1
|
Vymazal O, Papatheodorou I, Andrejčinová I, Bosáková V, Vascelli G, Bendíčková K, Zelante T, Hortová-Kohoutková M, Frič J. Calcineurin-NFAT signaling controls neutrophils' ability of chemoattraction upon fungal infection. J Leukoc Biol 2024; 116:816-829. [PMID: 38648505 DOI: 10.1093/jleuko/qiae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/03/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Calcineurin-nuclear factor of activated T cells (CN-NFAT) inhibitors are widely clinically used drugs for immunosuppression, but besides their required T cell response inhibition, they also undesirably affect innate immune cells. Disruption of innate immune cell function can explain the observed susceptibility of CN-NFAT inhibitor-treated patients to opportunistic fungal infections. Neutrophils play an essential role in innate immunity as a defense against pathogens; however, the effect of CN-NFAT inhibitors on neutrophil function was poorly described. Thus, we tested the response of human neutrophils to opportunistic fungal pathogens, namely Candida albicans and Aspergillus fumigatus, in the presence of CN-NFAT inhibitors. Here, we report that the NFAT pathway members were expressed in neutrophils and mediated part of the neutrophil response to pathogens. Upon pathogen exposure, neutrophils underwent profound transcriptomic changes with subsequent production of effector molecules. Importantly, genes and proteins involved in the regulation of the immune response and chemotaxis, including the chemokines CCL2, CCL3, and CCL4 were significantly upregulated. The presence of CN-NFAT inhibitors attenuated the expression of these chemokines and impaired the ability of neutrophils to chemoattract other immune cells. Our results amend knowledge about the impact of CN-NFAT inhibition in human neutrophils.
Collapse
Affiliation(s)
- Ondrej Vymazal
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Ioanna Papatheodorou
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Ivana Andrejčinová
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Veronika Bosáková
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Gianluca Vascelli
- Section of Immunology and General Pathology, Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1/8, Perugia, 06132, Italy
| | - Kamila Bendíčková
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Teresa Zelante
- Section of Immunology and General Pathology, Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1/8, Perugia, 06132, Italy
| | - Marcela Hortová-Kohoutková
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, 128 00, Czech Republic
| |
Collapse
|
2
|
Tang Y, Jiao Y, An X, Tu Q, Jiang Q. Neutrophil extracellular traps and cardiovascular disease: Associations and potential therapeutic approaches. Biomed Pharmacother 2024; 180:117476. [PMID: 39357329 DOI: 10.1016/j.biopha.2024.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Cardiovascular disease (CVD) is a significant global health concern, ranking among the top five causes of disability-adjusted life-years (DALY) in 190 countries and territories. Neutrophils, key players in the innate immune system, combat infections by releasing neutrophil extracellular traps (NETs) composed of DNA, histones, elastase, myeloperoxidase, and antimicrobial peptides. This paper explores the relationship between NETs and cardiovascular diseases, focusing on conditions such as heart failure, pulmonary hypertension, atrial fibrillation, and ischemia-reperfusion injury. Particularly, it delves into the impact of NETs on atrial fibrillation and pulmonary hypertension, as well as the role of myeloperoxidase (MPO) and neutrophil elastase (NE) in these diseases. Furthermore, the potential of targeting NETs for the treatment of cardiovascular diseases is discussed.
Collapse
Affiliation(s)
- Yiyue Tang
- Department of Cardiovascular Medicine, The First People's Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China; Zunyi Medical University, Zunyi, Guizhou, China
| | - Yang Jiao
- Department of Cardiovascular Medicine, The First People's Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Xiaohua An
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China; Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingxian Tu
- Department of Cardiovascular Medicine, The First People's Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China.
| | - Qianfeng Jiang
- GuizhouAerospaceHospital,(Affiliated AerospaceHospital of Zunyi Medical University), Zunyi, Guizhou, China.
| |
Collapse
|
3
|
Sun X, Mijiti M, Huang C, Mei S, Fang K, Yang Y. The effect and mechanism of freeze-dried powder of Poecilobdella manillensis on improving inflammatory injury of rat glomerular mesangial cells through TXNIP / NLRP3 pathway. Heliyon 2024; 10:e38206. [PMID: 39364251 PMCID: PMC11447352 DOI: 10.1016/j.heliyon.2024.e38206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Objective Diabetic kidney disease (DKD) is a common complication of diabetes mellitus. The pathophysiological changes in platelet function and the hypercoagulable state associated with DKD are closely linked to inflammatory processes. Poecilobdella manillensis (PM), a type of leech known for its anticoagulant and antithrombotic properties, has the potential to modulate the inflammatory response in DKD. This study aims to investigate the effect of freeze-dried powder of PM on improving inflammatory injury in rat glomerular mesangial cells and to explore its underlying mechanism. Methods Lipopolysaccharide (LPS) stimulated HBZY-1 rat mesangial cells to establish an in vitro DKD inflammation model. After the intervention with the water extract of freeze-dried powder of PM (FDPM), cell viability, NO content, and the levels of inflammatory factors such as IL-1β, IL-18, and TNF-α were assessed. Finally, utilizing transcriptomics technology, RT-qPCR, and Western blot methods, the mechanism by which FDPM improves inflammatory injury in rat glomerular mesangial cells was explored and preliminarily validated. Results FDPM effectively enhances cell viability and inhibits the production of NO and related inflammatory factors. Transcriptomic analysis suggests that FDPM may exert these effects by regulating the TXNIP/NLRP3 signaling pathway. The mRNA and protein expressions of TXNIP, NLRP3, and MCP-1 in the model cells were reversed by FDPM. Conclusion FDPM may improve the micro-inflammatory state of DKD and slow the progression of the disease by regulating the TXNIP/NLRP3 signaling pathway. This study provides a scientific basis for the clinical application of PM DKD treatment.
Collapse
Affiliation(s)
- Xi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Yangguang South Street and Baiyang East Road, Fangshan District, Beijing, 102488, China
| | - Maiheliya Mijiti
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Yangguang South Street and Baiyang East Road, Fangshan District, Beijing, 102488, China
| | - Chuyin Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Yangguang South Street and Baiyang East Road, Fangshan District, Beijing, 102488, China
| | - Shanshan Mei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Yangguang South Street and Baiyang East Road, Fangshan District, Beijing, 102488, China
| | - Kexin Fang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Yangguang South Street and Baiyang East Road, Fangshan District, Beijing, 102488, China
| | - Yaojun Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Yangguang South Street and Baiyang East Road, Fangshan District, Beijing, 102488, China
| |
Collapse
|
4
|
Hegde M, Girisa S, Devanarayanan TN, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Network of Extracellular Traps in the Pathogenesis of Sterile Chronic Inflammatory Diseases: Role of Oxidative Stress and Potential Clinical Applications. Antioxid Redox Signal 2024; 41:396-427. [PMID: 37725535 DOI: 10.1089/ars.2023.0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Thulasidharan Nair Devanarayanan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
5
|
Chen SH, Chen CH, Lin HC, Yeh SA, Hwang TL, Chen PJ. Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis. J Adv Res 2024:S2090-1232(24)00310-2. [PMID: 39089617 DOI: 10.1016/j.jare.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
Collapse
Affiliation(s)
- Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan.
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824410, Taiwan; School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering and Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 824410, Taiwan; Department of Radiation Oncology, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan.
| |
Collapse
|
6
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
McCord K, Wang C, Anhalt M, Poon WW, Gavin AL, Wu P, Macauley MS. Dissecting the Ability of Siglecs To Antagonize Fcγ Receptors. ACS CENTRAL SCIENCE 2024; 10:315-330. [PMID: 38435516 PMCID: PMC10906256 DOI: 10.1021/acscentsci.3c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 03/05/2024]
Abstract
Fcγ receptors (FcγRs) play key roles in the effector function of IgG, but their inappropriate activation plays a role in several disease etiologies. Therefore, it is critical to better understand how FcγRs are regulated. Numerous studies suggest that sialic acid-binding immunoglobulin-type lectins (Siglecs), a family of immunomodulatory receptors, modulate FcγR activity; however, it is unclear of the circumstances in which Siglecs can antagonize FcγRs and which Siglecs have this ability. Using liposomes displaying selective ligands to coengage FcγRs with a specific Siglec, we explore the ability of Siglec-3, Siglec-5, Siglec-7, and Siglec-9 to antagonize signaling downstream of FcγRs. We demonstrate that Siglec-3 and Siglec-9 can fully inhibit FcγR activation in U937 cells when coengaged with FcγRs. Cells expressing Siglec mutants reveal differential roles for the immunomodulatory tyrosine-based inhibitory motif (ITIM) and immunomodulatory tyrosine-based switch motif (ITSM) in this inhibition. Imaging flow cytometry enabled visualization of SHP-1 recruitment to Siglec-3 in an ITIM-dependent manner, while SHP-2 recruitment is more ITSM-dependent. Conversely, both cytosolic motifs of Siglec-9 contribute to SHP-1/2 recruitment. Siglec-7 poorly antagonizes FcγR activation for two reasons: masking by cis ligands and differences in its ITIM and ITSM. A chimera of the Siglec-3 extracellular domains and Siglec-5 cytosolic tail strongly inhibits FcγR when coengaged, providing evidence that Siglec-5 is more like Siglec-3 and Siglec-9 in its ability to antagonize FcγRs. Additionally, Siglec-3 and Siglec-9 inhibited FcγRs when coengaged by cells displaying ligands for both the Siglec and FcγRs. These results suggest a role for Siglecs in mediating FcγR inhibition in the context of an immunological synapse, which has important relevance to the effectiveness of immunotherapies.
Collapse
Affiliation(s)
- Kelli
A. McCord
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Chao Wang
- Department
of Molecular Medicine, Scripps Research
Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Mirjam Anhalt
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Wayne W. Poon
- Institute
for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92617, United States
| | - Amanda L. Gavin
- Department
of Immunology and Microbiology, Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peng Wu
- Department
of Molecular Medicine, Scripps Research
Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Matthew S. Macauley
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
8
|
Ocampo-Gallego JS, Pedroza-Escobar D, Caicedo-Ortega AR, Berumen-Murra MT, Novelo-Aguirre AL, de Sotelo-León RD, Delgadillo-Guzmán D. Human neutrophil elastase inhibitors: Classification, biological-synthetic sources and their relevance in related diseases. Fundam Clin Pharmacol 2024; 38:13-32. [PMID: 37609718 DOI: 10.1111/fcp.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Human neutrophil elastase is a multifunctional protease enzyme whose function is to break the bonds of proteins and degrade them to polypeptides or amino acids. In addition, it plays an essential role in the immune mechanism against bacterial infections and represents a key mediator in tissue remodeling and inflammation. However, when the extracellular release of this enzyme is dysregulated in response to low levels of its physiological inhibitors, it ultimately leads to the degradation of proteins, in particular elastin, as well as other components of the extracellular matrix, producing injury to epithelial cells, which can promote sustained inflammation and affect the innate immune system, and, therefore, be the basis for the development of severe inflammatory diseases, especially those associated with the cardiopulmonary system. OBJECTIVE This review aims to provide an update on the elastase inhibitory properties of several molecules, either synthetic or biological sources, as well as their classification and relevance in related pathologies since a clear understanding of the function of these molecules with the inhibitory capacity of this protease can provide valuable information for the development of pharmacological therapies that manage to modify the prognosis and survival of various inflammatory diseases. METHODS Collected data from scientific databases, including PubMed, Google Scholar, Science Direct, Nature, Wiley, Scopus, and Scielo. Articles published in any country and language were included. RESULTS We reviewed and included 132 articles conceptualizing neutrophil elastase activity and known inhibitors. CONCLUSION Understanding the mechanism of action of elastase inhibitors based on particular aspects such as their kinetic behavior, structure-function relationship, chemical properties, origin, pharmacodynamics, and experimental progress has allowed for a broad classification of HNE inhibitors.
Collapse
Affiliation(s)
| | - David Pedroza-Escobar
- Departamento de Bioquimica, Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Torreon, Mexico
| | - Ana Ruth Caicedo-Ortega
- Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota, Colombia
| | - María Teresa Berumen-Murra
- Departamento de Farmacologia, Facultad de Medicina UT, Universidad Autonoma de Coahuila, Torreon, Mexico
| | - Ana Lucía Novelo-Aguirre
- Departamento de Farmacologia, Facultad de Medicina UT, Universidad Autonoma de Coahuila, Torreon, Mexico
| | - Rebeca Denis de Sotelo-León
- Departmento de Nutricion. Unidad de Medicina Familiar, UMAA 53, Instituto Mexicano del Seguro Social, Durango, Mexico
| | - Dealmy Delgadillo-Guzmán
- Departamento de Farmacologia, Facultad de Medicina UT, Universidad Autonoma de Coahuila, Torreon, Mexico
| |
Collapse
|
9
|
Gao X, Feng J, Wei L, Dong P, Chen J, Zhang L, Yang Y, Xu L, Wang H, Luo J, Qin M. Defensins: A novel weapon against Mycobacterium tuberculosis? Int Immunopharmacol 2024; 127:111383. [PMID: 38118315 DOI: 10.1016/j.intimp.2023.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
Tuberculosis (TB) is a serious airborne communicable disease caused by organisms of the Mycobacterium tuberculosis (Mtb) complex. Although the standard treatment antimicrobials, including isoniazid, rifampicin, pyrazinamide, and ethambutol, have made great progress in the treatment of TB, problems including the rising incidence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), the severe toxicity and side effects of antimicrobials, and the low immunity of TB patients have become the bottlenecks of the current TB treatments. Therefore, both safe and effective new strategies to prevent and treat TB have become a top priority. As a subfamily of cationic antimicrobial peptides, defensins are rich in cysteine and play a vital role in resisting the invasion of microorganisms and regulating the immune response. Inspired by studies on the roles of defensins in host defence, we describe their research history and then review their structural features and antimicrobial mechanisms, specifically for fighting Mtb in detail. Finally, we discuss the clinical relevance, therapeutic potential, and potential challenges of defensins in anti-TB therapy. We further debate the possible solutions of the current application of defensins to provide new insights for eliminating Mtb.
Collapse
Affiliation(s)
- Xuehan Gao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jihong Feng
- Department of Oncology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Linna Wei
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Pinzhi Dong
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jin Chen
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Langlang Zhang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yuhan Yang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haiyan Wang
- Department of Epidemiology and Health Statistics, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Junmin Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Ming Qin
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
10
|
Zhu F, Jing D, Zhou H, Hu Z, Wang Y, Jin G, Yang Y, Zhou G. Blockade of Syk modulates neutrophil immune-responses via the mTOR/RUBCNL-dependent autophagy pathway to alleviate intestinal inflammation in ulcerative colitis. PRECISION CLINICAL MEDICINE 2023; 6:pbad025. [PMID: 37941642 PMCID: PMC10628969 DOI: 10.1093/pcmedi/pbad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
Background Ulcerative colitis (UC) is a progressive chronic inflammatory disorder. Neutrophils play a critical role in regulating intestinal mucosal homeostasis in UC. Spleen tyrosine kinase (Syk) is involved in several inflammatory diseases. Here, we evaluated the effects and underlying mechanisms of Syk on neutrophil immune-responses in UC. Methods Syk expression in the colonic tissues of patients with UC was determined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. Colonic biopsies from patients with UC were obtained for single-cell RNA-sequencing. Neutrophils isolated from peripheral blood were pre-treated with R788 (a Syk inhibitor) and gene differences were determined using RNA sequencing. Neutrophil functions were analyzed using qRT-PCR, flow cytometry, and Transwell assay. R788 was administered daily to mice with dextran sulfate sodium (DSS)-induced colitis to verify the effects of Syk on intestinal inflammation. Results Syk expression was increased in inflamed mucosa and neutrophils of patients with UC and positively correlated with disease activity. Pharmacological inhibition of Syk in neutrophils decreased the production of pro-inflammatory cytokines, chemokines, neutrophil extracellular traps, reactive oxygen species, and myeloperoxidase. Apoptosis and migration of neutrophils were suppressed by Syk blockade. Syk blockade ameliorated mucosal inflammation in DSS-induced murine colitis by inhibiting neutrophil-associated immune responses. Mechanistically, Syk regulated neutrophil immune-responses via the mammalian target of rapamycin kinase/rubicon-like autophagy enhancer-dependent autophagy pathway. Conclusions Our findings indicate that Syk facilitates specific neutrophil functional responses to mucosal inflammation in UC, and its inhibition ameliorates mucosal inflammation in DSS-induced murine colitis, suggesting its potential as a novel therapeutic target for UC treatment.
Collapse
Affiliation(s)
- Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Huihui Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Zongjing Hu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Yan Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Guiyuan Jin
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| |
Collapse
|
11
|
Xiao Y, Cheng Y, Liu WJ, Liu K, Wang Y, Xu F, Wang DM, Yang Y. Effects of neutrophil fate on inflammation. Inflamm Res 2023; 72:2237-2248. [PMID: 37925664 DOI: 10.1007/s00011-023-01811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023] Open
Abstract
INTRODUCTION Neutrophils are important participants in the innate immune response. They rapidly and efficiently identify and clear infectious agents by expressing large numbers of membrane receptors. Upon tissue injury or pathogen invasion, neutrophils are the first immune cells to reach the site of injury and participate in the inflammatory response. MATERIALS AND METHODS A thorough search on PubMed related to neutrophil death or clearance pathways was performed. CONCLUSION Inflammatory response and tissue damage can be aggravated when neutrophils are not removed rapidly from the site of injury. Recent studies have shown that neutrophils can be cleared through a variety of pathways, including non-inflammatory and inflammatory death, as well as reverse migration. Non-inflammatory death pathways include apoptosis and autophagy. Inflammatory death pathways include necroptosis, pyroptosis and NETosis. This review highlights the basic properties of neutrophils and the impact of their clearance pathways on the inflammatory response.
Collapse
Affiliation(s)
- Yuan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yang Cheng
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wen-Jie Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Kun Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yan Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Feng Xu
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - De-Ming Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Yi Yang
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
12
|
Song Z, Bhattacharya S, Clemens RA, Dinauer MC. Molecular regulation of neutrophil swarming in health and disease: Lessons from the phagocyte oxidase. iScience 2023; 26:108034. [PMID: 37854699 PMCID: PMC10579437 DOI: 10.1016/j.isci.2023.108034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Neutrophil swarming is a complex coordinated process in which neutrophils sensing pathogen or damage signals are rapidly recruited to sites of infections or injuries. This process involves cooperation between neutrophils where autocrine and paracrine positive-feedback loops, mediated by receptor/ligand pairs including lipid chemoattractants and chemokines, amplify localized recruitment of neutrophils. This review will provide an overview of key pathways involved in neutrophil swarming and then discuss the cell intrinsic and systemic mechanisms by which NADPH oxidase 2 (NOX2) regulates swarming, including modulation of calcium signaling, inflammatory mediators, and the mobilization and production of neutrophils. We will also discuss mechanisms by which altered neutrophil swarming in disease may contribute to deficient control of infections and/or exuberant inflammation. Deeper understanding of underlying mechanisms controlling neutrophil swarming and how neutrophil cooperative behavior can be perturbed in the setting of disease may help to guide development of tools for diagnosis and precision medicine.
Collapse
Affiliation(s)
- Zhimin Song
- Guangzhou National Laboratory, Guangzhou 510320, Guangdong Province, China
| | - Sourav Bhattacharya
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Regina A. Clemens
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Mary C. Dinauer
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
13
|
Lanzarin GAB, Félix LM, Monteiro SM, Ferreira JM, Oliveira PA, Venâncio C. Anti-Inflammatory, Anti-Oxidative and Anti-Apoptotic Effects of Thymol and 24-Epibrassinolide in Zebrafish Larvae. Antioxidants (Basel) 2023; 12:1297. [PMID: 37372027 DOI: 10.3390/antiox12061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Thymol (THY) and 24-epibrassinolide (24-EPI) are two examples of plant-based products with promising therapeutic effects. In this study, we investigated the anti-inflammatory, antioxidant and anti-apoptotic effects of the THY and 24-EPI. We used zebrafish (Danio rerio) larvae transgenic line (Tg(mpxGFP)i114) to evaluate the recruitment of neutrophils as an inflammatory marker to the site of injury after tail fin amputation. In another experiment, wild-type AB larvae were exposed to a well known pro-inflammatory substance, copper (CuSO4), and then exposed for 4 h to THY, 24-EPI or diclofenac (DIC), a known anti-inflammatory drug. In this model, the antioxidant (levels of reactive oxygen species-ROS) and anti-apoptotic (cell death) effects were evaluated in vivo, as well as biochemical parameters such as the activity of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), the biotransformation activity of glutathione-S-transferase, the levels of glutathione reduced and oxidated, lipid peroxidation, acetylcholinesterase activity, lactate dehydrogenase activity, and levels of nitric acid (NO). Both compounds decreased the recruitment of neutrophils in Tg(mpxGFP)i114, as well as showed in vivo antioxidant effects by reducing ROS production and anti-apoptotic effects in addition to a decrease in NO compared to CuSO4. The observed data substantiate the potential of the natural compounds THY and 24-EPI as anti-inflammatory and antioxidant agents in this species. These results support the need for further research to understand the molecular pathways involved, particularly their effect on NO.
Collapse
Affiliation(s)
- Germano A B Lanzarin
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Jorge M Ferreira
- Instituto de Investigação e Inovação em Saúde (i3s), Laboratory Animal Science (LAS), Instituto de Biologia Molecular Celular (IBMC), University of Porto (UP), 4200-135 Porto, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
14
|
Hu W, Gao W, Gong Y, Guo P, Li W, Shu X, Lü S, Zeng Z, Zhang Y, Long M. Trail Formation Alleviates Excessive Adhesion and Maintains Efficient Neutrophil Migration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17577-17591. [PMID: 36976830 DOI: 10.1021/acsami.3c00288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Migrating neutrophils are found to leave behind subcellular trails in vivo, but the underlying mechanisms remain unclear. Here, an in vitro cell migration test plus an in vivo observation was applied to monitor neutrophil migration on intercellular cell adhesion molecule-1 (ICAM-1) presenting surfaces. Results indicated that migrating neutrophils left behind long-lasting, chemokine-containing trails. Trail formation tended to alleviate excessive cell adhesion enhanced by the trans-binding antibody and maintain efficient cell migration, which was associated with differential instantaneous edge velocity between the cell front and rear. CD11a and CD11b worked differently in inducing trail formation with polarized distributions on the cell body and uropod. Trail release at the cell rear was attributed to membrane ripping, in which β2-integrin was disrupted from the cell membrane through myosin-mediated rear contraction and integrin-cytoskeleton dissociation, potentiating a specialized strategy of integrin loss and cell deadhesion to maintain efficient migration. Moreover, neutrophil trails left on the substrate served as immune forerunners to recruit dendritic cells. These results provided an insight in elucidating the mechanisms of neutrophil trail formation and deciphering the roles of trail formation in efficient neutrophil migration.
Collapse
Affiliation(s)
- Wenhui Hu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Wenbo Gao
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yixin Gong
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Guo
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shouqin Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu Zeng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Yan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Gopallawa I, Dehinwal R, Bhatia V, Gujar V, Chirmule N. A four-part guide to lung immunology: Invasion, inflammation, immunity, and intervention. Front Immunol 2023; 14:1119564. [PMID: 37063828 PMCID: PMC10102582 DOI: 10.3389/fimmu.2023.1119564] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
Lungs are important respiratory organs primarily involved in gas exchange. Lungs interact directly with the environment and their primary function is affected by several inflammatory responses caused by allergens, inflammatory mediators, and pathogens, eventually leading to disease. The immune architecture of the lung consists of an extensive network of innate immune cells, which induce adaptive immune responses based on the nature of the pathogen(s). The balance of immune responses is critical for maintaining immune homeostasis in the lung. Infection by pathogens and physical or genetic dysregulation of immune homeostasis result in inflammatory diseases. These responses culminate in the production of a plethora of cytokines such as TSLP, IL-9, IL-25, and IL-33, which have been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Shifting the balance of Th1, Th2, Th9, and Th17 responses have been the targets of therapeutic interventions in the treatment of these diseases. Here, we have briefly reviewed the innate and adaptive i3mmune responses in the lung. Genetic and environmental factors, and infection are the major causes of dysregulation of various functions of the lung. We have elaborated on the impact of inflammatory and infectious diseases, advances in therapies, and drug delivery devices on this critical organ. Finally, we have provided a comprehensive compilation of different inflammatory and infectious diseases of the lungs and commented on the pros and cons of different inhalation devices for the management of lung diseases. The review is intended to provide a summary of the immunology of the lung, with an emphasis on drug and device development.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ruchika Dehinwal
- Department of Microbiology, Division of Infectious Disease, Brigham Women’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, United States
| | | | - Vikramsingh Gujar
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Narendra Chirmule
- R&D Department, SymphonyTech Biologics, Philadelphia, PA, United States
- *Correspondence: Narendra Chirmule,
| |
Collapse
|
16
|
Pan W, Xin Q, Xu J, He J, Chen Z, Hu X, Li T, Zhu Y, Wei W, Wu Y. IgD enhances the release of neutrophil extracellular traps (NETs) via FcδR in rheumatoid arthritis patients. Int Immunopharmacol 2023; 114:109484. [PMID: 36450207 DOI: 10.1016/j.intimp.2022.109484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory disorder affecting primarily the joints. Neutrophils and the release of neutrophil extracellular traps (NETs) contribute to the pathogenesis of RA. However, IgD, which was abnormally higher in RA, has not been studied for its pathological role in neutrophil activation and NETs formation. To investigate the effects of IgD on neutrophil activation and NETs formation via IgD receptor (FcδR), we collect peripheral blood of RA patients and established adjuvant-induced arthritis (AA) rat model. We found that the expression of FcδR on neutrophils was significantly higher in RA patients compared with healthy controls. As a specific marker of NETs, the level of citrullinated histone H3 was positively correlated with sIgD and FcδR in RA patients. IgD enhances the release of NETs and promotes the proliferation of fibroblast-like synoviocytes (FLS) from RA patients by activating neutrophils. As a competitive FcδR blocker, IgD-Fc-Ig fusion protein could significantly reduce NETs formation and FcδR expression on neutrophils in vitro. In vivo, IgD-Fc-Ig could restrain IgD-induced neutrophil activation and NETs formation, thus inhibited FLS proliferation in AA rats. Data presented here demonstrate that neutrophils could be triggered by IgD to release NETs and take part in FLS proliferation in RA patients with excessive IgD. Blocking IgD-FcδR could inhibit neutrophil activation and NETs formation, and represent an additional attractive novel therapeutic strategy for the treatment of RA.
Collapse
Affiliation(s)
- Wenwen Pan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qianling Xin
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jing Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jingjing He
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Zhaoying Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaoxi Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Tao Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanqing Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.
| | - Yujing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.
| |
Collapse
|
17
|
Chronic kidney disease and NLRP3 inflammasome: Pathogenesis, development and targeted therapeutic strategies. Biochem Biophys Rep 2022; 33:101417. [PMID: 36620089 PMCID: PMC9813680 DOI: 10.1016/j.bbrep.2022.101417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Chronic kidney disease (CKD) is a global health concern and public health priority. The condition often involves inflammation due to the accumulation of toxins and the reduced clearance of inflammatory cytokines, leading to gradual loss of kidney function. Because of the tremendous burden of CKD, finding effective treatment strategies against inflammation is crucial. Substantial evidence suggests an association between kidney disease and the inflammasome. As a well-known multiprotein signaling complex, the NLR family pyrin domain containing 3 (NLRP3) inflammasome plays an important role in inducing renal inflammation and fibrosis. Small molecule inhibitors targeting the NLRP3 inflammasome are potential agents for the treatment of CKD.The NLRP3 inflammasome activation amplifies the inflammation response, promoting pyroptotic cell death. Thus, it may contribute to the onset and progression of CKD, but the mechanism behind inflammasome activation in CKD remains obscure.In this review, we summarized recent findings on the role of the NLRP3 inflammasome in CKD and new strategies targeting the NLRP3 inflammasome.
Collapse
Key Words
- ,IL-18, Interleukin-18
- ASC, apoptosis-associated speck-like protein
- Ang II, Angiotensin II
- CKD, Chronic kidney disease
- Chronic kidney disease
- DAMPs, damage-associated molecular patterns
- ESRD, End-stage renal disease
- GFR, glomerular filtration rate
- HK-2, renal tubular epithelial cells
- IL-1β, Interleukin-1β
- Inflammasome
- Kidney function
- LRR, leucine-rich repeat
- NEK7, NIMA-related kinase 7
- NF-kB, nuclear factor kappa-B
- NLRP3, NLR family pyrin domain containing 3
- NOD-like receptor
- PAMPs, Pathogen-associated molecular patterns
- ROS, reactive oxygen species
- TXNIP, thioredoxin-interacting protein
Collapse
|
18
|
Delobel P, Ginter B, Rubio E, Balabanian K, Lazennec G. CXCR2 intrinsically drives the maturation and function of neutrophils in mice. Front Immunol 2022; 13:1005551. [PMID: 36311783 PMCID: PMC9606682 DOI: 10.3389/fimmu.2022.1005551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophils play a major role in the protection from infections but also in inflammation related to tumor microenvironment. However, cell-extrinsic and -intrinsic cues driving their function at steady state is still fragmentary. Using Cxcr2 knock-out mice, we have evaluated the function of the chemokine receptor Cxcr2 in neutrophil physiology. We show here that Cxcr2 deficiency decreases the percentage of mature neutrophils in the spleen, but not in the bone marrow (BM). There is also an increase of aged CD62Llo CXCR4hi neutrophils in the spleen of KO animals. Spleen Cxcr2-/- neutrophils display a reduced phagocytic ability, whereas BM neutrophils show an enhanced phagocytic ability compared to WT neutrophils. Spleen Cxcr2-/- neutrophils show reduced reactive oxygen species production, F-actin and α-tubulin levels. Moreover, spleen Cxcr2-/- neutrophils display an altered signaling with reduced phosphorylation of ERK1/2 and p38 MAPK, impaired PI3K-AKT, NF-κB, TGFβ and IFNγ pathways. Altogether, these results suggest that Cxcr2 is essential for neutrophil physiology.
Collapse
Affiliation(s)
- Pauline Delobel
- CNRS, UMR9005, Sys2Diag-ALCEN, Cap delta, Montpellier, France
| | - Benjamin Ginter
- CNRS, UMR9005, Sys2Diag-ALCEN, Cap delta, Montpellier, France
| | - Eliane Rubio
- CNRS, UMR9005, Sys2Diag-ALCEN, Cap delta, Montpellier, France
| | - Karl Balabanian
- CNRS, GDR 3697 “Microenvironment of tumor niches”, Micronit, France
- Université Paris-Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
| | - Gwendal Lazennec
- CNRS, UMR9005, Sys2Diag-ALCEN, Cap delta, Montpellier, France
- CNRS, GDR 3697 “Microenvironment of tumor niches”, Micronit, France
- *Correspondence: Gwendal Lazennec,
| |
Collapse
|
19
|
Komolafe K, Pacurari M. CXC Chemokines in the Pathogenesis of Pulmonary Disease and Pharmacological Relevance. Int J Inflam 2022; 2022:4558159. [PMID: 36164329 PMCID: PMC9509283 DOI: 10.1155/2022/4558159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Chemokines and their receptors play important roles in the pathophysiology of many diseases by regulating the cellular migration of major inflammatory and immune players. The CXC motif chemokine subfamily is the second largest family, and it is further subdivided into ELR motif CXC (ELR+) and non-ELR motif (ELR-) CXC chemokines, which are effective chemoattractants for neutrophils and lymphocytes/monocytes, respectively. These chemokines and their receptors are expected to have a significant impact on a wide range of lung diseases, many of which have inflammatory or immunological underpinnings. As a result, manipulations of this subfamily of chemokines and their receptors using small molecular agents and other means have been explored for potential therapeutic benefit in the setting of several lung pathologies. Furthermore, encouraging preclinical data has necessitated the progression of a few of these drugs into clinical trials in order to make the most effective use of interventions in the development of viable targeted therapeutics. The current review presents the understanding of the roles of CXC ligands (CXCLs) and their cognate receptors (CXCRs) in the pathogenesis of several lung diseases such as allergic rhinitis, COPD, lung fibrosis, lung cancer, pneumonia, and tuberculosis. The potential therapeutic benefits of pharmacological or other CXCL/CXCR axis manipulations are also discussed.
Collapse
Affiliation(s)
- Kayode Komolafe
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
| | - Maricica Pacurari
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
20
|
Hypochlorous Acid Chemistry in Mammalian Cells—Influence on Infection and Role in Various Pathologies. Int J Mol Sci 2022; 23:ijms231810735. [PMID: 36142645 PMCID: PMC9504810 DOI: 10.3390/ijms231810735] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/19/2022] Open
Abstract
This review discusses the formation of hypochlorous acid HOCl and the role of reactive chlorinated species (RCS), which are catalysed by the enzyme myeloperoxidase MPO, mainly located in leukocytes and which in turn contribute to cellular oxidative stress. The reactions of RCS with various organic molecules such as amines, amino acids, proteins, lipids, carbohydrates, nucleic acids, and DNA are described, and an attempt is made to explain the chemical mechanisms of the formation of the various chlorinated derivatives and the data available so far on the effects of MPO, RCS and halogenative stress. Their presence in numerous pathologies such as atherosclerosis, arthritis, neurological and renal diseases, diabetes, and obesity is reviewed and were found to be a feature of debilitating diseases.
Collapse
|
21
|
Le A, Liu W, Wu C, Hu P, Zou J, Wu Y, Kuang L. Polymorphonuclear neutrophil activation by Src phosphorylation contributes to HLA-A2 antibody-induced transfusion-related acute lung injury. Mol Immunol 2022; 150:9-19. [PMID: 35914412 DOI: 10.1016/j.molimm.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/18/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
Human leukocyte antigen (HLA)-A2 antibody contributes to the pathogenesis of transfusion-related acute lung injury (TRALI) via polymorphonuclear neutrophil (PMN) activation, but the signaling pathways involved this process remain largely undefined. In this study, we sought to study the signaling pathways involved in the pathogenesis of HLA-A2-induced TRALI. Lipopolysaccharide (LPS), and the plasma from the HLA-A2 antibody-positive donors were utilized to establish a rat model of TRALI. Human pulmonary endothelial cells (HPMECs) were in vitro co-cultured with HLA-A2 antibody-treated PMNs and then treated with LPS to induce a cytotoxicity model. The effects of HLA-A2 antibody on HPMEC injury were evaluated in this model. Besides, dasatinib was used to block the Src phosphorylation to explore whether Src involved in the TRALI or HPMEC injury induced by HLA-A2 antibody. The HLA-A2 antibody plus LPS induced TRALI and stimulated PMN activation in rats. HLA-A2 antibody-induced TRALI could be attenuated via depletion of PMN. HLA-A2 antibody activated NF-κB and NLRP3 inflammasome. In addition, HLA-A2 antibody aggravated the HPMEC injuries and the release of PMN surfaces makers, but dasatinib treatment reversed this effect, indicating that HLA-A2 antibody activated PMNs and exacerbated TRALI by stimulating phosphorylation of Src followed by activation of NF-κB and NLRP3 inflammasome, which was validated in vivo. In summary, HLA-A2 induced PMNs by activating NF-κB/NLRP3 inflammasome via phosphorylated-Src elevation, thereby exacerbating TRALI. This study highlights promising target for the treatment of antibody-mediated TRALI.
Collapse
Affiliation(s)
- Aiping Le
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| | - Wei Liu
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Chenggao Wu
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Piaoping Hu
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Juan Zou
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Yize Wu
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Linju Kuang
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| |
Collapse
|
22
|
Fredriksson J, Holdfeldt A, Mårtensson J, Björkman L, Møller TC, Müllers E, Dahlgren C, Sundqvist M, Forsman H. GRK2 selectively attenuates the neutrophil NADPH-oxidase response triggered by β-arrestin recruiting GPR84 agonists. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119262. [PMID: 35341806 DOI: 10.1016/j.bbamcr.2022.119262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In order to avoid a prolonged pro-inflammatory neutrophil response, signaling downstream of an agonist-activated G protein-coupled receptor (GPCR) has to be rapidly terminated. Among the family of GPCR kinases (GRKs) that regulate receptor phosphorylation and signaling termination, GRK2, which is highly expressed by immune cells, plays an important role. The medium chain fatty acid receptor GPR84 as well as formyl peptide receptor 2 (FPR2), receptors expressed in neutrophils, play a key role in regulating inflammation. In this study, we investigated the effects of GRK2 inhibitors on neutrophil functions induced by GPR84 and FPR2 agonists. GRK2 was shown to be expressed in human neutrophils and analysis of subcellular fractions revealed a cytosolic localization. The GRK2 inhibitors enhanced and prolonged neutrophil production of reactive oxygen species (ROS) induced by GPR84- but not FPR2-agonists, suggesting a receptor selective function of GRK2. This suggestion was supported by β-arrestin recruitment data. The ROS production induced by a non β-arrestin recruiting GPR84 agonist was not affected by the GRK2 inhibitor. Termination of this β-arrestin independent response relied, similar to the response induced by FPR2 agonists, primarily on the actin cytoskeleton. In summary, we show that GPR84 utilizes GRK2 in concert with β-arrestin and actin cytoskeleton dependent processes to fine-tune the activity of the ROS generating NADPH-oxidase in neutrophils.
Collapse
Affiliation(s)
- Johanna Fredriksson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - André Holdfeldt
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Thor C Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Erik Müllers
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden.
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Zelter T, Strahilevitz J, Simantov K, Yajuk O, Adams Y, Ramstedt Jensen A, Dzikowski R, Granot Z. Neutrophils impose strong immune pressure against PfEMP1 variants implicated in cerebral malaria. EMBO Rep 2022; 23:e53641. [PMID: 35417070 PMCID: PMC9171683 DOI: 10.15252/embr.202153641] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Plasmodium falciparum, the deadliest form of human malaria, remains one of the major threats to human health in endemic regions. Its virulence is attributed to its ability to modify infected red blood cells (iRBC) to adhere to endothelial receptors by placing variable antigens known as PfEMP1 on the iRBC surface. PfEMP1 expression determines the cytoadhesive properties of the iRBCs and is implicated in severe malaria. To evade antibody‐mediated responses, the parasite undergoes continuous switches of expression between different PfEMP1 variants. Recently, it became clear that in addition to antibody‐mediated responses, PfEMP1 triggers innate immune responses; however, the role of neutrophils, the most abundant white blood cells in the human circulation, in malaria remains elusive. Here, we show that neutrophils recognize and kill blood‐stage P. falciparum isolates. We identify neutrophil ICAM‐1 and specific PfEMP1 implicated in cerebral malaria as the key molecules involved in this killing. Our data provide mechanistic insight into the interactions between neutrophils and iRBCs and demonstrate the important influence of PfEMP1 on the selective innate response to cerebral malaria.
Collapse
Affiliation(s)
- Tamir Zelter
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel.,Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Jacob Strahilevitz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Karina Simantov
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Olga Yajuk
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Yvonne Adams
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Ramstedt Jensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
24
|
Sex-dependent effect of aging on calcium signaling and expression of TRPM2 and CRAC channels in human neutrophils. Hum Immunol 2022; 83:645-655. [PMID: 35660323 DOI: 10.1016/j.humimm.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/26/2022] [Accepted: 05/15/2022] [Indexed: 11/22/2022]
Abstract
The vulnerability of older adults to bacterial infections has been associated with age-related changes in neutrophils. We analyzed the consequences of aging on calcium (Ca2+) mobilization and TRPM2 and CRAC channels expression in human neutrophils. The percentages of granulocytes, mature neutrophils, and neutrophil precursors were equivalent between young and older adults. However, neutrophil chemotaxis towards IL-8, C5a, or fMLP was lower in older adults of both sexes. Interestingly, a stronger Ca2+ transient followed by an identical Ca2+ influx to IL-8 was observed in older adult females. In addition, the Ca2+ response to LPS was delayed and prolonged in neutrophils of older adult males. There was no significant difference in Ca2+ response to fMLP, C5a, or store-operated Ca2+ entry in the older adults. There were also no differences in the expression of CXCR2, CD88, FPLR1, and TLR4. Interestingly, TRPM2- and ORAI1-mRNA expression was lower in neutrophils of older adults, mainly in females. Both channels were detected intracellularly in the neutrophils. TRPM2 was in late endosomes in young adults and in lysosomes in older adult neutrophils. In summary, defective neutrophil chemotaxis in aging seemed not to stem from alterations in Ca2+ signals; nevertheless, the low TRPM2 and ORAI1 expression may affect other functions.
Collapse
|
25
|
Zhang X, Liu W. Engineering Injectable Anti‐Inflammatory Hydrogels to Treat Acute Myocardial Infarction. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xiaoping Zhang
- Tianjin Key Laboratory of Composite and Functional Materials School of Material Science and Engineering Tianjin University Tianjin 300350 China
| | - Wenguang Liu
- Tianjin Key Laboratory of Composite and Functional Materials School of Material Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
26
|
Recognition of Tumor Nidogen-1 by Neutrophil C-Type Lectin Receptors. Biomedicines 2022; 10:biomedicines10040908. [PMID: 35453656 PMCID: PMC9030733 DOI: 10.3390/biomedicines10040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Neutrophil-mediated cytotoxicity toward tumor cells requires cell contact and is mediated by hydrogen peroxide. We have recently shown that Cathepsin G expressed on the neutrophil surface interacts with tumor RAGE, and this interaction facilitates neutrophil cytotoxicity. Interruption of the Cathepsin G–RAGE interaction led to 50–80% reduction in cytotoxicity, suggesting that additional interactions are also involved. Here we show that blocking antibodies to the C-type lectin receptors (CLRs) Clec4e and Dectin-1, but not those to NKG2D, attenuated murine neutrophil cytotoxicity towards murine tumor cells, suggesting a contributing role for these CLRs in neutrophil recognition of tumor cells. We further observed that the CLRs interact with tumor Nidogen-1 and Hspg2, two sulfated glycoproteins of the basement membrane. Both Nidogen-1 and Hspg2 were found to be expressed on the tumor cell surface. The knockdown of Nidogen-1, but not that of Hspg2, led to reduced susceptibility of the tumor cells to neutrophil cytotoxicity. Altogether, this study suggests a role for CLR–Nidogen-1 interaction in the recognition of tumor cells by neutrophils, and this interaction facilitates neutrophil-mediated killing of the tumor cells.
Collapse
|
27
|
Cappenberg A, Kardell M, Zarbock A. Selectin-Mediated Signaling-Shedding Light on the Regulation of Integrin Activity in Neutrophils. Cells 2022; 11:cells11081310. [PMID: 35455989 PMCID: PMC9025114 DOI: 10.3390/cells11081310] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
As a consequence of tissue injury or infection, neutrophils are recruited in a stepwise recruitment process from the bloodstream into the surrounding tissue. Selectins are a family of adhesion molecules comprised of L-, E-, and P-selectin. Differences in expression patterns, protein structure, and ligand binding characteristics mediate distinct functions of each selectin. Interactions of selectins and their counter-receptors mediate the first contact of neutrophils with the endothelium, as well as subsequent neutrophil rolling along the endothelial surface. For efficient neutrophil recruitment, activation of β2-integrins on the cell surface is essential. Integrin activation can be elicited via selectin- as well as chemokine-mediated inside-out signaling resulting in integrin conformational changes and clustering. Dysregulation of selectin-induced integrin activation on neutrophils is involved in the development of severe pathological disease conditions including leukocyte adhesion deficiency (LAD) syndromes in humans. Here, we review molecular mechanisms involved in selectin-mediated signaling pathways in neutrophils and their impact on integrin activation, neutrophil recruitment, and inflammatory diseases.
Collapse
|
28
|
Parker J, Guslund NC, Jentoft S, Roth O. Characterization of Pipefish Immune Cell Populations Through Single-Cell Transcriptomics. Front Immunol 2022; 13:820152. [PMID: 35154138 PMCID: PMC8828949 DOI: 10.3389/fimmu.2022.820152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 01/16/2023] Open
Abstract
Teleost adaptive immune systems have evolved with more flexibility than previously assumed. A particularly enigmatic system to address immune system modifications in the evolutionary past is represented by the Syngnathids, the family of pipefishes, seahorses and seadragons. These small fishes with their unique male pregnancy have lost the spleen as an important immune organ as well as a functional major histocompatibility class II (MHC II) pathway. How these evolutionary changes have impacted immune cell population dynamics have up to this point remained unexplored. Here, we present the first immune cell repertoire characterization of a syngnathid fish (Syngnathus typhle) using single-cell transcriptomics. Gene expression profiles of individual cells extracted from blood and head-kidney clustered in twelve putative cell populations with eight belonging to those with immune function. Upregulated cell marker genes identified in humans and teleosts were used to define cell clusters. While the suggested loss of CD4+ T-cells accompanied the loss of the MHC II pathway was supported, the upregulation of specific subtype markers within the T-cell cluster indicates subpopulations of regulatory T-cells (il2rb) and cytotoxic T-cells (gzma). Utilizing single-cell RNA sequencing this report is the first to characterize immune cell populations in syngnathids and provides a valuable foundation for future cellular classification and experimental work within the lineage.
Collapse
Affiliation(s)
- Jamie Parker
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Marine Evolutionary Biology, Christian-Albrechts-University, Kiel, Germany
| | - Naomi Croft Guslund
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Olivia Roth
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Marine Evolutionary Biology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
29
|
Reduced Percentage of CD14 dimCD16 +SLAN + Monocytes Producing TNF and IL-12 as an Immunological Sign of CLL Progression. Int J Mol Sci 2022; 23:ijms23063029. [PMID: 35328450 PMCID: PMC8951649 DOI: 10.3390/ijms23063029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/07/2022] Open
Abstract
Monocytes are one of the least studied immune cells with a potentially important role in the pathogenesis of chronic lymphocytic leukemia (CLL). Nevertheless, data regarding the role of subpopulations of monocytes in the CLL microenvironment are still limited. For the very first time, this study presents an assessment of monocyte subsets divided according to SLAN and CD16 expression in CLL patients. The study involved 70 freshly diagnosed CLL patients and 35 healthy donors. Using flow cytometry, monocyte subpopulations were assessed among PBMCs. CD14+ monocytes can be divided into: “classical” (CD14+CD16−SLAN−), “intermediate” (CD14+CD16+SLAN−) and “non-classical” (CD14dimCD16+SLAN+). In our study, we noted an increased percentage of non-classical monocytes with intracellular expression of TNF and IL-12. On the other hand, among the intermediate monocytes, a significantly higher percentage of cells synthesizing anti-inflammatory IL-10 was detected. The percentage of CD14dimCD16+SLAN+ monocytes producing TNF and IL-12 decreased with the stage of CLL and inversely correlated with the expression of the prognostic factors ZAP-70 and CD38. Moreover, the percentage of CD14dimCD16+SLAN+ monocytes producing TNF and IL-12 was lower in CLL patients requiring treatment. This may indicate the beneficial effect of non-classical monocytes on the anti-tumor response.
Collapse
|
30
|
Atanasova E, Milosevic D, Bornschlegl S, Krucker KP, Jacob EK, Carmona Porquera EM, Anderson DK, Egan AM, Limper AH, Dietz AB. Normal ex vivo mesenchymal stem cell function combined with abnormal immune profiles sets the stage for informative cell therapy trials in idiopathic pulmonary fibrosis patients. Stem Cell Res Ther 2022; 13:45. [PMID: 35101101 PMCID: PMC8802496 DOI: 10.1186/s13287-021-02692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive pulmonary disease characterized by aberrant tissue remodeling, formation of scar tissue within the lungs and continuous loss of lung function. The areas of fibrosis seen in lungs of IPF patients share many features with normal aging lung including cellular senescence. The contribution of the immune system to the etiology of IPF remains poorly understood. Evidence obtained from animal models and human studies suggests that innate and adaptive immune processes can orchestrate existing fibrotic responses. Currently, there is only modest effective pharmacotherapy for IPF. Mesenchymal stem cells (MSCs)-based therapies have emerged as a potential option treatment of IPF. This study characterizes the functionality of autologous MSCs for use as an IPF therapy and presents an attempt to determine whether the disease occurring in the lungs is associated with an alterated immune system. METHODS Comprehensive characterization of autologous adipose-derived MSCs (aMSCs) from 5 IPF patient and 5 age- and gender-matched healthy controls (HC) was done using flow cytometry, PCR (ddPCR), multiplex Luminex xMAP technology, confocal microscopy self-renewal capacity and osteogenic differentiation. Additionally, multi-parameter quantitative flow cytometry of unmanipulated whole blood of 15 IPF patients and 87 (30 age- and gender-matched) HC was used to analyze 110 peripheral phenotypes to determine disease-associated changes in the immune system. RESULTS There are no differences between autologous aMSCs from IPF patients and HC in their stem cell properties, self-renewal capacity, osteogenic differentiation, secretome content, cell cycle inhibitor marker levels and mitochondrial health. IPF patients had altered peripheral blood immunophenotype including reduced B cells subsets, increased T cell subsets and increased granulocytes demonstrating disease-associated alterations in the immune system. CONCLUSIONS Our results indicate that there are no differences in aMSC properties from IPF patients and HC, suggesting that autologous aMSCs may be an acceptable option for IPF therapy. The altered immune system of IPF patients may be a valuable biomarker for disease burden and monitoring therapeutic response.
Collapse
Affiliation(s)
- Elena Atanasova
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dragana Milosevic
- Department of Laboratory Medicine and Pathology, Divisions of Clinical Biochemistry and Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Svetlana Bornschlegl
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Karen P Krucker
- Divisions of Transfusion Medicine and Experimental Pathology, Immune Progenitor and Cell Therapeutics (IMPACT) Lab, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Eapen K Jacob
- Division of Transfusion Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eva M Carmona Porquera
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dagny K Anderson
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ashley M Egan
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA.
- Divisions of Transfusion Medicine and Experimental Pathology, Immune Progenitor and Cell Therapeutics (IMPACT) Lab, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
31
|
Longo L, Rampelotto PH, Filippi-Chiela E, de Souza VEG, Salvati F, Cerski CT, da Silveira TR, Oliveira CP, Uribe-Cruz C, Álvares-da-Silva MR. Gut dysbiosis and systemic inflammation promote cardiomyocyte abnormalities in an experimental model of steatohepatitis. World J Hepatol 2021; 13:2052-2070. [PMID: 35070008 PMCID: PMC8727214 DOI: 10.4254/wjh.v13.i12.2052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/20/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cardiovascular disease is the main cause of death in metabolic-associated fatty liver disease, and gut microbiota dysbiosis is associated with both of them.
AIM To assess the relationship between gut dysbiosis and cardiovascular risk (CVR) in an experimental model of steatohepatitis.
METHODS Adult male Sprague-Dawley rats were randomized to a control group (n = 10) fed a standard diet and an intervention group (n = 10) fed a high-fat choline-deficient diet for 16 wk. Biochemical, molecular, hepatic, and cardiac histopathology. Gut microbiota variables were evaluated.
RESULTS The intervention group had a significantly higher atherogenic coefficient, Castelli’s risk index (CRI)-I and CRI-II, interleukin-1β, tissue inhibitor of metalloproteinase-1 (all P < 0.001), monocyte chemoattractant protein-1 (P = 0.005), and plasminogen activator inhibitor-1 (P = 0.037) than the control group. Gene expression of miR-33a increased (P = 0.001) and miR-126 (P < 0.001) decreased in the intervention group. Steatohepatitis with fibrosis was seen in the intervention group, and heart computerized histological imaging analysis showed a significant decrease in the percentage of cardiomyocytes with a normal morphometric appearance (P = 0.007), reduction in the mean area of cardiomyocytes (P = 0.037), and an increase of atrophic cardiomyocytes (P = 0.007). There were significant correlations between the cardiomyocyte morphometry markers and those of progression and severity of liver disease and CVR. The intervention group had a lower Shannon diversity index and fewer changes in the structural pattern of gut microbiota (both P < 0.001) than controls. Nine microbial families that are involved in lipid metabolism were differentially abundant in intervention group and were significantly correlated with markers of liver injury and CVR.
CONCLUSION The study found a link between gut dysbiosis and significant cardiomyocyte abnormalities in animals with steatohepatitis.
Collapse
Affiliation(s)
- Larisse Longo
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Pabulo Henrique Rampelotto
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Eduardo Filippi-Chiela
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Rio Grande do Sul, Brazil
- Department of Morphological Sciences, Universidade Federal do Rio Grande do SulPorto Alegre 90050-170, Rio Grande do Sul, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Valessa Emanoele Gabriel de Souza
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Fernando Salvati
- School of Medicine, Instituto Meridional de Educação-IMED, Passo Fundo 99070-220, Rio Grande do Sul, Brazil
| | - Carlos Thadeu Cerski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Unit of Surgical Pathology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Themis Reverbel da Silveira
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Cláudia P Oliveira
- Department of Gastroenterology (LIM07), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246903, Brazil
| | - Carolina Uribe-Cruz
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Mário Reis Álvares-da-Silva
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| |
Collapse
|
32
|
McCreedy DA, Abram CL, Hu Y, Min SW, Platt ME, Kirchhoff MA, Reid SK, Jalufka FL, Lowell CA. Spleen tyrosine kinase facilitates neutrophil activation and worsens long-term neurologic deficits after spinal cord injury. J Neuroinflammation 2021; 18:302. [PMID: 34952603 PMCID: PMC8705173 DOI: 10.1186/s12974-021-02353-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background Spinal cord injury elicits widespread inflammation that can exacerbate long-term neurologic deficits. Neutrophils are the most abundant immune cell type to invade the spinal cord in the early acute phase after injury, however, their role in secondary pathogenesis and functional recovery remains unclear. We have previously shown that neutrophil functional responses during inflammation are augmented by spleen tyrosine kinase, Syk, a prominent intracellular signaling enzyme. In this study, we evaluated the contribution of Syk towards neutrophil function and long-term neurologic deficits after spinal cord injury. Methods Contusive spinal cord injury was performed at thoracic vertebra level 9 in mice with conditional deletion of Syk in neutrophils (Sykf/fMRP8-Cre). Hindlimb locomotor recovery was evaluated using an open-field test for 35 days following spinal cord injury. Long-term white matter sparing was assessed using eriochrome cyanide staining. Blood-spinal cord barrier disruption was evaluated by immunoblotting. Neutrophil infiltration, activation, effector functions, and cell death were determined by flow cytometry. Cytokine and chemokine expression in neutrophils was assessed using a gene array. Results Syk deficiency in neutrophils improved long-term functional recovery after spinal cord injury, but did not promote long-term white matter sparing. Neutrophil activation, cytokine expression, and cell death in the acutely injured spinal cord were attenuated by the genetic loss of Syk while neutrophil infiltration and effector functions were not affected. Acute blood-spinal cord barrier disruption was also unaffected by Syk deficiency in neutrophils. Conclusions Syk facilitates specific neutrophil functional responses to spinal cord injury including activation, cytokine expression, and cell death. Long-term neurologic deficits are exacerbated by Syk signaling in neutrophils independent of acute blood-spinal cord barrier disruption and long-term white matter sparing. These findings implicate Syk in pathogenic neutrophil activities that worsen long-term functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Dylan A McCreedy
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA. .,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA. .,Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA.
| | - Clare L Abram
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| | - Yongmei Hu
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| | - Sun Won Min
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Madison E Platt
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Megan A Kirchhoff
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Shelby K Reid
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Frank L Jalufka
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
33
|
Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021; 10:cells10092486. [PMID: 34572138 PMCID: PMC8465406 DOI: 10.3390/cells10092486] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant immune cell in the circulation of human and act as gatekeepers to discard foreign elements that have entered the body. They are essential in initiating immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils, other immune cells and stromal cells in the microenvironment modulates neutrophil function resulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is seen in other neutrophil properties, including differential secretory repertoire and membrane receptor display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely on the interaction between tumor-surface-expressed receptor for advanced glycation end products (RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils in cancer.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Hadassah Medical School, The Hebrew University of Jerusalem, Ein Kerem Campus, P.O.B. 12272, Jerusalem 9112102, Israel
| |
Collapse
|
34
|
Gamara J, Davis L, Leong AZ, Pagé N, Rollet-Labelle E, Zhao C, Hongu T, Funakoshi Y, Kanaho Y, Aoudji F, Pelletier M, Bourgoin SG. Arf6 regulates energy metabolism in neutrophils. Free Radic Biol Med 2021; 172:550-561. [PMID: 34245858 DOI: 10.1016/j.freeradbiomed.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
The small GTPase Arf6 regulates many cellular processes, including cytoskeletal remodeling, receptor endocytosis, and pathogen phagocytosis. Arf6 silencing in neutrophil (PMN)-like cells is well-known to inhibit chemotactic peptide-mediated activation of phospholipase D, the oxidative burst, and β2 integrin-dependent adhesion. In conditional knockout (cKO) mice, the migration to inflammatory sites of Arf6-deficient PMNs was diminished and associated with reduced cell surface expression of β2 integrins. In this study we assessed the impact of Arf6 depletion on the functions and gene expression profile of PMNs isolated from the mouse air pouch. Numerous genes involved in response to oxygen levels, erythrocyte and myeloid differentiation, macrophage chemotaxis, response to chemicals, apoptosis, RNA destabilization, endosome organization, and vesicle transport were differentially expressed in PMNs cKO for Arf6. Lpar6 and Lacc-1 were the most up-regulated and down-regulated genes, respectively. The deletion of Arf6 also decreased Lacc-1 protein level in PMNs, and silencing of Arf6 in THP-1 monocytic cells delayed LPS-mediated Lacc-1 expression. We report that fMLP or zymosan-induced glycolysis and oxygen consumption rate were both decreased in air pouch PMNs but not in bone marrow PMNs of Arf6 cKO mice. Reduced oxygen consumption correlated with a decrease in superoxide and ROS production. Deletion of Arf6 in PMNs also reduced phagocytosis and interfered with apoptosis. The data suggest that Arf6 regulates energy metabolism, which may contribute to impaired phagocytosis, ROS production, and apoptosis in PMN-Arf6 cKO. This study provides new information on the functions and the inflammatory pathways influenced by Arf6 in PMNs.
Collapse
Affiliation(s)
- Jouda Gamara
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2
| | - Lynn Davis
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2
| | - Andrew Z Leong
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2
| | - Nathalie Pagé
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2
| | - Emmanuelle Rollet-Labelle
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2
| | - Chenqi Zhao
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2
| | - Tsunaki Hongu
- German Cancer Research Centre (DFKZ), Group of Metastatic Niches, 69120, Heidelberg, Germany
| | - Yuji Funakoshi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, 305-8575, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, 305-8575, Japan
| | - Fawzi Aoudji
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2; Centre ARThrite, Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec, QC, Canada, G1V0A6
| | - Martin Pelletier
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2; Centre ARThrite, Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec, QC, Canada, G1V0A6
| | - Sylvain G Bourgoin
- Division of Infectious Disease and Immunology, CHU de Quebec Research Center, Quebec, QC, Canada, G1V4G2; Centre ARThrite, Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec, QC, Canada, G1V0A6.
| |
Collapse
|
35
|
Fontoura MA, Rocha RF, Marques RE. Neutrophil Recruitment and Participation in Severe Diseases Caused by Flavivirus Infection. Life (Basel) 2021; 11:717. [PMID: 34357089 PMCID: PMC8304117 DOI: 10.3390/life11070717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are first-line responders to infections and are recruited to target tissues through the action of chemoattractant molecules, such as chemokines. Neutrophils are crucial for the control of bacterial and fungal infections, but their role in the context of viral infections has been understudied. Flaviviruses are important human viral pathogens transmitted by arthropods. Infection with a flavivirus may result in a variety of complex disease manifestations, including hemorrhagic fever, encephalitis or congenital malformations. Our understanding of flaviviral diseases is incomplete, and so is the role of neutrophils in such diseases. Here we present a comprehensive overview on the participation of neutrophils in severe disease forms evolving from flavivirus infection, focusing on the role of chemokines and their receptors as main drivers of neutrophil function. Neutrophil activation during viral infection was shown to interfere in viral replication through effector functions, but the resulting inflammation is significant and may be detrimental to the host. For congenital infections in humans, neutrophil recruitment mediated by CXCL8 would be catastrophic. Evidence suggests that control of neutrophil recruitment to flavivirus-infected tissues may reduce immunopathology in experimental models and patients, with minimal loss to viral clearance. Further investigation on the roles of neutrophils in flaviviral infections may reveal unappreciated functions of this leukocyte population while increasing our understanding of flaviviral disease pathogenesis in its multiple forms.
Collapse
Affiliation(s)
- Marina Alves Fontoura
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
- Cellular and Structural Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-865, Brazil
| | - Rebeca Fróes Rocha
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
| |
Collapse
|
36
|
Van Broeckhoven J, Sommer D, Dooley D, Hendrix S, Franssen AJPM. Macrophage phagocytosis after spinal cord injury: when friends become foes. Brain 2021; 144:2933-2945. [PMID: 34244729 DOI: 10.1093/brain/awab250] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 11/14/2022] Open
Abstract
After spinal cord injury (SCI), macrophages can exert either beneficial or detrimental effects depending on their phenotype. Aside from their critical role in inflammatory responses, macrophages are also specialized in the recognition, engulfment, and degradation of pathogens, apoptotic cells, and tissue debris. They promote remyelination and axonal regeneration by removing inhibitory myelin components and cellular debris. However, excessive intracellular presence of lipids and dysregulated intracellular lipid homeostasis result in the formation of foamy macrophages. These develop a pro-inflammatory phenotype that may contribute to further neurological decline. Additionally, myelin-activated macrophages play a crucial role in axonal dieback and retraction. Here, we review the opposing functional consequences of phagocytosis by macrophages in SCI, including remyelination and regeneration versus demyelination, degeneration, and axonal dieback. Furthermore, we discuss how targeting the phagocytic ability of macrophages may have therapeutic potential for the treatment of SCI.
Collapse
Affiliation(s)
- Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Daniela Sommer
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield Dublin 4, Ireland.,UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,Medical School Hamburg, Hamburg, Germany
| | - Aimée J P M Franssen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
37
|
Role of Neutrophils in Cardiac Injury and Repair Following Myocardial Infarction. Cells 2021; 10:cells10071676. [PMID: 34359844 PMCID: PMC8305164 DOI: 10.3390/cells10071676] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022] Open
Abstract
Neutrophils are first-line responders of the innate immune system. Following myocardial infarction (MI), neutrophils are quickly recruited to the ischemic region, where they initiate the inflammatory response, aiming at cleaning up dead cell debris. However, excessive accumulation and/or delayed removal of neutrophils are deleterious. Neutrophils can promote myocardial injury by releasing reactive oxygen species, granular components, and pro-inflammatory mediators. More recent studies have revealed that neutrophils are able to form extracellular traps (NETs) and produce extracellular vesicles (EVs) to aggravate inflammation and cardiac injury. On the contrary, there is growing evidence showing that neutrophils also exert anti-inflammatory, pro-angiogenic, and pro-reparative effects, thus facilitating inflammation resolution and cardiac repair. In this review, we summarize the current knowledge on neutrophils’ detrimental roles, highlighting the role of recently recognized NETs and EVs, followed by a discussion of their beneficial effects and molecular mechanisms in post-MI cardiac remodeling. In addition, emerging concepts about neutrophil diversity and their modulation of adaptive immunity are discussed.
Collapse
|
38
|
Zergane M, Kuebler WM, Michalick L. Heteromeric TRP Channels in Lung Inflammation. Cells 2021; 10:cells10071654. [PMID: 34359824 PMCID: PMC8307017 DOI: 10.3390/cells10071654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Activation of Transient Receptor Potential (TRP) channels can disrupt endothelial barrier function, as their mediated Ca2+ influx activates the CaM (calmodulin)/MLCK (myosin light chain kinase)-signaling pathway, and thereby rearranges the cytoskeleton, increases endothelial permeability and thus can facilitate activation of inflammatory cells and formation of pulmonary edema. Interestingly, TRP channel subunits can build heterotetramers, whereas heteromeric TRPC1/4, TRPC3/6 and TRPV1/4 are expressed in the lung endothelium and could be targeted as a protective strategy to reduce endothelial permeability in pulmonary inflammation. An update on TRP heteromers and their role in lung inflammation will be provided with this review.
Collapse
Affiliation(s)
- Meryam Zergane
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
- German Centre for Cardiovascular Research (DZHK), 10785 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
- The Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Surgery and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| | - Laura Michalick
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
- German Centre for Cardiovascular Research (DZHK), 10785 Berlin, Germany
| |
Collapse
|
39
|
Hou X, Du HJ, Zhou J, Hu D, Wang YS, Li X. Role of Junctional Adhesion Molecule-C in the Regulation of Inner Endothelial Blood-Retinal Barrier Function. Front Cell Dev Biol 2021; 9:695657. [PMID: 34164405 PMCID: PMC8215391 DOI: 10.3389/fcell.2021.695657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
Although JAM-C is abundantly expressed in the retinae and upregulated in choroidal neovascularization (CNV), it remains thus far poorly understood whether it plays a role in the blood-retinal barrier, which is critical to maintain the normal functions of the eye. Here, we report that JAM-C is highly expressed in retinal capillary endothelial cells (RCECs), and VEGF or PDGF-C treatment induced JAM-C translocation from the cytoplasm to the cytomembrane. Moreover, JAM-C knockdown in RCECs inhibited the adhesion and transmigration of macrophages from wet age-related macular degeneration (wAMD) patients to and through RCECs, whereas JAM-C overexpression in RCECs increased the adhesion and transmigration of macrophages from both wAMD patients and healthy controls. Importantly, the JAM-C overexpression-induced transmigration of macrophages from wAMD patients was abolished by the administration of the protein kinase C (PKC) inhibitor GF109203X. Of note, we found that the serum levels of soluble JAM-C were more than twofold higher in wAMD patients than in healthy controls. Mechanistically, we show that JAM-C overexpression or knockdown in RCECs decreased or increased cytosolic Ca2+ concentrations, respectively. Our findings suggest that the dynamic translocation of JAM-C induced by vasoactive molecules might be one of the mechanisms underlying inner endothelial BRB malfunction, and inhibition of JAM-C or PKC in RCECs may help maintain the normal function of the inner BRB. In addition, increased serum soluble JAM-C levels might serve as a molecular marker for wAMD, and modulating JAM-C activity may have potential therapeutic value for the treatment of BRB malfunction-related ocular diseases.
Collapse
Affiliation(s)
- Xu Hou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hong-Jun Du
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Zhou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dan Hu
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Sheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Proteomic and bioinformatic profiling of neutrophils in CLL reveals functional defects that predispose to bacterial infections. Blood Adv 2021; 5:1259-1272. [PMID: 33651101 DOI: 10.1182/bloodadvances.2020002949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with chronic lymphocytic leukemia (CLL) typically suffer from frequent and severe bacterial infections. Although it is well known that neutrophils are critical innate immune cells facilitating the early defense, the underlying phenotypical and functional changes in neutrophils during CLL remain largely elusive. Using a murine adoptive transfer model of CLL, we demonstrate aggravated bacterial burden in CLL-bearing mice upon a urinary tract infection with uropathogenic Escherichia coli. Bioinformatic analyses of the neutrophil proteome revealed increased expression of proteins associated with interferon signaling and decreased protein expression associated with granule composition and neutrophil migration. Functional experiments validated these findings by showing reduced levels of myeloperoxidase and acidification of neutrophil granules after ex vivo phagocytosis of bacteria. Pathway enrichment analysis indicated decreased expression of molecules critical for neutrophil recruitment, and migration of neutrophils into the infected urinary bladder was significantly reduced. These altered migratory properties of neutrophils were also associated with reduced expression of CD62L and CXCR4 and correlated with an increased incidence of infections in patients with CLL. In conclusion, this study describes a molecular signature of neutrophils through proteomic, bioinformatic, and functional analyses that are linked to a reduced migratory ability, potentially leading to increased bacterial infections in patients with CLL.
Collapse
|
41
|
Li Z, Bratlie KM. The Influence of Polysaccharides-Based Material on Macrophage Phenotypes. Macromol Biosci 2021; 21:e2100031. [PMID: 33969643 DOI: 10.1002/mabi.202100031] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 02/03/2023]
Abstract
Macrophage polarization is a key factor in determining the success of implanted tissue engineering scaffolds. Polysaccharides (derived from plants, animals, and microorganisms) are known to modulate macrophage phenotypes by recognizing cell membrane receptors. Numerous studies have developed polysaccharide-based materials into functional biomaterial substrates for tissue regeneration and pharmaceutical application due to their immunostimulatory activities and anti-inflammatory response. They are used as hydrogel substrates, surface coatings, and drug delivery carriers. In addition to their innate immunological functions, the newly endowed physical and chemical properties, including substrate modulus, pore size/porosity, surface binding chemistry, and the mole ratio of polysaccharides in hybrid materials may regulate macrophage phenotypes more precisely. Growing evidence indicates that the sulfation pattern of glycosaminoglycans and proteoglycans expressed on polarized macrophages leads to the changes in protein binding, which may alter macrophage phenotype and influence the immune response. A comprehensive understanding of how different types of polysaccharide-based materials alter macrophage phenotypic changes can be beneficial to predict transplantation/implantation outcomes. This review focuses on recent advances in promoting wound healing and balancing macrophage phenotypes using polysaccharide-based substrates/coatings and new directions to address the limitations in the current understanding of macrophage responses to polysaccharides.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Chemical & Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
42
|
Richardson IM, Calo CJ, Hind LE. Microphysiological Systems for Studying Cellular Crosstalk During the Neutrophil Response to Infection. Front Immunol 2021; 12:661537. [PMID: 33986752 PMCID: PMC8111168 DOI: 10.3389/fimmu.2021.661537] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the primary responders to infection, rapidly migrating to sites of inflammation and clearing pathogens through a variety of antimicrobial functions. This response is controlled by a complex network of signals produced by vascular cells, tissue resident cells, other immune cells, and the pathogen itself. Despite significant efforts to understand how these signals are integrated into the neutrophil response, we still do not have a complete picture of the mechanisms regulating this process. This is in part due to the inherent disadvantages of the most-used experimental systems: in vitro systems lack the complexity of the tissue microenvironment and animal models do not accurately capture the human immune response. Advanced microfluidic devices incorporating relevant tissue architectures, cell-cell interactions, and live pathogen sources have been developed to overcome these challenges. In this review, we will discuss the in vitro models currently being used to study the neutrophil response to infection, specifically in the context of cell-cell interactions, and provide an overview of their findings. We will also provide recommendations for the future direction of the field and what important aspects of the infectious microenvironment are missing from the current models.
Collapse
Affiliation(s)
| | | | - Laurel E. Hind
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO, United States
| |
Collapse
|
43
|
Mårtensson J, Sundqvist M, Manandhar A, Ieremias L, Zhang L, Ulven T, Xie X, Björkman L, Forsman H. The Two Formyl Peptide Receptors Differently Regulate GPR84-Mediated Neutrophil NADPH Oxidase Activity. J Innate Immun 2021; 13:242-256. [PMID: 33789297 DOI: 10.1159/000514887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/29/2021] [Indexed: 11/19/2022] Open
Abstract
Neutrophils express the two formyl peptide receptors (FPR1 and FPR2) and the medium-chain fatty acid receptor GPR84. The FPRs are known to define a hierarchy among neutrophil G protein-coupled receptors (GPCRs), that is, the activated FPRs can either suppress or amplify GPCR responses. In this study, we investigated the position of GPR84 in the FPR-defined hierarchy regarding the activation of neutrophil nicotine adenine dinucleotide phosphate (NADPH) oxidase, an enzyme system designed to generate reactive oxygen species (ROS), which are important regulators in cell signaling and immune regulation. When resting neutrophils were activated by GPR84 agonists, a modest ROS release was induced. However, vast amounts of ROS were induced by these GPR84 agonists in FPR2-desensitized neutrophils, and the response was inhibited not only by a GPR84-specific antagonist but also by an FPR2-specific antagonist. This suggests that the amplified GPR84 agonist response is achieved through a reactivation of desensitized FPR2s. In addition, the GPR84-mediated FPR2 reactivation was independent of β-arrestin recruitment and sensitive to a protein phosphatase inhibitor. In contrast to FPR2-desensitized cells, FPR1 desensitization primarily resulted in a suppressed GPR84 agonist-induced ROS response, indicating a receptor hierarchical desensitization of GPR84 by FPR1-generated signals. In summary, our data show that the two FPRs in human neutrophils control the NADPH oxidase activity with concomitant ROS production by communicating with GPR84 through different mechanisms. While FPR1 desensitizes GPR84 and by that suppresses the release of ROS induced by GPR84 agonists, amplified ROS release is achieved by GPR84 agonists through reactivation of the desensitized FPR2.
Collapse
Affiliation(s)
- Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Asmita Manandhar
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Loukas Ieremias
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Linjie Zhang
- CAS Key Laboratory of Receptor Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Trond Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
44
|
Ciupe SM, Boribong BP, Kadelka S, Jones CN. Bistable Mathematical Model of Neutrophil Migratory Patterns After LPS-Induced Epigenetic Reprogramming. Front Genet 2021; 12:633963. [PMID: 33708241 PMCID: PMC7940759 DOI: 10.3389/fgene.2021.633963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/27/2021] [Indexed: 11/17/2022] Open
Abstract
The highly controlled migration of neutrophils toward the site of an infection can be altered when they are trained with lipopolysaccharides (LPS), with high dose LPS enhancing neutrophil migratory pattern toward the bacterial derived source signal and super-low dose LPS inducing either migration toward an intermediary signal or dysregulation and oscillatory movement. Empirical studies that use microfluidic chemotaxis-chip devices with two opposing chemoattractants showed differential neutrophil migration after challenge with different LPS doses. The epigenetic alterations responsible for changes in neutrophil migratory behavior are unknown. We developed two mathematical models that evaluate the mechanistic interactions responsible for neutrophil migratory decision-making when exposed to competing chemoattractants and challenged with LPS. The first model, which considers the interactions between the receptor densities of two competing chemoattractants, their kinases, and LPS, displayed bistability between high and low ratios of primary to intermediary chemoattractant receptor densities. In particular, at equilibrium, we observe equal receptor densities for low LPS (< 15ng/mL); and dominance of receptors for the primary chemoattractant for high LPS (> 15ng/mL). The second model, which included additional interactions with an extracellular signal-regulated kinase in both phosphorylated and non-phosphorylated forms, has an additional dynamic outcome, oscillatory dynamics for both receptors, as seen in the data. In particular, it found equal receptor densities in the absence of oscillation for super-low and high LPS challenge (< 0.4 and 1.1 376 ng/mL). Predicting the mechanisms and the type of external LPS challenge responsible for neutrophils migration toward pro-inflammatory chemoattractants, migration toward pro-tolerant chemoattractants, or oscillatory movement is necessary knowledge in designing interventions against immune diseases, such as sepsis.
Collapse
Affiliation(s)
- Stanca M. Ciupe
- Department of Mathematics, Virginia Tech, Blacksburg, VA, United States
| | - Brittany P. Boribong
- Division of Pediatric Pulmonology, Massachusetts General Hospital, Boston, MA, United States
| | - Sarah Kadelka
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Caroline N. Jones
- Department of Bioengineering, University of Texas, Dallas, TX, United States
| |
Collapse
|
45
|
Vandendriessche S, Cambier S, Proost P, Marques PE. Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis. Front Cell Dev Biol 2021; 9:624025. [PMID: 33644062 PMCID: PMC7905230 DOI: 10.3389/fcell.2021.624025] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
The complement system is deeply embedded in our physiology and immunity. Complement activation generates a multitude of molecules that converge simultaneously on the opsonization of a target for phagocytosis and activation of the immune system via soluble anaphylatoxins. This response is used to control microorganisms and to remove dead cells, but also plays a major role in stimulating the adaptive immune response and the regeneration of injured tissues. Many of these effects inherently depend on complement receptors expressed on leukocytes and parenchymal cells, which, by recognizing complement-derived molecules, promote leukocyte recruitment, phagocytosis of microorganisms and clearance of immune complexes. Here, the plethora of information on the role of complement receptors will be reviewed, including an analysis of how this functionally and structurally diverse group of molecules acts jointly to exert the full extent of complement regulation of homeostasis.
Collapse
Affiliation(s)
- Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Pedro E Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
46
|
Cao Y, Ao T, Wang X, Wei W, Fan J, Tian X. CD300a and CD300f molecules regulate the function of leukocytes. Int Immunopharmacol 2021; 93:107373. [PMID: 33548578 DOI: 10.1016/j.intimp.2021.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The CD300 molecule family is a type I transmembrane glycoprotein expressed on cell membrane of human and other mammals, and of its eight members, only CD300a and CD300f are classified as inhibitory receptors. CD300a and CD300f play an important role in regulating the function of leukocytes, such as activation, proliferation, differentiation, migration and immunity function. They are considered as potential targets for studying the development and progression of inflammation, infection and other diseases. Here, we review the expression and regulatory mechanisms of CD300a and CD300f on leukocytes, as well as their effects on relevant diseases.
Collapse
Affiliation(s)
- Yue Cao
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Tianrang Ao
- Department of Cardiology, Peking Union Medical College Hospital, Tsinghua University, Beijing 100730, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Wumei Wei
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
47
|
Rawat K, Syeda S, Shrivastava A. Neutrophil-derived granule cargoes: paving the way for tumor growth and progression. Cancer Metastasis Rev 2021; 40:221-244. [PMID: 33438104 PMCID: PMC7802614 DOI: 10.1007/s10555-020-09951-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023]
Abstract
Neutrophils are the key cells of our innate immune system mediating host defense via a range of effector functions including phagocytosis, degranulation, and NETosis. For this, they employ an arsenal of anti-microbial cargoes packed in their readily mobilizable granule subsets. Notably, the release of granule content is tightly regulated; however, under certain circumstances, their unregulated release can aggravate tissue damage and could be detrimental to the host. Several constituents of neutrophil granules have also been associated with various inflammatory diseases including cancer. In cancer setting, their excessive release may modulate tissue microenvironment which ultimately leads the way for tumor initiation, growth and metastasis. Neutrophils actively infiltrate within tumor tissues, wherein they show diverse phenotypic and functional heterogeneity. While most studies are focused at understanding the phenotypic heterogeneity of neutrophils, their functional heterogeneity, much of which is likely orchestrated by their granule cargoes, is beginning to emerge. Therefore, a better understanding of neutrophil granules and their cargoes will not only shed light on their diverse role in cancer but will also reveal them as novel therapeutic targets. This review provides an overview on existing knowledge of neutrophil granules and detailed insight into the pathological relevance of their cargoes in cancer. In addition, we also discuss the therapeutic approach for targeting neutrophils or their microenvironment in disease setting that will pave the way forward for future research.
Collapse
Affiliation(s)
- Kavita Rawat
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Saima Syeda
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Anju Shrivastava
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
48
|
Biphasic Force-Regulated Phosphorylation Site Exposure and Unligation of ERM Bound with PSGL-1: A Novel Insight into PSGL-1 Signaling via Steered Molecular Dynamics Simulations. Int J Mol Sci 2020; 21:ijms21197064. [PMID: 32992803 PMCID: PMC7583015 DOI: 10.3390/ijms21197064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The PSGL-1-actin cytoskeleton linker proteins ezrin/radixin/moesin (ERM), an adaptor between P-selectin glycoprotein ligand-1 (PSGL-1) and spleen tyrosine kinase (Syk), is a key player in PSGL-1 signal, which mediates the adhesion and recruitment of leukocytes to the activated endothelial cells in flow. Binding of PSGL-1 to ERM initials intracellular signaling through inducing phosphorylation of Syk, but effects of tensile force on unligation and phosphorylation site exposure of ERM bound with PSGL-1 remains unclear. To answer this question, we performed a series of so-called “ramp-clamp” steered molecular dynamics (SMD) simulations on the radixin protein FERM domain of ERM bound with intracellular juxtamembrane PSGL-1 peptide. The results showed that, the rupture force of complex pulled with constant velocity was over 250 pN, which prevented the complex from breaking in front of pull-induced exposure of phosphorylation site on immunoreceptor tyrosine activation motif (ITAM)-like motif of ERM; the stretched complex structure under constant tensile forces <100 pN maintained on a stable quasi-equilibrium state, showing a high mechano-stabilization of the clamped complex; and, in consistent with the force-induced allostery at clamped stage, increasing tensile force (<50 pN) would decrease the complex dissociation probability but facilitate the phosphorylation site exposure, suggesting a force-enhanced biophysical connectivity of PSGL-1 signaling. These force-enhanced characters in both phosphorylation and unligation of ERM bound with PSGL-1 should be mediated by a catch-slip bond transition mechanism, in which four residue interactions on binding site were involved. This study might provide a novel insight into the transmembrane PSGL-1 signal, its biophysical connectivity and molecular structural basis for cellular immune responses in mechano-microenvironment, and showed a rational SMD-based computer strategy for predicting structure-function relation of protein under loads.
Collapse
|
49
|
Huot S, Laflamme C, Fortin PR, Boilard E, Pouliot M. IgG-aggregates rapidly upregulate FcgRI expression at the surface of human neutrophils in a FcgRII-dependent fashion: A crucial role for FcgRI in the generation of reactive oxygen species. FASEB J 2020; 34:15208-15221. [PMID: 32946139 DOI: 10.1096/fj.202001085r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 01/17/2023]
Abstract
Autoimmune complexes are an important feature of several autoimmune diseases such as lupus, as they contribute to tissue damage through the activation of immune cells. Neutrophils, key players in lupus, interact with immune complexes through Fc gamma receptors (FcgR). Incubation of neutrophils with aggregated-IgGs caused degranulation and increased the surface expression of FcgRI within minutes in a concentration-dependent fashion. After 30 minutes, IgG aggregates (1 mg/mL) upregulated FcgRI by 4.95 ± 0.45-fold. FcgRI-positive neutrophils reached 67.24% ± 6.88% on HA-IgGs stimulated neutrophils, from 3.12% ± 1.62% in non-stimulated cells, ranking IgG-aggregates among the most potent known agonists. FcgRIIa, and possibly FcgRIIIa, appeared to mediate this upregulation. Also, FcgRI-dependent signaling proved necessary for reactive oxygen species (ROS) production in response to IgG-aggregates. Finally, combinations of bacterial materials with aggregates dramatically boosted ROS production. This work suggests FcgRI as an essential component in the response of human neutrophils to immune complexes leading to the production of ROS, which may help explain how neutrophils contribute to tissue damage associated with immune complex-associated diseases, such as lupus.
Collapse
Affiliation(s)
- Sandrine Huot
- Département de microbiologie et immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Cynthia Laflamme
- Département de microbiologie et immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Paul R Fortin
- Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Division de Rhumatologie, Département de Médecine, CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Eric Boilard
- Département de microbiologie et immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Marc Pouliot
- Département de microbiologie et immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| |
Collapse
|
50
|
Frei R, Nordlohne J, Hüser U, Hild S, Schmidt J, Eitner F, Grundmann M. Allosteric targeting of the FFA2 receptor (GPR43) restores responsiveness of desensitized human neutrophils. J Leukoc Biol 2020; 109:741-751. [PMID: 32803826 PMCID: PMC8048482 DOI: 10.1002/jlb.2a0720-432r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
The G protein‐coupled free fatty acid receptor 2 (FFA2R) is highly expressed on neutrophils and was previously described to regulate neutrophil activation. Allosteric targeting of G protein‐coupled receptors (GPCRs) is increasingly explored to create distinct pharmacology compared to endogenous, orthosteric ligands. The consequence of allosteric versus orthosteric FFA2R activation for neutrophil response, however, is currently largely elusive. Here, different FFA2R desensitization profiles in human neutrophils following allosteric or orthosteric activation are reported. Using a set of neutrophil functional assays to measure calcium flux, pERK1/2, chemotaxis, cellular degranulation, and oxidative burst together with holistic and pathway‐unbiased whole cell sensing based on dynamic mass redistribution, it is found that the synthetic positive allosteric modulator agonist 4‐CMTB potently activates neutrophils and simultaneously alters FFA2R responsiveness toward the endogenous, orthosteric agonist propionic acid (C3) after homologous and heterologous receptor desensitization. Stimulation with C3 or the hierarchically superior chemokine receptor activator IL‐8 led to strong FFA2R desensitization and rendered neutrophils unresponsive toward repeated stimulation with C3. In contrast, stimulation with allosteric 4‐CMTB engaged a distinct composition of signaling pathways as compared to orthosteric receptor activation and was able to activate neutrophils that underwent homologous and heterologous desensitization with C3 and IL‐8, respectively. Moreover, allosteric FFA2R activation could re‐sensitize FFA2 toward the endogenous agonist C3 after homologous and heterologous desensitization. Given the fact that receptor desensitization is critical in neutrophils to sense and adapt to their current environment, these findings are expected to be useful for the discovery of novel pharmacological mechanisms to modulate neutrophil responsiveness therapeutically.
Collapse
Affiliation(s)
- Robert Frei
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Johannes Nordlohne
- Bayer AG, Pharmaceuticals R&D, Preclinical Research, Pharma Research Center, Wuppertal, Germany
| | - Ulrike Hüser
- Bayer AG, Pharmaceuticals R&D, Preclinical Research, Pharma Research Center, Wuppertal, Germany
| | - Seda Hild
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Johannes Schmidt
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Frank Eitner
- Bayer AG, Pharmaceuticals R&D, Preclinical Research, Pharma Research Center, Wuppertal, Germany
| | - Manuel Grundmann
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany.,Bayer AG, Pharmaceuticals R&D, Preclinical Research, Pharma Research Center, Wuppertal, Germany
| |
Collapse
|