment significantly down-regulated the expression of TGF-β1 and Smad3 mRNAs (both p < 0.01), and up-regulated the expression of nuclear-factor erythroid 2-related factor 2 (Nrf2) and HO-1 mRNA (both p < 0.01) in the liver. Inhibition of HO-1 attenuated the protective effect of curcumin on CCl₄-induced acute liver injury. Given these outcomes, curcumin could protect against CCl₄-induced acute liver injury by inhibiting oxidative stress and inflammation, which may partly involve the activation of Nrf2/HO-1 and inhibition of TGF-β1/Smad3 pathways.
Collapse
Affiliation(s)
- Xinyan Peng
- College of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai 264025, China.
| | - Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Quanwen Liu
- College of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai 264025, China.
| | - Junke Li
- College of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai 264025, China.
| | - Jingru Qiu
- College of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai 264025, China.
| |
Collapse
|
27
|
Enhanced pulmonary bioavailability of curcumin by some common excipients and relative therapeutic effects on sepsis-induced acute lung injury in rats. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Fan TT, Feng XY, Yang YZ, Gao F, Liu Q. Downregulation of PI3K-γ in a mouse model of sepsis-induced myocardial dysfunction. Cytokine 2017; 96:208-216. [PMID: 28458167 DOI: 10.1016/j.cyto.2017.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 01/25/2023]
Abstract
A key component during sepsis is the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, of which the PI3K-γ isoform is a major regulator in many inflammatory responses. However, the role of PI3K-γ in the development of sepsis-induced myocardial dysfunction (SIMD) is unknown. In this study, we established a model of SIMD induced by lipopolysaccharide (LPS), subsequently used the selective inhibitor LY294002 and AS605240 to block the effect of PI3K and PI3K-γ, respectively. Cardiac function was evaluated by echocardiography, hearts were obtained for histological and protein expression examinations. ELISA was used to measure the serum levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), cardiac troponin I (cTnI) and heart-type fatty acid binding protein (H-FABP). LPS-treated mice showed an increase to cardiac inflammation, myocardial damage and production of TNF-α, IL-6, NF-κB, cTnI and H-FABP. Administration of AS605240 to LPS-treated mice reduced some patho-physiological characteristics of SIMD and reduced TNF-α, IL-6, cTnI and H-FABP production. However, administration of LY294002 did not improve those same conditions. The results showed that PI3K-γ is likely a crucial element in SIMD by regulating the PI3K/Akt pathway, and become a new marker of myocardial injury. Inhibition of PI3K-γ might be a potential therapeutic target in SIMD.
Collapse
Affiliation(s)
- Ting-Ting Fan
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Emergency, Chengdu First People's Hospital, Sichuan 610016, PR China
| | - Xuan-Yun Feng
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yuan-Zheng Yang
- Department of Critical Care Medicine, The Affiliated Hospital of Hainan Medical College, Hainan 571101, PR China
| | - Feng Gao
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Qiong Liu
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
29
|
Lu Y, Wang J, Liu L, Yu L, Zhao N, Zhou X, Lu X. Curcumin increases the sensitivity of Paclitaxel-resistant NSCLC cells to Paclitaxel through microRNA-30c-mediated MTA1 reduction. Tumour Biol 2017; 39:1010428317698353. [PMID: 28443468 DOI: 10.1177/1010428317698353] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Non-small-cell lung cancer is one of the most lethal cancers in the worldwide. Although Paclitaxel-based combinational therapies have long been used as a standard treatment in aggressive non-small-cell lung cancers, Paclitaxel resistance emerges as a major clinical problem. It has been demonstrated that Curcumin from Curcuma longa as a traditional Chinese medicine can inhibit cancer cell proliferation. However, the role of Curcumin in Paclitaxel-resistant non-small-cell lung cancer cells is not clear. In this study, we investigated the effect of Curcumin on the Paclitaxel-resistant non-small-cell lung cancer cells and found that Curcumin treatment markedly increased the sensitivity of Paclitaxel-resistant non-small-cell lung cancer cells to Paclitaxel. Mechanically, the study revealed that Curcumin could reduce the expression of metastasis-associated gene 1 (MTA1) gene through upregulation of microRNA-30c in Paclitaxel-resistant non-small-cell lung cancer cells. During the course, MTA1 reduction sensitized Paclitaxel-resistant non-small-cell lung cancer cells and enhanced the effect of Paclitaxel. Taken together, our studies indicate that Curcumin increases the sensitivity of Paclitaxel-resistant non-small-cell lung cancer cells to Paclitaxel through microRNA-30c-mediated MTA1 reduction. Curcumin might be a potential adjuvant for non-small-cell lung cancer patients during Paclitaxel treatment.
Collapse
Affiliation(s)
- Yimin Lu
- 1 Department of Respiratory, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Suzhou, China
| | - Jun Wang
- 2 Department of Respiratory, Suzhou Kowloon Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Suzhou, China
| | - Lei Liu
- 1 Department of Respiratory, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Suzhou, China
| | - Lequn Yu
- 1 Department of Respiratory, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Suzhou, China
| | - Nian Zhao
- 1 Department of Respiratory, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Suzhou, China
| | - Xingju Zhou
- 1 Department of Respiratory, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Suzhou, China
| | - Xudong Lu
- 1 Department of Respiratory, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Suzhou, China
| |
Collapse
|
30
|
Kumari A, Dash D, Singh R. Curcumin inhibits lipopolysaccharide (LPS)-induced endotoxemia and airway inflammation through modulation of sequential release of inflammatory mediators (TNF-α and TGF-β1) in murine model. Inflammopharmacology 2017; 25:329-341. [PMID: 28289922 DOI: 10.1007/s10787-017-0334-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/23/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Curcumin (diferuloylmethane), a major component of turmeric is well known for its anti-inflammatory potential. Present study investigates sequential release of inflammatory mediators post LPS challenge (10 mg/kg,i.p.) causing lung inflammation and its modulation by curcumin through different routes (20 mg/kg, i.p and 10 mg/kg, i.n.) in murine model. Dexamethasone (1 mg/kg, i.p) was used as standard drug. METHODS Lung Inflammation was evaluated by histopathological analysis, myeloperoxidase (MPO) activity followed by inflammatory cell count and total protein content measurements in bronchoalveolar fluid (BALF). Reactive oxygen species (ROS), nitrite and TNF-α levels were measured as markers of endotoxin shock at different time points (1-72 h). The mRNA expression of transforming growth factors-β1 (TGF-β1), iNOS and Toll-like receptor-4 (TLR-4) were measured followed by Masson's trichrome staining and hydroxyproline levels as collagen deposition marker leading to fibrotic changes in lungs. RESULTS We found that LPS-induced lung inflammation and injury was maximum 24-h post LPS challenge shown by MPO and histological analysis which was further supported by elevated nitrite and ROS levels whereas TNF-α level was highest after 1 h. Endotoxin-induced mortality was significantly reduced in curcumin (i.p) pretreatment groups up to 72-h post LPS challenge. Significant inhibition in mRNA expression of iNOS, TGF-β1 and TNF-α level was noted after curcumin treatment along with lowered MPO activity, inflammatory cell count, ROS, nitrite levels and collagen deposition in lungs. CONCLUSION Our results suggest that higher endotoxin dose causes inflammatory mediator release in chronological order which tend to increase with time and reached maximum after 24-h post-endotoxin (LPS) exposure. Intraperitoneal route of curcumin administration was better in modulating inflammatory mediator release in early phase as compared to intranasal route of administration. It can be used as supplementary therapeutic intervention at early stage of endotoxemia, having fewer side effects.
Collapse
Affiliation(s)
- Asha Kumari
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - D Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
31
|
Lelli D, Sahebkar A, Johnston TP, Pedone C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol Res 2016; 115:133-148. [PMID: 27888157 DOI: 10.1016/j.phrs.2016.11.017] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/13/2016] [Accepted: 11/19/2016] [Indexed: 01/18/2023]
Abstract
Curcumin (diferuloylmethane) is a yellow pigment present in the spice turmeric (Curcuma longa). It has been used for centuries in Ayurveda (Indian traditional medicine) for the treatment of several diseases. Over the last several decades, the therapeutic properties of curcumin have slowly been elucidated. It has been shown that curcumin has pleiotropic effects, regulating transcription factors (e.g., NF-kB), cytokines (e.g., IL6, TNF-alpha), adhesion molecules (e.g., ICAM-1), and enzymes (e.g., MMPs) that play a major role in inflammation and cancerogenesis. These effects may be relevant for several pulmonary diseases that are characterized by abnormal inflammatory responses, such as asthma or chronic obstructive pulmonary disease, acute respiratory distress syndrome, pulmonary fibrosis, and acute lung injury. Furthermore, some preliminary evidence suggests that curcumin may have a role in the treatment of lung cancer. The evidence for the use of curcumin in pulmonary disease is still sparse and has mostly been obtained using either in vitro or animal models. The most important issue with the use of curcumin in humans is its poor bioavailability, which makes it necessary to use adjuvants or curcumin nanoparticles or liposomes. The aim of this review is to summarize the available evidence on curcumin's effectiveness in pulmonary diseases, including lung cancer, and to provide our perspective on future research with curcumin so as to improve its pharmacological effects, as well as provide additional evidence of curcumin's efficacy in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Diana Lelli
- Area di Geriatria, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Roma, Italy.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, BuAli Square, Mashhad, 9196773117 Iran.
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108,USA.
| | - Claudio Pedone
- Area di Geriatria, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Roma, Italy.
| |
Collapse
|
32
|
Yin JT, Wan B, Liu DD, Wan SX, Fu HY, Wan Y, Zhang H, Chen Y. Emodin alleviates lung injury in rats with sepsis. J Surg Res 2016; 202:308-14. [PMID: 27229105 DOI: 10.1016/j.jss.2015.12.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/25/2015] [Accepted: 12/29/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Sepsis has high morbidity and mortality. The aim of this study was to investigate whether emodin, an anthraquinone derived from Chinese herb, exerts protective effects on lung injury in rat model of sepsis. MATERIALS AND METHODS Forty-eight male Wistar rats were randomly divided into four groups (n = 12): normal group, sham-operated group, cecal ligation and puncture (CLP) model group, and emodin-treated group. Saline or emodin (25 mg/kg) was injected intraperitoneally 0.5 h before CLP. The rats were sacrificed 48 h after CLP. Lung wet-to-dry weight ratio and pathologic changes in the lung were examined, the contents of malondialdehyde and myeloperoxidase in lung tissue were detected, serum tumor necrosis factor alpha and interleukin 6 levels were measured by enzyme-linked immunosorbent assay, and the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was detected by Western blot analysis. RESULTS Compared with control group, CLP group exhibited higher wet-to-dry weight ratio and water content in the lung (P < 0.01), but these indexes were reduced and pathologic changes in the lung were relieved in the emodin-treated group. In addition, lung malondialdehyde and myeloperoxidase contents, serum levels of tumor necrosis factor alpha and interleukin 6, and phosphorylation of p38 MAPK increased in the CLP group but decreased in the emodin-treated group (P < 0.05). CONCLUSIONS Emodin exerts protective effects on lung injury in septic rats, which is related to the inhibition of p38 MAPK pathway and the reduction of oxidative stress and inflammation response during sepsis.
Collapse
Affiliation(s)
- Jiang-Tao Yin
- Department of ICU, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Bing Wan
- Department of ICU, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Da-Dong Liu
- Department of ICU, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Sheng-Xia Wan
- Department of ICU, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hai-Yan Fu
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yin Wan
- Clinical laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hao Zhang
- Emergency Medicine Center, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yikun Chen
- Emergency Medicine Center, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Ingole TS, Kale SS, Santhosh Babu S, Sanjayan GJ. Self-assembled vesicles of urea-tethered foldamers as hydrophobic drug carriers. Chem Commun (Camb) 2016; 52:10771-4. [DOI: 10.1039/c6cc05079d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nonamphiphilic α,β-hybrid foldamers form hollow vesicular architectures which can take up and release the anticancer hydrophobic drug curcumin.
Collapse
Affiliation(s)
- Tukaram S. Ingole
- Division of Organic Chemistry
- National Chemical Laboratory
- Pune 411 008
- India
| | - Sangram S. Kale
- Division of Organic Chemistry
- National Chemical Laboratory
- Pune 411 008
- India
| | | | | |
Collapse
|
34
|
Li LF, Lee CS, Liu YY, Chang CH, Lin CW, Chiu LC, Kao KC, Chen NH, Yang CT. Activation of Src-dependent Smad3 signaling mediates the neutrophilic inflammation and oxidative stress in hyperoxia-augmented ventilator-induced lung injury. Respir Res 2015; 16:112. [PMID: 26377087 PMCID: PMC4574227 DOI: 10.1186/s12931-015-0275-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/10/2015] [Indexed: 11/26/2022] Open
Abstract
Background Mechanical ventilation and concomitant administration of hyperoxia in patients with acute respiratory distress syndrome can damage the alveolar epithelial and capillary endothelial barrier by producing inflammatory cytokines and reactive oxygen species. The Src tyrosine kinase and Smad3 are crucial inflammatory regulators used for ventilator-induced lung injury (VILI). The mechanisms regulating interactions between high-tidal-volume mechanical ventilation, hyperoxia, and acute lung injury (ALI) are unclear. We hypothesized that high-tidal-volume mechanical stretches and hyperoxia augment lung inflammation through upregulation of the Src and Smad3 pathways. Methods Wild-type or Src-deficient C57BL/6 mice, aged between 6 and 8 weeks, were exposed to high-tidal-volume (30 mL/kg) ventilation with room air or hyperoxia for 1–4 h after 2-mg/kg Smad3 inhibitor (SIS3) administration. Nonventilated mice were used as control subjects. Results We observed that the addition of hyperoxia to high-tidal-volume mechanical ventilation further induced microvascular permeability, neutrophil infiltration, macrophage inflammatory protein-2 and matrix metalloproteinase-9 (MMP-9) production, malondialdehyde, nicotinamide adenine dinucleotide phosphate oxidase activity, MMP-9 mRNA expression, hypoxemia, and Src and Smad3 activation (P < 0.05). Hyperoxia-induced augmentation of VILI was attenuated in Src-deficient mice and mice with pharmacological inhibition of Smad3 activity by SIS3 (P < 0.05). Mechanical ventilation of Src-deficient mice with hyperoxia further reduced the activation of Smad3. Conclusions Our data suggest that hyperoxia-increased high-tidal-volume ventilation-induced ALI partially depends on the Src and Smad3 pathways.
Collapse
Affiliation(s)
- Li-Fu Li
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan, 333, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chung-Shu Lee
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan, 333, Taiwan
| | - Yung-Yang Liu
- Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Hao Chang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan, 333, Taiwan
| | - Chang-Wei Lin
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan, 333, Taiwan
| | - Li-Chung Chiu
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan, 333, Taiwan
| | - Kuo-Chin Kao
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan, 333, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ning-Hung Chen
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan, 333, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Ta Yang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan, 333, Taiwan. .,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
35
|
Luan YY, Yin CF, Qin QH, Dong N, Zhu XM, Sheng ZY, Zhang QH, Yao YM. Effect of Regulatory T Cells on Promoting Apoptosis of T Lymphocyte and Its Regulatory Mechanism in Sepsis. J Interferon Cytokine Res 2015; 35:969-80. [PMID: 26309018 DOI: 10.1089/jir.2014.0235] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
With both in vivo and in vitro experiments, the present study was conducted to investigate the effect of regulatory T cell (Treg) on promoting T-lymphocyte apoptosis and its regulatory mechanism through transforming growth factor-beta (TGF-β1) signaling in mice. A murine model of polymicrobial sepsis was reproduced by cecal ligation and puncture (CLP); PC61 and anti-TGF-β antibodies were used to decrease counts of CD4(+)CD25(+) Tregs and inhibit TGF-β activity, respectively. Splenic CD4(+)CD25(+) Tregs and CD4(+)CD25(-) T cells were isolated. Phenotypes, including cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), forkhead/winged helix transcription factor p3 (Foxp3), and TGFβ1(m+), as well as the apoptotic rate of CD4(+)CD25(-) T cell, were analyzed by flow cytometry. Real-time reverse transcription-polymerase chain reaction was performed to determine mRNA expression of TGF-β1, and the expressions of Smad2/Smad3, Bcl-2 superfamily members of Bcl-2/Bim, cytochrome C, the mitochondrial membrane potential, and caspases in CD4(+)CD25(-) T cells were simultaneously determined. After treatment with PC61 or anti-TGF-β antibody, CTLA-4, Foxp3, and TGFβ1(m+) expressions of CD4(+)CD25(+) Tregs were markedly decreased in comparison to that of the CLP group and the apoptosis rate of CD4(+)CD25(-) T cells was significantly positively correlated with the expression of TGF-β1. Meanwhile, levels of P-Smad2/P-Smad3, proapoptotic protein Bim, cytochrome C, and activity of caspase-3, -8, -9 were downregulated, whereas the mitochondrial membrane potential and antiapoptotic protein Bcl-2 expression were restored. Taken together, our data indicated that the TGF-β1 signal could be partly involved in the apoptosis of CD4(+)CD25(-) T cells promoted by CD4(+)CD25(+) Tregs, therefore inhibition of TGF-β1 expression may provide a novel strategy for the improvement of host immunosuppression following sepsis.
Collapse
Affiliation(s)
- Ying-yi Luan
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Cheng-fen Yin
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qing-hua Qin
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Ning Dong
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiao-mei Zhu
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhi-yong Sheng
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qing-hong Zhang
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yong-ming Yao
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
36
|
Zhang F, Yang F, Zhao H, An Y. Curcumin alleviates lung injury in diabetic rats by inhibiting nuclear factor-κB pathway. Clin Exp Pharmacol Physiol 2015; 42:956-963. [PMID: 26111829 DOI: 10.1111/1440-1681.12438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/26/2015] [Accepted: 06/08/2015] [Indexed: 11/29/2022]
Abstract
Curcumin is a polyphenolic compound that is extracted from Curcuma longa. It has broad anti-inflammation and anti-tumor activities. Curcumin was previously reported to exert beneficial effects on diabetes. However, the effect of curcumin on diabetes-induced lung injury is not yet clear. In this study, the effects of curcumin on lung injury induced by diabetes was explored using quantitative real time polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), immunohistochemistry and electrophoretic mobility shift assay. The results of this study showed that curcumin reduced oxidative stress level, inhibited the synthesis of nitric oxide and prostaglandin E2, and reduced inflammatory responses in the lungs of diabetic rats, thereby alleviating diabetes-induced lung injury. Further study of the mechanism revealed that curcumin inhibited the activation of nuclear factor (NF)-κB which is a key player in inflammatory responses. In summary, our study demonstrated that curcumin inhibited the activation of NF-κB in the lungs of diabetic rats, thus reducing pulmonary inflammatory responses and oxidative stress, and ultimately relieving diabetes-induced lung injury. This study suggests that curcumin may be a promising agent to alleviate diabetic lung injury and also provides theoretical foundation for the development of diabetes therapy.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Fei Yang
- Departments of Geratology, Shenyang Chest Hospital, Shenyang, China
| | - Hongmei Zhao
- Tuberculosis, Shenyang Chest Hospital, Shenyang, China
| | - Yunxia An
- Department of Allergy, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
37
|
Zhang Y, Liang D, Dong L, Ge X, Xu F, Chen W, Dai Y, Li H, Zou P, Yang S, Liang G. Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury. Respir Res 2015; 16:43. [PMID: 25889862 PMCID: PMC4391684 DOI: 10.1186/s12931-015-0199-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/27/2015] [Indexed: 01/11/2023] Open
Abstract
Background Acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) have been the leading cause of morbidity and mortality in intensive care units (ICU). Currently, there is no effective pharmacological treatment for acute lung injury. Curcumin, extracted from turmeric, exhibits broad anti-inflammatory properties through down-regulating inflammatory cytokines. However, the instability of curcumin limits its clinical application. Methods A series of new curcumin analogs were synthesized and screened for their inhibitory effects on the production of TNF-α and IL-6 in mouse peritoneal macrophages by ELISA. The evaluation of stability and mechanism of active compounds was determined using UV-assay and Western Blot, respectively. In vivo, SD rats were pretreatment with c26 for seven days and then intratracheally injected with LPS to induce ALI. Pulmonary edema, protein concentration in BALF, injury of lung tissue, inflammatory cytokines in serum and BALF, inflammatory cell infiltration, inflammatory cytokines mRNA expression, and MAPKs phosphorylation were analyzed. We also measured the inflammatory gene expression in human pulmonary epithelial cells. Results In the study, we synthesized 30 curcumin analogs. The bioscreeening assay showed that most compounds inhibited LPS-induced production of TNF-α and IL-6. The active compounds, a17, a18, c9 and c26, exhibited their anti-inflammatory activity in a dose-dependent manner and exhibited greater stability than curcumin in vitro. Furthermore, the active compound c26 dose-dependently inhibited ERK phosphorylation. In vivo, LPS significantly increased protein concentration and number of inflammatory cells in BALF, pulmonary edema, pathological changes of lung tissue, inflammatory cytokines in serum and BALF, macrophage infiltration, inflammatory gene expression, and MAPKs phosphorylation . However, pretreatment with c26 attenuated the LPS induced increase through ERK pathway in vivo. Meanwhile, compound c26 reduced the LPS-induced inflammatory gene expression in human pulmonary epithelial cells. Conclusions These results suggest that the novel curcumin analog c26 has remarkable protective effects on LPS-induced ALI in rat. These effects may be related to its ability to suppress production of inflammatory cytokines through ERK pathway. Compound c26, with improved chemical stability and bioactivity, may have the potential to be further developed into an anti-inflammatory candidate for the prevention and treatment of ALI. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0199-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yali Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Dandan Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Lili Dong
- The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Xiangting Ge
- The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Fengli Xu
- The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Wenbo Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yuanrong Dai
- The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Huameng Li
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Peng Zou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
| | - Shulin Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
| | - Guang Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
38
|
Shukla P, Verma AK, Dewangan J, Rath SK, Mishra PR. Chitosan coated curcumin nanocrystals augment pharmacotherapy via improved pharmacokinetics and interplay of NFκB, Keap1 and Nrf2 expression in Gram negative sepsis. RSC Adv 2015. [DOI: 10.1039/c5ra06786c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chi-CUR-NC provides a viable approach for reducing mortality in cIAI associated Gram negative sepsis.
Collapse
Affiliation(s)
- Prashant Shukla
- Pharmaceutics Division
- Central Drug Research Institute
- Lucknow 226031
- India
| | - Ajeet K. Verma
- Toxicology Division
- Central Drug Research Institute
- Lucknow 226031
- India
| | - Jayant Dewangan
- Toxicology Division
- Central Drug Research Institute
- Lucknow 226031
- India
| | - Srikanta K. Rath
- Toxicology Division
- Central Drug Research Institute
- Lucknow 226031
- India
| | - Prabhat R. Mishra
- Pharmaceutics Division
- Central Drug Research Institute
- Lucknow 226031
- India
| |
Collapse
|
39
|
Kumari A, Tyagi N, Dash D, Singh R. Intranasal Curcumin Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice. Inflammation 2014; 38:1103-12. [DOI: 10.1007/s10753-014-0076-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Lu W, Jiang JP, Hu J, Wang J, Zheng MZ. Curcumin protects against lipopolysaccharide-induced vasoconstriction dysfunction via inhibition of thrombospondin-1 and transforming growth factor-β1. Exp Ther Med 2014; 9:377-383. [PMID: 25574201 PMCID: PMC4280923 DOI: 10.3892/etm.2014.2105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a complex syndrome characterized by the development of progressive dysfunction in multiple organs. The aim of the present study was to investigate the protective effect of curcumin against lipopolysaccharide (LPS)-induced vasoconstrictive dysfunction, and to investigate the possible underlying mechanism. Male Sprague-Dawley rats were randomly divided into the following groups: Control, sepsis and curcumin. A sepsis model was established by an intraperitoneal (i.p.) injection of 5 mg/kg LPS. Thoracic aortic rings obtained from the rats were mounted in an organ bath and the vasoconstriction of the rings was recorded. In addition, the serum E-selectin levels were determined by an enzyme-linked immunosorbent assay. The expression levels of thrombospondin (TSP)-1 and transforming growth factor (TGF)-β1 in the aortic tissue were detected by immunohistochemistry. Vasoconstriction of the aortic rings was found to significantly decrease in the sepsis rats when compared with the control group. However, curcumin (10 or 20 mg/kg, i.p.) prevented the vasoconstrictive dysfunction induced by LPS. The serum level of E-selectin and the expression levels of TSP-1 and TGF-β1 significantly increased in the sepsis rats when compared with the control group rats; however, the levels decreased significantly following treatment with curcumin (10 or 20 mg/kg). Furthermore, hematoxylin and eosin staining revealed that curcumin alleviated the LPS-induced damage in the aortic tunica intima and tunica media. Therefore, the results indicated that curcumin alleviates LPS-induced vasoconstrictive dysfunction in the thoracic aorta of rats. In addition, the inhibition of TSP-1 and TGF-β1 expression may be involved in the mechanism underlying this protective effect.
Collapse
Affiliation(s)
- Wei Lu
- Department of Vascular Surgery, Quzhou People's Hospital, Quzhou, Zhejiang 324000, P.R. China
| | - Jian-Ping Jiang
- Department of Clinical Medicine, Zhejiang Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Jue Hu
- Department of Basic Medical Sciences, Zhejiang Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Jue Wang
- Department of Basic Medical Sciences, Zhejiang Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Ming-Zhi Zheng
- Department of Basic Medical Sciences, Zhejiang Medical College, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
41
|
Shukla P, Dwivedi P, Gupta PK, Mishra PR. Optimization of novel tocopheryl acetate nanoemulsions for parenteral delivery of curcumin for therapeutic intervention of sepsis. Expert Opin Drug Deliv 2014; 11:1697-712. [PMID: 25046368 DOI: 10.1517/17425247.2014.932769] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The objective of this study is to develop a nanostructured parenteral delivery system, laden with curcumin (CUR), for the therapeutic intervention of sepsis and associated pathologies. METHODS Nanoemulsions were fabricated using sonication and speed homogenization. Size and zeta potential were evaluated by dynamic light scattering and transmission electron microscopy analysis. Pharmacodynamic and pharmacokinetic studies were performed on a rat model of lipopolysaccharide (LPS)-induced sepsis. RESULTS The drug content of optimized nanoemulsion (F5) formulation (particle size 246 ± 08 nm, polydispersity index (PDI) of 0.120, zeta potential of -41.1 ± 1.2 mV) was found to be 1.25 mg/ml. In vitro release studies demonstrated that F5 was able to sustain the release of CUR for up to 24 h. Minimal hemolysis and cellular toxicity demonstrated its suitability for intravenous administration. Significant reduction of inflammatory mediator levels was mediated through enhanced uptake by in RAW 264.7 and THP-1 in absence/presence of LPS. Nanoemulsion resulted in an improvement of plasma concentration (AUCF5/AUC CUR = 8.80) and tissue distribution of CUR in rats leading to a reduction in LPS-induced lung and liver injury due to less neutrophil migration, reduced TNF-α levels and oxidative stress (demonstrated by levels of lipid peroxides as well as carbonylated proteins) as confirmed by histopathological studies. CONCLUSION The findings suggest that the therapeutic performance (i.e., reduction in oxidative damage in tissues) of CUR can be enhanced by employing tocol acetate nanoemulsions (via improving pharmacokinetics and tissue distribution) as a platform for drug delivery in sepsis-induced organ injury.
Collapse
Affiliation(s)
- Prashant Shukla
- CSIR-Central Drug Research Institute, Pharmaceutics Division, Preclinical south PCS 002/011 , Jankipuram Extension, Sitapur Road, Lucknow, 226031 , India +91 9415753171 ;
| | | | | | | |
Collapse
|
42
|
Zupančič Š, Kocbek P, Zariwala MG, Renshaw D, Gul MO, Elsaid Z, Taylor KMG, Somavarapu S. Design and development of novel mitochondrial targeted nanocarriers, DQAsomes for curcumin inhalation. Mol Pharm 2014; 11:2334-45. [PMID: 24852198 DOI: 10.1021/mp500003q] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Curcumin has potent antioxidant and anti-inflammatory properties but poor absorption following oral administration owing to its low aqueous solubility. Development of novel formulations to improve its in vivo efficacy is therefore challenging. In this study, formulation of curcumin-loaded DQAsomes (vesicles formed from the amphiphile, dequalinium) for pulmonary delivery is presented for the first time. The vesicles demonstrated mean hydrodynamic diameters between 170 and 200 nm, with a ζ potential of approximately +50 mV, high drug loading (up to 61%) and encapsulation efficiency (90%), resulting in enhanced curcumin aqueous solubility. Curcumin encapsulation in DQAsomes in the amorphous state was confirmed by X-ray diffraction and differential scanning calorimetry analysis. The existence of hydrogen bonds and cation-π interaction between curcumin and vesicle building blocks, namely dequalinium molecules, were shown in lyophilized DQAsomes using FT-IR analysis. Encapsulation of curcumin in DQAsomes enhanced the antioxidant activity of curcumin compared to free curcumin. DQAsome dispersion was successfully nebulized with the majority of the delivered dose deposited in the second stage of the twin-stage impinger. The vesicles showed potential for mitochondrial targeting. Curcumin-loaded DQAsomes thus represent a promising inhalation formulation with improved stability characteristics and mitochondrial targeting ability, indicating a novel approach for efficient curcumin delivery for effective treatment of acute lung injury and the rationale for future in vivo studies.
Collapse
Affiliation(s)
- Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Fu Y, Gao R, Cao Y, Guo M, Wei Z, Zhou E, Li Y, Yao M, Yang Z, Zhang N. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol 2014; 20:54-8. [DOI: 10.1016/j.intimp.2014.01.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/04/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
|
44
|
Chen C, Lei W, Chen W, Zhong J, Gao X, Li B, Wang H, Huang C. Serum TGF-β1 and SMAD3 levels are closely associated with coronary artery disease. BMC Cardiovasc Disord 2014; 14:18. [PMID: 24533640 PMCID: PMC3936998 DOI: 10.1186/1471-2261-14-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/11/2014] [Indexed: 12/21/2022] Open
Abstract
Background Coronary artery disease (CAD) is one of the most common diseases leading to mortality and morbidity worldwide. There is considerable debate on whether serum transforming growth factor β1 (TGF-β1) levels are associated with long-term major adverse cardiovascular events in patients with CAD, and to date, no study has specifically addressed levels in patients with different degrees of CAD severity. Methods Serum TGF-β1 and mothers against decapentaplegic homolog 3 (SMAD3) concentrations were evaluated in 279 patients with CAD and 268 controls without CAD. The clinical and biochemical characteristics of all subjects were also determined and analyzed. Results TGF-β1 and SMAD3 concentrations in CAD patients were significantly higher than those in the controls. The serum TGF-β1 level in acute myocardial infarction (AMI) was significantly higher than that in both stable angina pectoris (SAP) and unstable angina pectoris (UAP) (p < 0.05), while there was no marked difference between levels in SAP and UAP (p > 0.05). SMAD3 levels showed no obvious difference among AMI, SAP, and UAP. TGF-β1 and SMAD3 are potential biomarkers for CAD, and may be more accurate than Lpa, ApoA1, uric acid, BUN, or triglycerides (TG). Conclusions Serum TGF-β1 and SMAD3 levels are closely associated with CAD, and may become useful biomarkers for diagnosis and risk stratification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Congxin Huang
- Department of Cardiovascular Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
45
|
Cornélio Favarin D, Robison de Oliveira J, Jose Freire de Oliveira C, de Paula Rogerio A. Potential effects of medicinal plants and secondary metabolites on acute lung injury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:576479. [PMID: 24224172 PMCID: PMC3810192 DOI: 10.1155/2013/576479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/16/2013] [Accepted: 08/23/2013] [Indexed: 12/20/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that causes high morbidity and mortality worldwide. ALI is characterized by increased permeability of the alveolar-capillary membrane, edema, uncontrolled neutrophils migration to the lung, and diffuse alveolar damage, leading to acute hypoxemic respiratory failure. Although corticosteroids remain the mainstay of ALI treatment, they cause significant side effects. Agents of natural origin, such as medicinal plants and their secondary metabolites, mainly those with very few side effects, could be excellent alternatives for ALI treatment. Several studies, including our own, have demonstrated that plant extracts and/or secondary metabolites isolated from them reduce most ALI phenotypes in experimental animal models, including neutrophil recruitment to the lung, the production of pro-inflammatory cytokines and chemokines, edema, and vascular permeability. In this review, we summarized these studies and described the anti-inflammatory activity of various plant extracts, such as Ginkgo biloba and Punica granatum, and such secondary metabolites as epigallocatechin-3-gallate and ellagic acid. In addition, we highlight the medical potential of these extracts and plant-derived compounds for treating of ALI.
Collapse
Affiliation(s)
- Daniely Cornélio Favarin
- Departamento de Clínica Médica, Laboratório de ImunoFarmacologia Experimental, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Rua Manoel Carlos 162, 38025-380 Uberaba, MG, Brazil
| | - Jhony Robison de Oliveira
- Departamento de Clínica Médica, Laboratório de ImunoFarmacologia Experimental, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Rua Manoel Carlos 162, 38025-380 Uberaba, MG, Brazil
| | | | - Alexandre de Paula Rogerio
- Departamento de Clínica Médica, Laboratório de ImunoFarmacologia Experimental, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Rua Manoel Carlos 162, 38025-380 Uberaba, MG, Brazil
| |
Collapse
|