1
|
Sarangle Y, Bamel K, Purty RS. Role of acetylcholine and acetylcholinesterase in improving abiotic stress resistance/tolerance. Commun Integr Biol 2024; 17:2353200. [PMID: 38827581 PMCID: PMC11141473 DOI: 10.1080/19420889.2024.2353200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Abiotic stress that plants face may impact their growth and limit their productivity. In response to abiotic stress, several endogenous survival mechanisms get activated, including the synthesis of quaternary amines in plants. Acetylcholine (ACh), a well-known quaternary amine, and its components associated with cholinergic signaling are known to contribute to a variety of physiological functions. However, their role under abiotic stress is not well documented. Even after several studies, there is a lack of a comprehensive understanding of how cholinergic components mitigate abiotic stress in plants. Acetylcholine hydrolyzing enzyme acetylcholinesterase (AChE) belongs to the GDSL lipase/acylhydrolase protein family and has been found in several plant species. Several studies have demonstrated that GDSL members are involved in growth, development, and abiotic stress. This review summarizes all the possible mitigating effects of the ACh-AChE system on abiotic stress tolerance and will try to highlight all the progress made so far in this field.
Collapse
Affiliation(s)
- Yashika Sarangle
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Kiran Bamel
- Department of Botany, Shivaji College, University of Delhi, New Delhi, India
| | - Ram Singh Purty
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
2
|
Durbin R, Renden R. Basal lamina: A novel pH regulator at the neuromuscular junction. Sci Prog 2024; 107:368504231225066. [PMID: 38196184 PMCID: PMC10777786 DOI: 10.1177/00368504231225066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Proton concentration can change within the cleft during synaptic activity due to vesicular release and Ca2+ extrusion from cellular compartments. These changes within the synaptic cleft can impact neural activity by proton-dependent modulation of ion channel function. The pH transient differs in magnitude and direction between synapses, requiring different synapse types to be measured to generate a complete understanding of this mechanism and its impacts on physiology. With a focus on the mouse neuromuscular junction (NMJ), the recently published "Postsynaptic Calcium Extrusion at the Mouse Neuromuscular Junction Alkalinizes the Synaptic Cleft" measured synaptic cleft pH at a cholinergic synapse and found a biphasic pH transient. The study demonstrated that the changes in proton concentration found were due to postsynaptic signaling when measuring pH at the muscle membrane, despite the expectation of a presynaptic contribution. This result suggests a diffusional barrier within the NMJ isolates pH transients to presynaptic versus postsynaptic compartments. Generating a Donnan equilibrium that impacts protons, evidence suggests the basal lamina may be a key regulator of pH at the NMJ. Exploring synaptic pH, proton regulating factors, and downstream pH transient effects at presynaptic versus postsynaptic membranes may lead to new insight for a variety of diseases.
Collapse
Affiliation(s)
- Ryan Durbin
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Robert Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| |
Collapse
|
3
|
Gholami A, Minai-Tehrani D, Eriksson LA. In silico and in vitro studies confirm Ondansetron as a novel acetylcholinesterase and butyrylcholinesterase inhibitor. Sci Rep 2023; 13:643. [PMID: 36635365 PMCID: PMC9837033 DOI: 10.1038/s41598-022-27149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is growing rapidly among the elderly population around the world. Studies show that a lack of acetylcholine and butyrylcholine due to the overexpression of enzymes Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) may lead to reduced communication between neuron cells. As a result, seeking novel inhibitors targeting these enzymes might be vital for the future treatment of AD. Ondansetron is used to prevent nausea and vomiting caused by chemotherapy or radiation treatments and is herein shown to be a potent inhibitor of cholinesterase. Comparison is made between Ondansetron and FDA-approved cholinesterase inhibitors Rivastigmine and Tacrine. Molecular docking demonstrates that interactions between the studied ligand and aromatic residues in the peripheral region of the active site are important in binding. Molecular dynamics simulations and binding pose metadynamics show that Ondansetron is highly potent against both enzymes and far better than Rivastigmine. Inhibitor activities evaluated by in vitro studies confirm that the drug inhibits AChE and BChE by non-competitive and mixed inhibition, respectively, with IC50 values 33 µM (AChE) and 2.5 µM (BChE). Based on the findings, we propose that Ondansetron may have therapeutic applications in inhibiting cholinesterase, especially for BChE.
Collapse
Affiliation(s)
- Asma Gholami
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
| | - Dariush Minai-Tehrani
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden.
| |
Collapse
|
4
|
Li H, Su YS, He W, Zhang JB, Zhang Q, Jing XH, Zhan LB. The nonneuronal cholinergic system in the colon: A comprehensive review. FASEB J 2022; 36:e22165. [PMID: 35174565 DOI: 10.1096/fj.202101529r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 01/07/2023]
Abstract
Acetylcholine (ACh) is found not only in cholinergic nerve termini but also in the nonneuronal cholinergic system (NNCS). ACh is released from cholinergic nerves by vesicular ACh transporter (VAChT), but ACh release from the NNCS is mediated by organic cation transporter (OCT). Recent studies have suggested that components of the NNCS are located in intestinal epithelial cells (IECs), crypt-villus organoids, immune cells, intestinal stem cells (ISCs), and vascular endothelial cells (VECs). When ACh enters the interstitial space, its self-modulation or effects on adjacent tissues are part of the range of its biological functions. This review focuses on the current understanding of the mechanisms of ACh synthesis and release in the NNCS. Furthermore, studies on ACh functions in colonic disorders suggest that ACh from the NNCS contributes to immune regulation, IEC and VEC repair, ISC differentiation, colonic movement, and colonic tumor development. As indicated by the features of some colonic disorders, ACh and the NNCS have positive and negative effects on these disorders. Furthermore, the NNCS is located in multiple colonic organs, and the specific effects and cross-talk involving ACh from the NNCS in different colonic tissues are explored.
Collapse
Affiliation(s)
- Han Li
- Changzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China.,Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang-Shuai Su
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei He
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-Bin Zhang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Zhang
- Changzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Xiang-Hong Jing
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Bin Zhan
- Nanjing University of Chinese Medicine, Nanjing, China.,Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
5
|
Zhu Y, Warrenfelt CIC, Flannery JC, Lindgren CA. Extracellular Protons Mediate Presynaptic Homeostatic Potentiation at the Mouse Neuromuscular Junction. Neuroscience 2021; 467:188-200. [PMID: 34215419 DOI: 10.1016/j.neuroscience.2021.01.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/27/2023]
Abstract
At the vertebrate neuromuscular junction (NMJ), presynaptic homeostatic potentiation (PHP) refers to the upregulation of neurotransmitter release via an increase in quantal content (QC) when the postsynaptic nicotinic acetylcholine receptors (nAChRs) are partially blocked. The mechanism of PHP has not been completely worked out. In particular, the identity of the presumed retrograde signal is still a mystery. We investigated the role of acid-sensing ion channels (ASICs) and extracellular protons in mediating PHP at the mouse NMJ. We found that blocking AISCs using benzamil, psalmotoxin-1 (PcTx1), or mambalgin-3 (Mamb3) prevented PHP. Likewise, extracellular acidification from pH 7.4 to 7.2 triggered a significant, reversable increase in QC and this increase could be prevented by PcTx1. Interestingly, an acidic saline (pH 7.2) also precluded the subsequent induction of PHP. Using immunofluorescence we observed ASIC2a and ASIC1 subunits at the NMJ. Our results indicate that protons and ASIC channels are involved in activating PHP at the mouse NMJ. We speculate that the partial blockade of nAChRs leads to a modest decrease in the pH of the synaptic cleft (∼0.2 pH units) and this activates ASIC channels on the presynaptic nerve terminal.
Collapse
Affiliation(s)
- Yiyang Zhu
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | | | - Jill C Flannery
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | - Clark A Lindgren
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA.
| |
Collapse
|
6
|
Ding Z, Dou X, Wang C, Feng G, Xie J, Zhang X. Ratiometric pH sensing by fluorescence resonance energy transfer-based hybrid semiconducting polymer dots in living cells. NANOTECHNOLOGY 2021; 32:245502. [PMID: 33636714 DOI: 10.1088/1361-6528/abea38] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/26/2021] [Indexed: 05/20/2023]
Abstract
Intracellular pH plays a significant role in all cell activities. Due to their precise imaging capabilities, fluorescent probes have attracted much attention for the investigation of pH-regulated processes. Detecting intracellular pH values with high throughput is critical for cell research and applications. In this work, hybrid semiconducting polymer dots (Pdots) were developed and characterized and were applied for cell imaging and exclusive ratiometric sensing of intracellular pH values. The reported Pdots were prepared by blending a synthesized block polymer (POMF) and a semiconducting polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) to construct a fluorescence resonance energy transfer system for ratiometric sensing. Pdots showed many advantages, including high brightness, excellent photostability and biocompatibility, giving the pH probe high sensitivity and good stability. Our results proved the capability of POMF-MEHPPV Pdots for the detection of pH in living cells.
Collapse
Affiliation(s)
- Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, People's Republic of China
| | - Xilin Dou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Chunfei Wang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, People's Republic of China
| | - Gang Feng
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, People's Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, People's Republic of China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, People's Republic of China
| |
Collapse
|
7
|
Wessler I, Kirkpatrick CJ. Cholinergic signaling controls immune functions and promotes homeostasis. Int Immunopharmacol 2020; 83:106345. [PMID: 32203906 DOI: 10.1016/j.intimp.2020.106345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/06/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
Acetylcholine (ACh) was created by nature as one of the first signaling molecules, expressed already in procaryotes. Based on the positively charged nitrogen, ACh could initially mediate signaling in the absence of receptors. When evolution established more and more complex organisms the new emerging organs systems, like the smooth and skeletal muscle systems, energy-generating systems, sexual reproductive system, immune system and the nervous system have further optimized the cholinergic signaling machinery. Thus, it is not surprising that ACh and the cholinergic system are expressed in the vast majority of cells. Consequently, multiple common interfaces exist, for example, between the nervous and the immune system. Research of the last 20 years has unmasked these multiple regulating mechanisms mediated by cholinergic signaling and thus, the biological role of ACh has been revised. The present article summarizes new findings and describes the role of both non-neuronal and neuronal ACh in protecting the organism from external and internal health threats, in providing energy for the whole organism and for the individual cell, controling immune functions to prevent inflammatory dysbalance, and finally, the involvement in critical brain functions, such as learning and memory. All these capacities of ACh enable the organism to attain and maintain homeostasis under changing external conditions. However, the existence of identical interfaces between all these different organ systems complicates the research for new therapeutic interventions, making it essential that every effort should be undertaken to find out more specific targets to modulate cholinergic signaling in different diseases.
Collapse
Affiliation(s)
- Ignaz Wessler
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, D-55101 Mainz, Germany.
| | - Charles James Kirkpatrick
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, D-55101 Mainz, Germany
| |
Collapse
|
8
|
Vladimirova IA, Philyppov IB, Sotkis GV, Kulieva EM, Shuba YY, Gulak KL, Skryma R, Prevarskaya N, Shuba YM. Impairment of cholinergic bladder contractility in rat model of type I diabetes complicated by cystitis: Contribution of neurotransmitter-degrading ectoenzymes. Eur J Pharmacol 2019; 860:172529. [PMID: 31299187 DOI: 10.1016/j.ejphar.2019.172529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 06/25/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
Parasympathetic regulation of urinary bladder contractions primarily involves acetylcholine release and activation of detrusor smooth muscle (DSM) muscarinic acetylcholine (mACh) receptors. Co-release of ATP and activation of DSM purinergic P2X1-receptors may participate as well in some species. Both types of neuromuscular transmission (NMT) are impaired in diabetes, however, which factors may contribute to such impairment remains poorly understood. Here by using rats with streptozotocin(STZ)-induced type I diabetes (8th week after induction) we show that contribution of atropine-sensitive m-cholinergic component to the contractions of urothelium-denuded DSM strips evoked by electric field stimulation (EFS) greatly increased when diabetic bladders presented overt signs of accompanying cystitis. Modeling of hemorrhagic cystitis alone in control rats by cyclophosphamide injection only modestly increased m-cholinergic component of EFS-contractions. However, exposure of DSM strips from control animals to acetylcholinesterase (AChE) inhibitor, neostigmine (1-10 μM) largely reproduced alterations in EFS contractions observed in diabetic DSM complicated by cystitis. Ellman's assay revealed statistically significant 31% decrease of AChE activities in diabetic vs. control DSM. Changes in purinergic contractility of diabetic DSM were consistent with altered P2X1-receptor desensitization and re-sensitization. They could be mimicked by pharmacological inhibition of ATP-degrading ecto-ATPases with ARL 67156 (50 μM), pointing to compromised extracellular ATP clearance as underlying reason. We conclude that decreased AChE activities associated with diabetes and likely cystitis provide complementary factor to the described in literature altered expression of mACh receptor subtypes linked to diabetes as well as to cystitis to produce dramatic modification of cholinergic NMT.
Collapse
Affiliation(s)
- Irina A Vladimirova
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Igor B Philyppov
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ganna V Sotkis
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Eugenia M Kulieva
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yelyzaveta Y Shuba
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Kseniya L Gulak
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Roman Skryma
- Laboratoire de Physiologie Cellulaire, Inserm U1003, Université de Lille, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Laboratoire de Physiologie Cellulaire, Inserm U1003, Université de Lille, Villeneuve d'Ascq, France
| | - Yaroslav M Shuba
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| |
Collapse
|
9
|
Wu J, Jin T, Wang H, Li ST. Sepsis decreases the activity of acetylcholinesterase by reducing its expression at the neuromuscular junction. Mol Med Rep 2017; 16:5263-5268. [PMID: 28849127 DOI: 10.3892/mmr.2017.7265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/28/2017] [Indexed: 11/05/2022] Open
Abstract
Our previous study demonstrated that sepsis may decrease the activity of acetylcholinesterase (AChE) at the neuromuscular junction (NMJ) of the diaphragm at 24 h, and thus improve the antagonistic action of neostigmine on rocuronium. The present study aimed to determine the effects of sepsis on AChE activity over 2 weeks, which is a more clinically relevant time period. Furthermore, the present study aimed to elucidate the association between AChE activity and its expression at the NMJ during sepsis. Male adult Sprague‑Dawley rats were randomly divided into the sham or sepsis groups. Sepsis was induced by cecal ligation and puncture. On days 1, 3, 7 and 14 after surgery, AChE activity at the NMJ of the diaphragm was detected using a modified Karnovsky and Roots method. Furthermore, AChE expression levels at the NMJ, and in the whole muscle fibers of the diaphragm, were detected by immunohistofluorescence staining and western blot analysis, respectively. AChE activity was significantly decreased in the sepsis group, with its lowest level detected on day 7; however, its activity had partially recovered on day 14 (P<0.01). AChE activity was positively correlated (r=0.975, P=0.025) with its expression at the NMJ, which showed a similar trend over 2 weeks of sepsis. The protein expression levels of AChE in the whole muscle fibers of the diaphragm were significantly decreased on days 1, 3 and 7 in the sepsis group (P<0.01), with the lowest level observed on day 3. In conclusion, sepsis decreased AChE activity by reducing its expression at the NMJ over 14 days; the reduced expression of AChE at the NMJ might be as a result of its reduced muscular production.
Collapse
Affiliation(s)
- Jin Wu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Tian Jin
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Hong Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Shi-Tong Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
10
|
Wu J, Jin T, Wang H, Li ST. Sepsis Strengthens Antagonistic Actions of Neostigmine on Rocuronium in a Rat Model of Cecal Ligation and Puncture. Chin Med J (Engl) 2017; 129:1477-82. [PMID: 27270546 PMCID: PMC4910374 DOI: 10.4103/0366-6999.183420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: The antagonistic actions of anticholinesterase drugs on non-depolarizing muscle relaxants are theoretically related to the activity of acetylcholinesterase (AChE) in the neuromuscular junction (NMJ). However, till date the changes of AChE activity in the NMJ during sepsis have not been directly investigated. We aimed to investigate the effects of sepsis on the antagonistic actions of neostigmine on rocuronium (Roc) and the underlying changes of AChE activity in the NMJ in a rat model of cecal ligation and puncture (CLP). Methods: A total of 28 male adult Sprague-Dawley rats were randomized to undergo a sham surgery (the sham group, n = 12) or CLP (the septic group, n = 16). After 24 h, the time-response curves of the antagonistic actions of 0.1 or 0.5 μmol/L of neostigmine on Roc (10 μmol/L)-depressed diaphragm twitch tension were measured. Meanwhile, the activity of AChE in the NMJ was detected using a modified Karnovsky and Roots method. The mRNA levels of the primary transcript and the type T transcript of AChE (AChET) in the diaphragm were determined by real-time reverse transcription-polymerase chain reaction. Results: Four of 16 rats in the septic group died within 24 h. The time-response curves of both two concentrations of neostigmine in the septic group showed significant upward shifts from those in the sham group (P < 0.001 for 0.1 μmol/L; P = 0.009 for 0.5 μmol/L). Meanwhile, the average optical density of AChE in the NMJ in the septic group was significantly lower than that in the sham group (0.517 ± 0.045 vs. 1.047 ± 0.087, P < 0.001). The AChE and AChET mRNA expression levels in the septic group were significantly lower than those in the sham group (P = 0.002 for AChE; P = 0.001 for AChET). Conclusions: Sepsis strengthened the antagonistic actions of neostigmine on Roc-depressed twitch tension of the diaphragm by inhibiting the activity of AChE in the NMJ. The reduced content of AChE might be one of the possible causes of the decreased AChE activity in the NMJ.
Collapse
Affiliation(s)
- Jin Wu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Tian Jin
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hong Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shi-Tong Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
11
|
Composto GM, Laskin JD, Laskin DL, Gerecke DR, Casillas RP, Heindel ND, Joseph LB, Heck DE. Mitigation of nitrogen mustard mediated skin injury by a novel indomethacin bifunctional prodrug. Exp Mol Pathol 2016; 100:522-31. [PMID: 27189522 DOI: 10.1016/j.yexmp.2016.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022]
Abstract
Nitrogen mustard (NM) is a bifunctional alkylating agent that is highly reactive in the skin causing extensive tissue damage and blistering. In the present studies, a modified cutaneous murine patch model was developed to characterize NM-induced injury and to evaluate the efficacy of an indomethacin pro-drug in mitigating toxicity. NM (20μmol) or vehicle control was applied onto 6mm glass microfiber filters affixed to the shaved dorsal skin of CD-1 mice for 6min. This resulted in absorption of approximately 4μmol of NM. NM caused localized skin damage within 1 d, progressing to an eschar within 2-3 d, followed by wound healing after 4-5 d. NM-induced injury was associated with increases in skin thickness, inflammatory cell infiltration, reduced numbers of sebocytes, basal keratinocyte double stranded DNA breaks, as measured by phospho-histone 2A.X expression, mast cell degranulation and increases in inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Wound healing was characterized by epidermal hyperplasia and marked increases in basal cells expressing proliferating cell nuclear antigen. A novel indomethacin-anticholinergic prodrug (4338) designed to target cyclooxygenases and acetylcholinesterase (AChE), was found to markedly suppress NM toxicity, decreasing wound thickness and eschar formation. The prodrug also inhibited mast cell degranulation, suppressed keratinocyte expression of iNOS and COX-2, as well as markers of epidermal proliferation. These findings indicate that a novel bifunctional pro-drug is effective in limiting NM mediated dermal injury. Moreover, our newly developed cutaneous patch model is a sensitive and reproducible method to assess the mechanism of action of countermeasures.
Collapse
Affiliation(s)
- Gabriella M Composto
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Donald R Gerecke
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | | | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, NY, United States.
| |
Collapse
|
12
|
Grando SA, Kawashima K, Kirkpatrick CJ, Kummer W, Wessler I. Recent progress in revealing the biological and medical significance of the non-neuronal cholinergic system. Int Immunopharmacol 2015; 29:1-7. [PMID: 26362206 DOI: 10.1016/j.intimp.2015.08.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
This special issue of International Immunopharmacology is the proceedings of the Fourth International Symposium on Non-neuronal Acetylcholine that was held on August 28-30, 2014 at the Justus Liebig University of Giessen in Germany. It contains original contributions of meeting participants covering the significant progress in understanding of the biological and medical significance of the non-neuronal cholinergic system extending from exciting insights into molecular mechanisms regulating this system via miRNAs over the discovery of novel cholinergic cellular signaling circuitries to clinical implications in cancer, wound healing, immunity and inflammation, cardiovascular, respiratory and other diseases.
Collapse
Affiliation(s)
- Sergei A Grando
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmacy, Tokyo 108-8641, Japan
| | - Charles J Kirkpatrick
- Institute of Pathology, University Medical Center, Johannes Gutenberg-University, Mainz D-55101, Germany
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus-Liebig-University, Giessen D-35385, Germany
| | - Ignaz Wessler
- Institute of Pathology, University Medical Center, Johannes Gutenberg-University, Mainz D-55101, Germany
| |
Collapse
|