1
|
Meng X, Zhong Y, Kuang X, Zhang Y, Yang L, Cai Y, Wang F, He F, Xie H, Wang B, Li J. Targeting the STAT3/IL-36G signaling pathway can be a promising approach to treat rosacea. J Adv Res 2024:S2090-1232(24)00250-9. [PMID: 38909883 DOI: 10.1016/j.jare.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/26/2024] [Accepted: 06/08/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Rosacea is an inflammatory skin disorder characterized by the release of inflammatory mediators from keratinocytes, which are thought to play a crucial role in its pathogenesis. Despite an incidence of approximately 5.5%, rosacea is associated with a poor quality of life. However, as the pathogenesis of rosacea remains enigmatic, treatment options are limited. OBJECTIVES To investigate the pathogenesis of rosacea and explore new therapeutic strategies. METHODS Transcriptome data from rosacea patients combined with immunohistochemical staining were used to investigate the activation of STAT3 in rosacea. The role of STAT3 activation in rosacea was subsequently explored by inhibiting STAT3 activation both in vivo and in vitro. The key molecules downstream of STAT3 activation were identified through data analysis and experiments. Dual-luciferase assay and ChIP-qPCR analysis were used to validate the direct binding of STAT3 to the IL-36G promoter. DARTS, in combination with experimental screening, was employed to identify effective drugs targeting STAT3 for rosacea treatment. RESULTS STAT3 signaling was hyperactivated in rosacea and served as a promoter of the keratinocyte-driven inflammatory response. Mechanistically, activated STAT3 directly bind to the IL-36G promoter region to amplify downstream inflammatory signals by promoting IL-36G transcription, and treatment with a neutralizing antibody (α-IL36γ) could mitigate rosacea-like inflammation. Notably, a natural plant extract (pogostone), which can interact with STAT3 directly to inhibit its activation and affect the STAT3/IL36G signaling pathway, was screened as a promising topical medication for rosacea treatment. CONCLUSIONS Our study revealed a pivotal role for STAT3/IL36G signaling in the development of rosacea, suggesting that targeting this pathway might be a potential strategy for rosacea treatment.
Collapse
Affiliation(s)
- Xin Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Zhong
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuyuan Kuang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Jiangxi, China; Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yisheng Cai
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Fanping He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; Department of Plastic and Reconstructive Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Zhu ZB, Liu MJ, Wang J, Shu Z, Cao J. Secoemestrin C Ameliorates Psoriasis-like Skin Inflammation in Mice by Suppressing the TNF-α/NF-κB Signaling Pathway. Curr Med Sci 2024; 44:232-240. [PMID: 38393530 DOI: 10.1007/s11596-024-2828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/03/2023] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Secoemestrin C (SC), an epitetrathiodioxopiperazine isolated from Aspergillus nidulans, has been previously reported to have immunomodulatory and hepatoprotective effects against acute autoimmune hepatitis. However, the effect of SC on regulating the inflammation and its underlying mechanisms in the pathogenesis of psoriasis remain unclear. This study aimed to evaluate the effects of SC on inflammatory dermatosis both in vitro and in vivo. METHODS In vitro, HaCaT cells were induced with tumor necrosis factor-alpha (TNF-α, 10 ng/mL) to establish an inflammatory injury model, and the expression of nuclear transcription factor-κB (NF-κB) pathway components was measured using qRT-PCR and Western blotting. An in vivo mouse model of imiquimod (IMQ)-induced psoriasis-like skin inflammation was used to evaluate the effectiveness of SC in alleviating psoriasis. RESULTS SC significantly blocked the activation of NF-κB signaling in TNF-α-stimulated HaCaT cells. In addition, systemic and local administration of SC improved psoriatic dermatitis in the IMQ-induced mouse model. SC reduced skin scale and significantly inhibited the secretion of inflammatory factors in skin lesions. CONCLUSION The protective effect of SC against psoriatic-associated inflammation reveals its potential therapeutic value for treating psoriasis.
Collapse
Affiliation(s)
- Zhi-Bin Zhu
- Department of Stomatology, Chengdu Seventh People's Hospital, Chengdu, 610044, China
| | - Meng-Jie Liu
- Department of Stomatology, Chengdu Seventh People's Hospital, Chengdu, 610044, China
| | - Jing Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhou Shu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Su J, Chen XM, Xie YL, Li MQ, Shang Q, Zhang DK, Cai XF, Liu H, Huang HZ, Zheng C, Han L. Clinical efficacy, pharmacodynamic components, and molecular mechanisms of antiviral granules in the treatment of influenza: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117011. [PMID: 37567423 DOI: 10.1016/j.jep.2023.117011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Antiviral Granules (AG) are derived from the classical famous prescription, which is composed of 9 traditional Chinese medicines, namely Radix Isatidis (called Banlangen, BLG in Chinese), Forsythiae Fructus (called Lianqiao, LQ in Chinese), Gypsum fibrosum, Anemarrhenae Rhizoma (called Zhimu, ZM in Chinese), Phragmitis Rhizoma (called Lugen, LG in Chinese), Rehmanniae Radix (called Dihuang, DH in Chinese), Pogostemonis Herba (called Guanghuoxiang, GHX in Chinese), Acori Tatarinowii Rhizoma (called Shichangpu, SCP in Chinese), and Curcumae Radix (called Yujin, YJ in Chinese), and has shown an excellent therapeutic effect in clinical treatment of influenza. However, there are few studies on the anti-influenza mechanism of AG, and the mechanism of action is still unclear. AIM OF THE STUDY The purpose is to provide the latest information about the clinical efficacy, pharmacodynamic composition and mechanism of AG based on scientific literature, so as to enhance the utilization of AG in the treatment of influenza and related diseases, and promote the development and innovation of novel anti-influenza drugs targeting the influenza virus. MATERIALS AND METHODS Enter the data retrieval room, search for Antiviral Granules, as well as the scientific names, common names, and Chinese names of each Chinese medicine. Additionally, search for the relevant clinical applications, pharmacodynamic composition, pharmacological action, and molecular mechanism of both Antiviral Granules and single-ingredient medicines. Keywords includes terms such as "antiviral granules", "influenza", "Isatis indigotica Fort.", "Radix Isatidis", "Banlangeng", "pharmacology", "clinical application", "pharmacologic action", etc. and their combinations. Obtain results from the Web of Science, PubMed, Google Scholar, Sci Finder Scholar, CNKI and other resources. RESULTS AG is effective in the treatment of influenza and is often used in combination with other drugs to treat viral diseases. Its chemical composition is complex, including alkaloids, polysaccharides, volatile oils, steroid saponins, phenylpropanoids, terpenoids and other compounds. These compounds have a variety of pharmacological activities, which can interfere with the replication cycle of the influenza virus, regulate RIG-I-MAVS, JAK/STAT, TLRs/MyD88, NF-κB signaling pathways and related cytokines, regulate intestinal microorganisms, and protect both the lungs and extrapulmonary organs. CONCLUSIONS AG can overcome the limitations of traditional antiviral drug therapy, play a synergistic role in fighting influenza virus with the characteristics of multi-component, multi-pathway and multi-target therapy, and reverse the bodily function damage caused by influenza virus. AG may be a potential drug in the prevention and treatment of influenza and related diseases.
Collapse
Affiliation(s)
- Juan Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin-Ming Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi-Ling Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Meng-Qi Li
- Pharmacy Department, Sichuan Nursing Vocational College, Chengdu, 610100, China
| | - Qiang Shang
- Sichuan Provincial Engineering Research Center for Antiviral Chinese Medicine Industrialization, Sichuan Guangda Pharmaceutical Co., Ltd., Pengzhou, 611930, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Pengzhou, 611930, China
| | - Xin-Fu Cai
- Sichuan Provincial Engineering Research Center for Antiviral Chinese Medicine Industrialization, Sichuan Guangda Pharmaceutical Co., Ltd., Pengzhou, 611930, China
| | - Hui Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hao-Zhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Xu F, Cai W, Ma T, Zeng H, Kuang X, Chen W, Liu B. Traditional Uses, Phytochemistry, Pharmacology, Quality Control, Industrial Application, Pharmacokinetics and Network Pharmacology of Pogostemon cablin: A Comprehensive Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:691-721. [PMID: 35282804 DOI: 10.1142/s0192415x22500288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pogostemonis Herba (PH) is the dried aerial parts of Pogostemon cablin (Blanco) Benth, which is mainly distributed and used in Asian countries. PH is an aromatic damp-resolving drug in traditional Chinese medicine (TCM), which is usually used for the treatment of vomiting, chest tension, tiredness, abdominal pain, diarrhea, and headache. In this review, the summary of chemical constituents in the aerial parts, biological activities, history of uses, quality control methods, industrial applications, pharmacokinetics and network pharmacology are reported. By collating the chemical constituents of various parts of PH, a total of 174 components were identified, including 66 terpenes, 6 pyrones, 40 flavonoids, 21 phenylpropanoids, 9 steroids, 4 polysaccharides and 28 others. Pharmacological research has found that PH possesses multi-pharmacological activities, including regulating the gastrointestinal tract, inhibition of pathogenic microorganisms, and anti-inflammation, which provide more scientific interpretation for the clinical usage of PH. In addition, the shortcomings of the current research on PH and the recommendation of future studies on PH are analyzed. We hope this review can provide some insight for further research and applications of PH in future.
Collapse
Affiliation(s)
- Fangfang Xu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medicial College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Wanna Cai
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medicial College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Ting Ma
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medicial College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Huimei Zeng
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medicial College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaolan Kuang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medicial College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Weiying Chen
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medicial College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Bo Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medicial College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
5
|
Leong W, Huang G, Liao W, Xia W, Li X, Su Z, Liu L, Wu Q, Wong VKW, Law BYK, Xia C, Guo X, Khan I, Wendy Hsiao WL. Traditional Patchouli Essential Oil modulates the host's immune responses and gut microbiota and exhibits potent anti-cancer effects in Apc Min/+ mice. Pharmacol Res 2022; 176:106082. [PMID: 35032662 DOI: 10.1016/j.phrs.2022.106082] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
Patchouli Essential Oil (PEO) has been used as a scent for various healing purposes since the ancient Egyptian period. The primary source of the oil is Pogostemon cablin (PC), a medicinal plant for treating gastrointestinal symptoms. However, the pharmacological function has not been addressed. Here, we report the cancer prevention and gut microbiota (GM) modulating property of PEO and its derivatives patchouli alcohol (PA) and pogostone (PO) in the ApcMin/+ colorectal cancer mice model. We found that PEO, PA, and PO significantly reduced the tumor burden. At the same time, it strengthened the epithelial barrier, evidenced by substantially increasing the number of the goblet and Paneth cells and upregulation of tight junction and adhesion molecules. In addition, PEO, PA, and PO shifted M1 to M2 macrophage phenotypes and remodeled the inflammatory milieu of ApcMin/+ mice. We also found suppression of CD4+CD25+ and stimulation CD4+ CD8+ cells in the spleen, blood, mesenteric lymph nodes (MLNs), and Peyer's patches (PPs) of the treated mice. The composition of the gut microbiome of the drug-treated mice was distinct from the control mice. The drugs stimulated the short-chain fatty acids (SCFAs)-producers and the key SCFA-sensing receptors (GPR41, GPR43, and GPR109a). The activation of SCFAs/GPSs also triggered the alterations of PPAR-γ, PYY, and HSDCs signaling mediators in the treated mice. Our work showed that PEO and its derivatives exert potent anti-cancer effects by modulating gut microbiota and improving the intestinal microenvironment of the Apcmin/+ mice. DATA AVAILABILITY STATEMENT: The gut microbiota data discussed in this manuscript have been deposited in SRA NCBI and are accessible via project no. PRJNA559033.
Collapse
Affiliation(s)
- Waikit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Weilin Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Wenrui Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Xiaoang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Ziren Su
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China.
| | - Xiaoling Guo
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China.
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China.
| |
Collapse
|
6
|
Li D, Xing Z, Yu T, Dong W, Wang Z, Peng C, Yang C. Pogostone attenuates adipose tissue inflammation by regulating the adipocyte–macrophage crosstalk via activating SIRT1. Food Funct 2022; 13:11853-11864. [DOI: 10.1039/d2fo01450e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pogostone prevents adipose tissue inflammation by activating the deacetylase SIRT1.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhiwei Wang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
7
|
Chen J, Liu L, Wang Y, Li Z, Wang G, Kraus GA, Pichersky E, Xu H. Characterization of a Cytosolic Acyl-Activating Enzyme Catalyzing the Formation of 4-Methylvaleryl-CoA for Pogostone Biosynthesis in Pogostemon Cablin. PLANT & CELL PHYSIOLOGY 2021; 62:1556-1571. [PMID: 34255851 PMCID: PMC8643619 DOI: 10.1093/pcp/pcab111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Pogostone, a compound with various pharmaceutical activities, is a major constituent of the essential oil preparation called Pogostemonis Herba, which is obtained from the plant Pogostemon cablin. The biosynthesis of pogostone has not been elucidated, but 4-methylvaleryl-CoA (4MVCoA) is a likely precursor. We analyzed the distribution of pogostone in P. cablin using gas chromatography-mass spectrometry (GC-MS) and found that pogostone accumulates at high levels in the main stems and leaves of young plants. A search for the acyl-activating enzyme (AAE) that catalyzes the formation of 4MVCoA from 4-methylvaleric acid was launched, using an RNAseq-based approach to identify 31 unigenes encoding putative AAEs including the PcAAE2, the transcript profile of which shows a strong positive correlation with the distribution pattern of pogostone. The protein encoded by PcAAE2 was biochemically characterized in vitro and shown to catalyze the formation of 4MVCoA from 4-methylvaleric acid. Phylogenetic analysis showed that PcAAE2 is closely related to other AAE proteins in P. cablin and other species that are localized to the peroxisomes. However, PcAAE2 lacks a peroxisome targeting sequence 1 (PTS1) and is localized in the cytosol.
Collapse
Affiliation(s)
- Jing Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Lang Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Ying Wang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - George A Kraus
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
8
|
Zhang G, Zhang Y, Ma X, Yang X, Cai Y, Yin W. Pogostone inhibits the activity of CYP3A4, 2C9, and 2E1 in vitro. PHARMACEUTICAL BIOLOGY 2021; 59:532-536. [PMID: 33915070 PMCID: PMC8871619 DOI: 10.1080/13880209.2021.1917630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Pogostone possesses various pharmacological activities, which makes it widely used in the clinic. Its effect on the activity of cytochrome P450 enzymes (CYP450s) could guide its clinical combination. OBJECTIVE To investigate the effect of pogostone on the activity of human CYP450s. MATERIALS AND METHODS The effect of pogostone on the activity of CYP450s was evaluated in human liver microsomes (HLMs) compared with blank HLMs (negative control) and specific inhibitors (positive control). The corresponding parameters were obtained with 0-100 μM pogostone and various concentrations of substrates. RESULTS Pogostone was found to inhibit the activity of CYP3A4, 2C9, and 2E1 with the IC50 values of 11.41, 12.11, and 14.90 μM, respectively. The inhibition of CYP3A4 by pogostone was revealed to be performed in a non-competitive and time-dependent manner with the Ki value of 5.69 μM and the KI/Kinact value of 5.86/0.056/(μM/min). For the inhibition of CYP2C9 and 2E1, pogostone acted as a competitive inhibitor with the Ki value of 6.46 and 7.67 μM and was not affected by the incubation time. DISCUSSION AND CONCLUSIONS The inhibitory effect of pogostone on the activity of CYP3A4, 2C9, and 2E1 has been disclosed in this study, implying the potential risk during the co-administration of pogostone and drugs metabolized by these CYP450s. The study design provides a reference for further in vivo investigations to validate the potential interaction.
Collapse
Affiliation(s)
- Guiying Zhang
- Department of Pharmacy, People’s Hospital of Rizhao, Rizhao, China
| | - Yanping Zhang
- Department of Pharmacy, People’s Hospital of Rizhao, Rizhao, China
| | - Xianjie Ma
- Department of Pharmacy, People’s Hospital of Rizhao, Rizhao, China
| | - Xin Yang
- Department of Pharmacy, People’s Hospital of Rizhao, Rizhao, China
| | - Yuyan Cai
- Department of Pediatrics, People’s Hospital of Rizhao, Rizhao, China
| | - Wenli Yin
- Department of Pharmacy, People’s Hospital of Rizhao, Rizhao, China
| |
Collapse
|
9
|
Zhang XR, Li TN, Ren YY, Zeng YJ, Lv HY, Wang J, Huang QW. The Important Role of Volatile Components From a Traditional Chinese Medicine Dayuan-Yin Against the COVID-19 Pandemic. Front Pharmacol 2020; 11:583651. [PMID: 33101037 PMCID: PMC7546797 DOI: 10.3389/fphar.2020.583651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Aromatic Chinese herbs have been used to prevent plagues since ancient times. Traditional Chinese medicine has unique advantages in the prevention and treatment of epidemic diseases. According to the traditional Chinese medicine treatment plan in the National COVID-19 Diagnosis and Treatment Plan (Trial Seventh Edition) of the National Health Commission, Chinese patent medicines or prescriptions rich in aromatic Chinese herbs are selected for prevention and treatment during the period of medical observation, clinical treatment, and recovery of confirmed COVID-19 patients. Some local health committees or traditional Chinese medicine administrations recommend a variety of other ways of using traditional aromatic Chinese herbs to prevent and cure COVID-19. These involve external fumigation, use of moxibustion, and wearing of sachet. The efficacy of aromatic Chinese herbs plays a decisive role in the prevention and treatment of COVID-19. The unique properties, chemical composition, and mechanism of action of aromatic Chinese herbs are worthy of extensive and in-depth experimental and clinical research. The findings are expected to provide a reference for follow-up treatment of novel coronavirus and the development of corresponding drugs. In 2003, Dayuan-Yin produced excellent results in the treatment of the SARS virus. Individually, 112 confirmed cases were administered this drug between January and April 2003, and more than 93.7% of the patients showed noticeable mitigation of the symptoms, as well as recovery. Dayuan-Yin also was selected as one of the nationally recommended prescriptions for the COVID-19. Based on the national recommendation of Dayuan-Yin prescription, this review discusses the role of volatile components in the prevention and treatment of COVID-19, and speculates the possible mechanism of action, so as to provide a basis for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Liu X, Zhang Y, Wu M, Ma Z, Huang Z, Tian F, Dong S, Luo S, Zhou Y, Zhang J, Li N, He X, Cao H. The scientific elucidation of daodi medicinal materials. Chin Med 2020; 15:86. [PMID: 32843892 PMCID: PMC7439724 DOI: 10.1186/s13020-020-00367-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022] Open
Abstract
Daodi medicinal materials (DMMs), with unique characteristics and specific ecological growing environments, are recognized as high-quality medicinal products of Chinese medicinal materials (CMMs). The quality evaluation of CMMs is fundamental for standardization. The concept and application of DMMs have a long history as described in records in ancient books and rooted in practice and experience over generations. DMM is the specific term for pure, superior medicinal herbs with the following characteristics: optimum harvest season (reflecting the appropriate developmental stage of the plant), scrupulous processing, traditional preparation technology, etc. As DMM and high-quality medicinal products are traditionally thought to be closely related, modern scientific studies that confirm the association of these products are described. This article aims to clarify the scientific elucidation of DMMs.
Collapse
Affiliation(s)
- Xindan Liu
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, 510632 China
| | - Ying Zhang
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, 510632 China
| | - Menghua Wu
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, 510632 China
| | - Zhiguo Ma
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, 510632 China
| | - Zihan Huang
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, 510632 China
| | - Fang Tian
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, 510632 China
| | - Sihan Dong
- College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Simin Luo
- College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Yu Zhou
- College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Jinju Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Nanxin Li
- College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Xiaofang He
- College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Hui Cao
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, 510632 China
| |
Collapse
|
11
|
Yang C, Dai X, Yang S, Ma L, Chen L, Gao R, Wu X, Shi X. Coarse-grained molecular dynamics simulations of the effect of edge activators on the skin permeation behavior of transfersomes. Colloids Surf B Biointerfaces 2019; 183:110462. [PMID: 31479973 DOI: 10.1016/j.colsurfb.2019.110462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 11/30/2022]
Abstract
Transfersomes (TRS) can provide sustained drug delivery and themselves are biocompatible, biodegradable and nontoxic. Edge activators (EAs) are key factors for increasing the deformability of TRS, and this active deformation mechanism is of commercial interest, especially at the molecular level. Accordingly, in this paper, the deformability of pure dipalmitoyl phosphatidylcholine (DPPC) vesicles, TRS with sodium cholate as an EA, and DPPC vesicles containing pogostone (POG) were compared via umbrella sampling technology. The DPPC conformation and membrane fluidity of these three types of bilayer systems were evaluated, and the changes in the membrane properties of vesicles caused by EAs were studied. EAs could increase the deformability of TRS by decreasing the deformation energy barrier due to their amphiphilic structures, which was similar to those of DPPC molecules. The membrane properties also changed via treatment with EAs including altering the tail chain angle, disturbing the ordered tail chain arrangement and prompting lateral diffusion of DPPC molecules. In addition, the impact of EAs on DPPC bilayers was further demonstrated to be concentration dependent. An ideal concentration was identified for the lowest amount of EA that offered a gel-liquid-crystalline phase transition of DPPC bilayers. Importantly, POG, a lipophobic transdermal drug, can also affect the skin permeation behavior of vesicles but had weaker effects than EA.
Collapse
Affiliation(s)
- Chang Yang
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Xingxing Dai
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory of TCM-Information Engineer of State Administration of TCM, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Shufang Yang
- Sinopharm Zhijun (Shenzhen) Pharmaceutical Co., Ltd., No. 16 of Lanqing 1stRoad, Guanlan Hi-tech Industrial Park, Longhua District, Shenzhen, 518109, China.
| | - Lina Ma
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory of TCM-Information Engineer of State Administration of TCM, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Liping Chen
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Ruilin Gao
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Xiaowen Wu
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| | - Xinyuan Shi
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory of TCM-Information Engineer of State Administration of TCM, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| |
Collapse
|
12
|
Luo XY, Zhou H, Wang SY, Xiong J, Mo CF, Guo HJ, Wang YT, Yang SX, Li LM, Zou Q, Liu Y. A benzoxazole derivative PO-296 inhibits T lymphocyte proliferation by the JAK3/STAT5 signal pathway. J Cell Biochem 2018; 120:9193-9202. [PMID: 30506723 DOI: 10.1002/jcb.28195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023]
Abstract
Immunosuppressants have shown striking achievements in treating autoimmune diseases in recent years. It is urgent to develop more immunosuppressants to provide more options for patients. PO-296 [2-(6-chlorobenzo[d]oxazol-2-yl)-4,5,6,7-tetrahydro-2H-indazol-3-ol] was identified as a novel benzoxazole derivative. We observed that it exhibits an obvious immunosuppressive activity to T lymphocytes. PO-296 significantly inhibited the proliferation of activated human T lymphocyte without cytotoxicity. Moreover, PO-296 did not affect the expression of cluster of differentiation (CD)-25 or CD69 but induced T lymphocyte cycle arrest in the G0/G1 phase. Furthermore, PO-296 inhibited interleukin (IL)-6, IL-17, and interferon gamma expression but had no effect on IL-2, IL-4, or IL-10. Yet, importantly, PO-296 inhibited the phosphorylation of signal transducer and activator of transcription 5 (STAT5), increased the phosphorylation of p70S6K, but did not affect the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mitogen-activated protein kinase pathway. In conclusion, these findings indicate that PO-296 inhibits human activated T-lymphocyte proliferation by affecting the janus kinase 3 (JAK3)/STAT5 pathway. PO-296 possesses a potential lead compound for the design and development of new immunosuppressants for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Xing-Yan Luo
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Hong Zhou
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China.,Development of Radiology, The Second People's Hospital of Shanwei City, Guangzhou, Shanwei, China
| | - Si-Yu Wang
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jing Xiong
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Chun-Fen Mo
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Hui-Jie Guo
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yan-Tang Wang
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shu-Xia Yang
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Li-Mei Li
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Qiang Zou
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yang Liu
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, China.,Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Yang HM, Zhuo JY, Sun CY, Nie J, Yuan J, Liu YL, Lin RF, Lai XP, Su ZR, Li YC. Pogostone attenuates TNF-α-induced injury in A549 cells via inhibiting NF-κB and activating Nrf2 pathways. Int Immunopharmacol 2018; 62:15-22. [DOI: 10.1016/j.intimp.2018.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022]
|
14
|
Suppression of T lymphocyte activation by 3-chloro-1,2-propanediol mono- and di-palmitate esters in vitro. Toxicol In Vitro 2018; 51:54-62. [PMID: 29733892 DOI: 10.1016/j.tiv.2018.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022]
Abstract
This study investigated whether and how 3-chloro-1,2-propanediol (3-MCPD) fatty acid esters, a group of food contaminants formed during processing, might inhibit the immune system through suppressing T lymphocyte activation for the first time. Three 3-MCPD esters including 1-palmitoyl-3-chloropropanediol (1-pal), 2-palmitoyl-3-chloropropanediol (2-pal), and1,2-dipalmitoyl-3-chloropropanediol (dipal) were selected as the probe compounds to test the possible effects of fatty acid structure on their potential immune inhibitory effect. The results showed that 1-pal and 2-pal, but not dipal, significantly suppressed ConA-induced T lymphocyte proliferation, cell cycle activity, Th1 and Th2 cytokine secretion, CD4+ T cell populations, and the ratio of CD4+/CD8+ T cells under the experimental conditions. Moreover, Western blotting and immunofluorescence analyses revealed that 1-pal and 2-pal could inhibit the activation of ConA-stimulated mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways. In addition, 1-pal significantly suppressed DNFB-induced delayed-type hyper sensitivity (DTH) reaction characterized by the increased ear thickness and IFN-γ production in mice. These observations indicated that 3-MCPD esters exerted a negative effect on T lymphocyte-mediated immunity, and the immunosuppressive activities of 3-MCPD monopalmitates were stronger than 3-MCPD dipalmitate.
Collapse
|
15
|
Su J, Li C, Yu X, Yang G, Deng J, Su Z, Zeng H, Chen J, Zhang X, Lai X. Protective Effect of Pogostone on 2,4,6-Trinitrobenzenesulfonic Acid-Induced Experimental Colitis via Inhibition of T Helper Cell. Front Pharmacol 2017; 8:829. [PMID: 29204117 PMCID: PMC5699238 DOI: 10.3389/fphar.2017.00829] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-related disease mainly caused by the disequilibrium of T helper (Th) cell paradigm? Pogostone (PO) is one of the major chemical constituents of Pogostemon cablin (Blanco) Benth. The present study aims to investigate the potential benefit of PO against IBD in a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis model. PO treatment by enema significantly brought down the disease activity index (DAI) of the TNBS-challenged rats, which was manifested by the ameliorated inflammatory features including ulceration, adhesion, and edema. Hematoxylin-eosin (HE) staining and immunohistochemistry analysis showed that PO effectively relived colon damage by restoring epithelium, and more importantly, by inhibiting the infiltration of pro-inflammatory Th1 and Th17 cells in the colon. Additionally, PO inhibited the activity of myeloperoxidase and secretion of inflammatory cytokines including IFN-γ, IL-12p70, IL-17A, and IL-10. Together with our previous findings, the present data indicated that the anti-IBD effect of PO probably related to its direct inhibition on Th cell proliferation and suppression of the cytokines secretion. These results highlighted the potential of PO as a promising candidate to relieve IBD.
Collapse
Affiliation(s)
- Jiyan Su
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology (CAS), Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cailan Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiuting Yu
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghua Yang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhua Deng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huifang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiannan Chen
- Institute of Higher Education, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojun Zhang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoping Lai
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Deng X, Li X, Luo S, Zheng Y, Luo X, Zhou L. Antitumor activity of Lycium barbarum polysaccharides with different molecular weights: an in vitro and in vivo study. Food Nutr Res 2017; 61:1399770. [PMID: 31139040 PMCID: PMC6516794 DOI: 10.1080/16546628.2017.1399770] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/30/2017] [Indexed: 11/25/2022] Open
Abstract
The antitumor activity of Lycium barbarum polysaccharide (LBP) has been reported, but the structure–bioactivity relationship has still not been fully elucidated. In this study, four water-soluble LBP fractions with serial different molecular weights (MWs) were separated from LBP, designated LBP-2, LBP-3, LBP-4, and LBP-5. After a characteristic analysis, the relationship between MW and antitumor activity of LBP was investigated both in vitro using murine hepatoma H22 cells and in vivo using H22 tumor-bearing mice. In vitro, the results showed that all the LBP fractions had significant inhibition on H22 cells, in which LBP-3 had the best activity. LBP-3 could induce apoptosis, mitochondrial membrane potential destruction, and S phase arrest in H22 cells. In vivo, the results showed that LBP-2, LBP-3, LBP-4, and LBP-5 could inhibit the tumor growth in H22 tumor-bearing mice by 18.18%, 37.97%, 9.09%, and 14.44%, respectively. However, only LBP-3 was able to decrease the tumor weight significantly in H22 tumor-bearing mice. Meanwhile, all the LBP fractions did not show significant toxicity to murine splenocytes, thymus, and spleen. Taken together, these results demonstrated that the antitumor activity of LBP was closely related to its MW, and LBP-3 with medium MW (40–350 kDa) was the main active fraction.
Collapse
Affiliation(s)
- Xiangliang Deng
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, PR China.,Research and Development Department, Infinitus Chinese Herbal Immunity Research Centre, Guangzhou, PR, China
| | - Xiangling Li
- Research and Development Department, Guangdong Hybribio Co. Ltd, Guangzhou, PR, China
| | - Shuang Luo
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yongyan Zheng
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Xia Luo
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Lian Zhou
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| |
Collapse
|
17
|
Liang J, Liang J, Hao H, Lin H, Wang P, Wu Y, Jiang X, Fu C, Li Q, Ding P, Liu H, Xiong Q, Lai X, Zhou L, Chan S, Hou S. The Extracts of Morinda officinalis and Its Hairy Roots Attenuate Dextran Sodium Sulfate-Induced Chronic Ulcerative Colitis in Mice by Regulating Inflammation and Lymphocyte Apoptosis. Front Immunol 2017; 8:905. [PMID: 28824631 PMCID: PMC5539173 DOI: 10.3389/fimmu.2017.00905] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 07/14/2017] [Indexed: 01/24/2023] Open
Abstract
Morinda officinalis is beneficial for the treatment of inflammatory bowel disease (IBD). The hairy root with higher genetic and biochemical stability cultured from M. officinalis might have similar effects to treat IBD. In this study, the main chemical composition of the root extracts of M. officinalis (MORE) native plant and the hairy root extract of M. officinalis (MOHRE) was compared by quantitative HPLC. The difference of their therapeutic effects and potential mechanism was evaluated using 3% dextran sodium sulfate-induced chronic colitis in mice and T lymphocytes in vitro. The results found that MOHRE possesses many specific peaks unobserved in the chromatogram of native plant. The content of iridoids in the MORE (3.10%) and MOHRE (3.01%) is somewhat similar but quite different for their anthraquinones’s content (0.14 and 0.66%, respectively). Despite all this, treatment with both MORE and MOHRE significantly attenuated the symptoms of colitis, including diarrhea, body weight loss, colon shortening, histological damage, and decreased inflammatory cytokine levels. In addition, they dose-dependently increased the apoptosis of T lymphocyte in vivo and in vitro. And, the differences for treatment effects on ulcerative colitis (UC) between them both in this study were mostly insignificant. The results demonstrated that the effects of MORE and MOHRE for the treatment of UC are similar, although there are a few difference on their chemical composition, indicating the hairy root cultured from M. officinalis might be able to replace its native plant on treatment of UC. The successful derivation of a sustainable hairy root culture provides a model system to study the synthetic pathways for bioactive metabolites, which will make the use of bioreactors to largely produce traditional medicine become reality.
Collapse
Affiliation(s)
- Jian Liang
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiwang Liang
- Shenzhen Fan Mao Pharmaceutical Co., Limited, Shenzhen, China
| | - Hairong Hao
- Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Huan Lin
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Wang
- Shenzhen Fan Mao Pharmaceutical Co., Limited, Shenzhen, China
| | - Yanfang Wu
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoli Jiang
- Shenzhen Fan Mao Pharmaceutical Co., Limited, Shenzhen, China
| | - Chaodi Fu
- Shenzhen Fan Mao Pharmaceutical Co., Limited, Shenzhen, China
| | - Qian Li
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Ding
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huazhen Liu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qingping Xiong
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoping Lai
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lian Zhou
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shamyuen Chan
- Shenzhen Fan Mao Pharmaceutical Co., Limited, Shenzhen, China
| | - Shaozhen Hou
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
18
|
Cao ZX, Yang YT, Yu S, Li YZ, Wang WW, Huang J, Xie XF, Xiong L, Lei S, Peng C. Pogostone induces autophagy and apoptosis involving PI3K/Akt/mTOR axis in human colorectal carcinoma HCT116 cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 202:20-27. [PMID: 27416805 DOI: 10.1016/j.jep.2016.07.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHAMACOLOGICAL RELEVANCE Pogostemon cablin is a medicinal herb widely used to treat gastrointestinal diseases in many Asian countries. Pogostone is an important constituent of Pogostemon cablin, and possesses various bioactivitys. In this study, we performed to investigate the anti-colorectal tumor property of Pogostone by inducing aurophagy and apoptosis in human colorectal cancer cells, and to define the potential molecular mechanisms. MATERIALS AND METHODS In vitro, The anti-tumor activity of pogostone was assessed using MTT assay. Autophagy was monitored by transmission electron microscopy observation and mRFP-GFP-LC3 fluorescence analysis in colorectal tumor cell line. Apoptosis was measured by flow cytometry and annexinV-FITC/PI staining. The protein expressions or activition of LC3-Ⅱ, AKT, mTOR, caspase-3 and caspase-7 were detected through western blotting. In vivo, the anti-tumor effect of pogostone was tested with HCT116 colorectal tumor cells transplantation tumor model. The expression of Ki-67 was determined by Immunohistochemistry staining and the apoptosis was evaluated using TUNEL assay. RESULTS In vitro, pogostone exhibits significant anti-tumor activity against human cancer cell lines, especially for HCT116 (18.7±1.93μg/ml). Transmission electron microscopy observation, mRFP-GFP-LC3 fluorescence analysis, flow cytometry and assay and western blotting detection revealed that the anti-colorectal tumor activity of pogostone was dependent on inducing autophagy and apoptosis through up-regulating the expression of LC3-Ⅱ, cleaved caspase-7 and caspase-3, and decreasing the phosphorylation of AKT/mTOR. In vivo, 150mg/kg pogostone inhibited the HCT116 tumor growth in immunodeficient mice with an inhibitory rate of 43.3%, decreased the expression of Ki67, and induced apoptosis in three days. CONCLUSION Pogostone showed anti-colorectal tumor effects by inducing autophagy and apoptosis involving PI3K/Akt/mTOR axis. Thus, pogostone may be a promising lead compound to be further developed for cancer therapy.
Collapse
Affiliation(s)
- Zhi-Xing Cao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province, Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, PR China
| | - Yu-Ting Yang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province, Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, PR China
| | - Si Yu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province, Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, PR China
| | - Yu-Zhi Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province, Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, PR China
| | - Wen-Wen Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province, Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, PR China; School of Medical Technology, Chengdu University of Traditional Chinese Medicine, PR China
| | - Jing Huang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province, Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, PR China; School of Medical Technology, Chengdu University of Traditional Chinese Medicine, PR China
| | - Xiao-Fang Xie
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province, Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, PR China
| | - Liang Xiong
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province, Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, PR China
| | - Song Lei
- Department of pathology, West China Hospital, PR China
| | - Cheng Peng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province, Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, PR China.
| |
Collapse
|
19
|
Zhao Y, Zhang S, Wang P, Fu S, Wu D, Liu A. Seleno-short-chain chitosan induces apoptosis in human non-small-cell lung cancer A549 cells through ROS-mediated mitochondrial pathway. Cytotechnology 2017; 69:851-863. [PMID: 28421411 DOI: 10.1007/s10616-017-0098-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/09/2017] [Indexed: 01/05/2023] Open
Abstract
Seleno-short-chain chitosan (SSCC) is a synthesized chitosan derivative. In this study, antitumor activity and underlying mechanism of SSCC on human non-small-cell lung cancer A549 cells were investigated in vitro. The MTT assay showed that SSCC could inhibit cell viability in a dose- and time-dependent manner, and 200 μg/ml SSCC exhibited significantly toxic effects on A549 cells. The cell cycle assay showed that SSCC triggered S phase cell cycle arrest in a dose- and time-dependent manner, which was related to a downregulation of S phase associated cyclin A. The DAPI staining and Annexin V-FITC/PI double staining identified that the SSCC could induce A549 cells apoptosis. Further studies found that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) by DCFH-DA and Rhodamin 123 staining, respectively. Meanwhile, free radical scavengers N-acetyl-L-cysteine (NAC) pretreatment confirmed that SSCC-induced A549 cells apoptosis was associated with ROS generation. Furthermore, real-time PCR and western blot assay showed that SSCC up-regulated Bax and down-regulated Bcl-2, subsequently incited the release of cytochrome c from mitochondria to cytoplasm, activated the increase of cleaved-caspase 3 and finally induced A549 cells apoptosis in vitro. In general, the present study demonstrated that SSCC induced A549 cells apoptosis via ROS-mediated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Yana Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Shaojing Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Pengfei Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Shengnan Fu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Di Wu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
20
|
Liu M, Zhao G, Cao S, Zhang Y, Li X, Lin X. Development of Certain Protein Kinase Inhibitors with the Components from Traditional Chinese Medicine. Front Pharmacol 2017; 7:523. [PMID: 28119606 PMCID: PMC5220067 DOI: 10.3389/fphar.2016.00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022] Open
Abstract
Traditional Chinese medicines (TCMs) have been used in China for more than two thousand years, and some of them have been confirmed to be effective in cancer treatment. Protein kinases play critical roles in control of cell growth, proliferation, migration, survival, and angiogenesis and mediate their biological effects through their catalytic activity. In recent years, numerous protein kinase inhibitors have been developed and are being used clinically. Anticancer TCMs represent a large class of bioactive substances, and some of them display anticancer activity via inhibiting protein kinases to affect the phosphoinositide 3-kinase, serine/threonine-specific protein kinases, pechanistic target of rapamycin (PI3K/AKT/mTOR), P38, mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK) pathways. In the present article, we comprehensively reviewed several components isolated from anticancer TCMs that exhibited significantly inhibitory activity toward a range of protein kinases. These components, which belong to diverse structural classes, are reviewed herein, based upon the kinases that they inhibit. The prospects and problems in development of the anticancer TCMs are also discussed.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Ge Zhao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Xiaofang Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| |
Collapse
|
21
|
Ouyang P, Liu Y, Wang Y, Mo X, Zeng S. Aging and/or tissue-specific regulation of patchoulol and pogostone in two Pogostemon cablin (Blanco) Benth. cultivars. PHYSIOLOGIA PLANTARUM 2016; 158:272-283. [PMID: 27167188 DOI: 10.1111/ppl.12466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 01/17/2016] [Accepted: 04/08/2016] [Indexed: 05/05/2023]
Abstract
In Pogostemon cablin (Blanco) Benth. essential oil, patchoulol and pogostone are the two major bioactive phytochemicals while their in vivo biosynthesis remains largely unknown. In this study, seven genes of the plastidic methylerythritol 4-phosphate pathway (MEP) and three genes of the cytoplasmic mevalonate pathway (MVA) in two cultivars, HN and YN, were isolated. Gene expression and phytochemical profiles across leaves and stems at different developmental stages of the two cultivars were evaluated using quantitative reverse-transcription polymerase chain reaction and gas chromatography-mass spectrometry, respectively. Hierarchical analysis showed that the expression of MVA- and MEP-related genes was clustered similarly in the two cultivars. Phytochemical assay revealed that the contents of patchoulol in leaves and pogostone in stems were regulated in an aging-dependent manner. Pogostone was only detected in stems but not in leaves of the two cultivars. The Pearson correlation analysis suggested that several genes were presumably involved in the biosynthesis of patchoulol and pogostone. In the YN cultivar, the 1-deoxy-d-xylulose-5-phosphate reductoisomerase and isopentenyl pyrophosphate isomerase 2 genes, and 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase were positively responsible for patchoulol and pogostone biosynthesis, respectively. In the HN cultivar, 3-hydroxy-3-methylglutaryl-coenzyme A reductase and mevalonate diphosphate decarboxylase, and mevalonate kinase expression were positively associated with pogostone and patchoulol biosynthesis, respectively. The genes identified in this study are good candidates for the enhancement of patchoulol content in the leaves or pogostone content in the stems of P. cablin. Taken together, our results lay a solid foundation for better understanding of the mechanism underlying patchoulol and pogostone biosynthesis, which in turn may help to improve their content in P. cablin.
Collapse
Affiliation(s)
- Puyue Ouyang
- Guangdong Food and Drug Vocational College, Guangzhou, 510520, China
| | - Yongliang Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaolu Mo
- Guangdong Food and Drug Vocational College, Guangzhou, 510520, China.
| | - Shaohua Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
22
|
Wang XF, Huang YF, Wang L, Xu LQ, Yu XT, Liu YH, Li CL, Zhan JYX, Su ZR, Chen JN, Zeng HF. Photo-protective activity of pogostone against UV-induced skin premature aging in mice. Exp Gerontol 2016; 77:76-86. [PMID: 26929999 DOI: 10.1016/j.exger.2016.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/01/2016] [Accepted: 02/26/2016] [Indexed: 11/27/2022]
Abstract
Pogostone, a chemical constituent of patchouli oil, has been confirmed to possess favorable anti-inflammatory property. In the present study, we investigated the possible anti-photoaging potential of pogostone and the underlying mechanism against UV-induced skin damage in mice. The macroscopic and histopathological lesions were significantly ameliorated by pretreatment of pogostone as compared to the VC group. Furthermore, topical application of pogostone markedly increased the activities of the antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and observably decreased malonaldehyde (MDA) level. Analysis of inflammatory cytokines showed obvious down-regulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) in the pogostone groups. In addition, pogostone pretreatment evidently inhibited the abnormal expression of matrix metalloproteinases (MMP-1 and MMP-3). Taken together, pogostone exhibited prominent photo-protective activity mainly by its antioxidative and anti-inflammatory properties, promising it as an effective alternative pharmaceutical therapy for photoaging.
Collapse
Affiliation(s)
- Xiu-Fen Wang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yan-Feng Huang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Lan Wang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Lie-Qiang Xu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiu-Ting Yu
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yu-Hong Liu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Cai-Lan Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Janis Ya-Xian Zhan
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zi-Ren Su
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jian-Nan Chen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Hui-Fang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| |
Collapse
|
23
|
Protective effects of pogostone against LPS-induced acute lung injury in mice via regulation of Keap1-Nrf2/NF-κB signaling pathways. Int Immunopharmacol 2016; 32:55-61. [PMID: 26800098 DOI: 10.1016/j.intimp.2016.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022]
Abstract
Pogostone, a major component of Pogostemon cablin, has been demonstrated to possess antibacterial, anti-fungal, immunosuppressive and anti-inflammatory properties. To investigate the potential therapeutic effect of pogostone on lipopolysaccharide (LPS)-induced acute lung injury (ALI), mice were pretreated with pogostone prior to LPS exposure. After LPS challenge, the lungs were excised and the histological changes, wet to dry weight ratios, MPO activity reflecting neutrophil infiltration, and MDA activity reflecting oxidative stress were examined. The inflammatory cytokines in the BALF were determined by ELISA assay. Moreover, the expressions of p65 and phosphorylated p65 subunit of NF-κB, and Nrf2 in the nucleus in lung tissues were measured by Western blot analysis, and meanwhile the dependent genes of NF-κB and Nrf2 were assessed by RT-qPCR. The results showed that pretreatment with pogostone markedly improved survival rate, attenuated the histological alterations in the lung, reduced the MPO and MDA levels, decreased the wet/dry weight ratio of lungs, down-regulated the level of pro-inflammatory mediators including TNF-a, IL-1β and IL-6. Furthermore, pretreatment with pogostone enhanced the Nrf2 dependent genes including NQO-1, GCLC and HO-1 but suppressed NF-κB regulated genes including TNF-α, IL-1β and IL-6. The mechanism behind the protective effect was correlated with its regulation on the balance between Keap1-Nrf2 and NF-κB signaling pathways. Therefore, pogostone may be considered as a potential therapeutic agent for preventing and treating ALI.
Collapse
|
24
|
He Y, Cao X, Liu X, Li X, Xu Y, Liu J, Shi J. Quercetin reverses experimental pulmonary arterial hypertension by modulating the TrkA pathway. Exp Cell Res 2015; 339:122-34. [DOI: 10.1016/j.yexcr.2015.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/20/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
|
25
|
Tang ZW, Peng C, Dai M, Han B. Cytotoxic and antibacterial activities of the analogues of pogostone. Fitoterapia 2015; 106:41-5. [DOI: 10.1016/j.fitote.2015.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/25/2022]
|