1
|
Tang J, Li X, Li W, Cao C. The Protective Effect of Octanoic Acid on Sepsis: A Review. Nutr Rev 2024:nuae106. [PMID: 39101596 DOI: 10.1093/nutrit/nuae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Sepsis, a systemic inflammation that occurs in response to a bacterial infection, is a significant medical challenge. Research conducted over the past decade has indicated strong associations among a patient's nutritional status, the composition of their gut microbiome, and the risk, severity, and prognosis of sepsis. Octanoic acid (OA) plays a vital role in combating sepsis and has a protective effect on both animal models and human patients. In this discussion, the potential protective mechanisms of OA in sepsis, focusing on its regulation of the inflammatory response, immune system, oxidative stress, gastrointestinal microbiome and barrier function, metabolic disorders and malnutrition, as well as organ dysfunction are explored. A comprehensive understanding of the mechanisms by which OA act may pave the way for new preventive and therapeutic approaches to sepsis.
Collapse
Affiliation(s)
- Jiabao Tang
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiaohua Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou 215004, China
| | - Wei Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun Cao
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
2
|
Yan D, Ye S, He Y, Wang S, Xiao Y, Xiang X, Deng M, Luo W, Chen X, Wang X. Fatty acids and lipid mediators in inflammatory bowel disease: from mechanism to treatment. Front Immunol 2023; 14:1286667. [PMID: 37868958 PMCID: PMC10585177 DOI: 10.3389/fimmu.2023.1286667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal tract. Though the pathogenesis of IBD remains unclear, diet is increasingly recognized as a pivotal factor influencing its onset and progression. Fatty acids, essential components of dietary lipids, play diverse roles in IBD, ranging from anti-inflammatory and immune-regulatory functions to gut-microbiota modulation and barrier maintenance. Short-chain fatty acids (SCFAs), products of indigestible dietary fiber fermentation by gut microbiota, have strong anti-inflammatory properties and are seen as key protective factors against IBD. Among long-chain fatty acids, saturated fatty acids, trans fatty acids, and ω-6 polyunsaturated fatty acids exhibit pro-inflammatory effects, while oleic acid and ω-3 polyunsaturated fatty acids display anti-inflammatory actions. Lipid mediators derived from polyunsaturated fatty acids serve as bioactive molecules, influencing immune cell functions and offering both pro-inflammatory and anti-inflammatory benefits. Recent research has also highlighted the potential of medium- and very long-chain fatty acids in modulating inflammation, mucosal barriers, and gut microbiota in IBD. Given these insights, dietary intervention and supplementation with short-chain fatty acids are emerging as potential therapeutic strategies for IBD. This review elucidates the impact of various fatty acids and lipid mediators on IBD and delves into potential therapeutic avenues stemming from these compounds.
Collapse
Affiliation(s)
- Dong Yan
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yue He
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Sidan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yi Xiao
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xin Xiang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Weiwei Luo
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
3
|
Cheng Y, Zhong C, Yan S, Chen C, Gao X. Structure modification: a successful tool for prodrug design. Future Med Chem 2023; 15:379-393. [PMID: 36946236 DOI: 10.4155/fmc-2022-0309] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Prodrug strategy is critical for innovative drug development. Structural modification is the most straightforward and effective method to develop prodrugs. Improving drug defects and optimizing the physical and chemical properties of a drug, such as lipophilicity and water solubility, changing the way of administration can be achieved through specific structural modification. Designing prodrugs by linking microenvironment-responsive groups to the prototype drugs is of great help in enhancing drug targeting. In the meantime, making connections between prodrugs and suitable drug delivery systems could realize drug loading increases, greater stability, bioavailability and drug release control. In this paper, lipidic, water-soluble, pH-responsive, redox-sensitive and enzyme-activatable prodrugs are reviewed on the basis of structural modification.
Collapse
Affiliation(s)
- Yuexuan Cheng
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Chunhong Zhong
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Shujing Yan
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Chunli Chen
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
- Engineering Research Center of Xinjiang & Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, 830011, China
| | - Xiaoli Gao
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
- Engineering Research Center of Xinjiang & Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, 830011, China
| |
Collapse
|
4
|
Mohammadian E, Foroumadi A, Hasanvand Z, Rahimpour E, Zhao H, Jouyban A. Simulation of mesalazine solubility in the binary solvents at various temperatures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Mane S, Chatterjee S. Trace Level Recognition of Sulfasalazine Electrooxidation Exploiting the Synergism of Carbon Nanotubes and Iron Oxide Nanoparticles. ChemistrySelect 2021. [DOI: 10.1002/slct.202101986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Suyash Mane
- Department of Chemistry Institute of Chemical Technology, Matunga Mumbai 400019 India
| | | |
Collapse
|
6
|
A comprehensive review of the strategies to improve oral drug absorption with special emphasis on the cellular and molecular mechanisms. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Bayan MF, Bayan RF. Recent advances in mesalamine colonic delivery systems. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00057-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Abstract
Background
Increased attention has been focused on the continuous development and improvement of mesalamine colonic specific delivery systems, for the effective treatment of inflammatory bowel diseases; thus enhancing therapeutic efficacy and reducing potential side effects. Mesalamine is a class IV drug, according to the Biopharmaceutics Classification System, used usually to treat inflammation associated with colon related diseases such as Crohn’s disease and ulcerative colitis.
Main text
An ideal colon targeting system aims to deliver a therapeutic agent, selectively and effectively, to the colon. This system should ideally retain the drug release in the upper GI tract (stomach and small intestine); while trigger the drug release in the colon. Several approaches have been used to fabricate formulations to achieve a colon specific delivery of mesalamine such as; time dependent, pH responsive, enzymatic/microbial responsive and ultrasound mediated approaches. This overview outlines the recent advances in mesalamine-colon delivery approaches for the potential treatment of ulcerative colitis and Crohn’ disease.
Conclusion
A combined pH-time dependent delivery system can improve mesalamine colonic drug delivery via employing carriers capable of retarding mesalamine release in the stomach and delivering it at predetermined time points after entering the intestine. The existence of specific enzymes, produced by various anaerobic bacteria present in the colon advocates the advantage of designing enzyme sensitive systems and combining it with pH-time dependent system to improve mesalamine colonic delivery. The use of ultrasound has shown promises to effectively treat inflammatory bowel diseases.
Collapse
|
8
|
Fattahi N, Shahbazi MA, Maleki A, Hamidi M, Ramazani A, Santos HA. Emerging insights on drug delivery by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. J Control Release 2020; 326:556-598. [PMID: 32726650 DOI: 10.1016/j.jconrel.2020.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
Many drug molecules that are currently in the market suffer from short half-life, poor absorption, low specificity, rapid degradation, and resistance development. The design and development of lipophilic prodrugs can provide numerous benefits to overcome these challenges. Fatty acids (FAs), which are lipophilic biomolecules constituted of essential components of the living cells, carry out many necessary functions required for the development of efficient prodrugs. Chemical conjugation of FAs to drug molecules may change their pharmacodynamics/pharmacokinetics in vivo and even their toxicity profile. Well-designed FA-based prodrugs can also present other benefits, such as improved oral bioavailability, promoted tumor targeting efficiency, controlled drug release, and enhanced cellular penetration, leading to improved therapeutic efficacy. In this review, we discuss diverse drug molecules conjugated to various unsaturated FAs. Furthermore, various drug-FA conjugates loaded into various nanostructure delivery systems, including liposomes, solid lipid nanoparticles, emulsions, nano-assemblies, micelles, and polymeric nanoparticles, are reviewed. The present review aims to inspire readers to explore new avenues in prodrug design based on the various FAs with or without nanostructured delivery systems.
Collapse
Affiliation(s)
- Nadia Fattahi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Helsinki Institute of Life Science (HiLIFE), Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
9
|
The prospects of lipidic prodrugs: an old approach with an emerging future. Future Med Chem 2019; 11:2563-2571. [DOI: 10.4155/fmc-2019-0155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nowadays, prodrugs are no longer used as a last resort, rather, they are intentionally designed at the early stages of drug development. Lipidic prodrug strategy, where a drug moiety is covalently bound to a lipid carrier, was initially proposed half a century ago, yet, this approach still remains to be explored. Lipidic prodrugs can join physiological lipid metabolic pathways, and hence provide drug targeting via lymphatic transport or site-specific drug release, improve drugs’ pharmacokinetic profile, overcome obstacles originating from biological barriers and bypass hepatic first-pass metabolism. Physiological pathways of lipid processing, uses of different lipidic prodrugs and their clinical benefits are overviewed. Overall, lipidic prodrugs present a promising approach for overcoming different obstacles and fulfilling various unmet needs in drug delivery/targeting.
Collapse
|
10
|
Shahdadi Sardo H, Saremnejad F, Bagheri S, Akhgari A, Afrasiabi Garekani H, Sadeghi F. A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int J Pharm 2019; 558:367-379. [PMID: 30664993 DOI: 10.1016/j.ijpharm.2019.01.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 02/08/2023]
Abstract
Site-specific colon drug delivery is a practical approach for the treatment of local diseases of the colon with several advantages such as rapid onset of action and reduction of the dosage of the drug as well as minimization of harmful side effects. 5-aminosalicylic acid (5-ASA) is a drug of choice in the treatment of inflammatory bowel disease and colitis. For the efficient delivery of this drug, it is vital to prevent 5-ASA release in the upper part of the gastrointestinal tract and to promote its release in the proximal colon. Different approaches including chemical manipulation of drug molecule for production of prodrugs or modification of drug delivery systems using pH-dependent, time-dependent and/or bacterially biodegradable materials have been tried to optimize 5-ASA delivery to the colon. In the current review, the different strategies utilized in the design and development of an oral colonic delivery dosage form of 5-ASA are presented and discussed.
Collapse
Affiliation(s)
- Hossein Shahdadi Sardo
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farinaz Saremnejad
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Bagheri
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hadi Afrasiabi Garekani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Date T, Paul K, Singh N, Jain S. Drug-Lipid Conjugates for Enhanced Oral Drug Delivery. AAPS PharmSciTech 2019; 20:41. [PMID: 30610658 DOI: 10.1208/s12249-018-1272-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
Oral drug delivery route is one of the most convenient and extensively utilised routes for drug administration. But there exists class of drugs which exhibit poor bioavailability on oral drug administration. Designing of drug-lipid conjugates (DLCs) is one of the rationale strategy utilised in overcoming this challenge. This review extensively covers the various dimensions of drug modification using lipids to attain improved oral drug delivery. DLCs help in improving oral delivery by providing benefits like improved permeability, stability in gastric environment, higher drug loading in carriers, formation of self-assembled nanostructures, etc. The clinical effectiveness of DLCs is highlighted from available marketed drug products along with many DLCs in phase of clinical trials. Conclusively, this drug modification strategy can potentially help in augmenting oral drug delivery in future.
Collapse
|
12
|
Markovic M, Ben‐Shabat S, Keinan S, Aponick A, Zimmermann EM, Dahan A. Lipidic prodrug approach for improved oral drug delivery and therapy. Med Res Rev 2018; 39:579-607. [DOI: 10.1002/med.21533] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Milica Markovic
- Department of Clinical PharmacologySchool of Pharmacy, Faculty of Health Sciences, Ben‐Gurion University of the NegevBeer‐Sheva Israel
| | - Shimon Ben‐Shabat
- Department of Clinical PharmacologySchool of Pharmacy, Faculty of Health Sciences, Ben‐Gurion University of the NegevBeer‐Sheva Israel
| | | | - Aaron Aponick
- Department of ChemistryUniversity of FloridaGainesville Florida
| | - Ellen M. Zimmermann
- Department of MedicineDivision of Gastroenterology, University of FloridaGainesville Florida
| | - Arik Dahan
- Department of Clinical PharmacologySchool of Pharmacy, Faculty of Health Sciences, Ben‐Gurion University of the NegevBeer‐Sheva Israel
| |
Collapse
|