1
|
Zhao Y, Hu Y, Yang J, Qi Y, Miao J, Miao M. Network pharmacology and experimental validation reveal the mechanisms of sniffing essential oil of Acori Tatarinowii rhizoma in treating olfactory dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118851. [PMID: 39326811 DOI: 10.1016/j.jep.2024.118851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acorus tatarinowii Rhizoma, a traditional Chinese medicine known for open the orifices and transform phlegm, is used in the treatment of brain disorders. The essential oil of Acorus tatarinowii Rhizoma (EOAT) has demonstrated neuroprotective properties clinically. However, research into its effect on Olfactory Dysfunction (OD) remains limited. AIM OF THE STUDY This study aimed to investigate the effects and mechanisms of sniffing EOAT on improving olfactory function in a 3-Methylindole (3-MI)-induced OD mouse model. MATERIALS AND METHODS The research involved intraperitoneal injection of 3-MI to induce OD in mice. The effects of EOAT treatment were assessed on olfactory function, olfactory bulb (OB) pathology, inflammatory factors, olfactory marker protein (OMP), microglial activation, and related pathway proteins and mRNA. RESULTS Based on the GC-MS analysis results of EOAT and network pharmacology studies, we predicted 18 targets associated with the treatment of OD. SLC6A3, MAOB, DRD1, and PTGS2 were identified as the core targets of EOAT against OD. Molecular docking and KEGG enrichment results indicated that EOAT may exert anti-inflammatory effects by acting on the core target PTGS2, with its anti-inflammatory mechanism possibly related to the PI3K/Akt signaling pathway. Subsequent animal experiments confirmed that inhalation of EOAT significantly increased the body weight of OD model mice, shortened the foraging time, enhanced the expression of OMP in OB, reduced damage to the OB cells, and improved olfactory function. Meanwhile, EOAT significantly alleviated the inflammatory response in OB of OD model mice, inhibited the activation of microglial cells, and suppressed the expression of PI3K/Akt signaling pathway proteins and mRNA. CONCLUSION EOAT inhalation could improve olfactory function in 3-MI-induced OD model. The underlying mechanism may be related to the modulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yinan Zhao
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yilong Hu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Jingying Yang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yupu Qi
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Jinxin Miao
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Mingsan Miao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Abdallah HH, Abd El-Fattah EE, Salah NA, El-Khawaga OY. Rosuvastatin ameliorates chemically induced acute lung injury in rats by targeting ferroptosis, heat shock protein B1, and inflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03352-9. [PMID: 39190209 DOI: 10.1007/s00210-024-03352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
Acute lung injury (ALI) is a life-threatening condition characterized by respiratory failure. Rosuvastatin (RSV) is an antihypercholesterolemic agent with antioxidant properties. The current study aimed to investigate RSV novel therapeutic impact on ALI with emphasis on oxidative stress, inflammation, and heat shock protein B1 (HSPB1). Male albino rats (N = 30) were divided into five groups. Normal control (NC) group: rats received normal saline 2 mL/kg P.O daily. Lipopolysaccharides (LPS) group: rats received LPS (3 mg/kg intraperitoneally once). RSV group: rats received RSV (2 mg/kg P.O daily). LPS + RSV group: rats received RSV as in group 3 and on the 7th day rats received LPS as group 2. LPS + Dexamethasone (DX): rats received DX (2 mg/kg P.O, daily for one week) and on the 7th day rats received LPS as group 2. At the end of experiment (one week), lung tissue was used to determine HSPB1, high mobility group box 1 (HMGB1) using ELISA. IL-6, nuclear factor-2 (Nrf2), haem Oxygenase-1 (HO-1) protein levels were assessed using immunohistochemistry. GSH, catalase, MDA, NO, albumin and urea are assessed by colorimetry. The results revealed that RSV treatment resolved histopathological changes in lung tissue induced by LPS. Compared to LPS group, LPS + RSV group showed significant decrease in urea, NO, MDA, HMGB1, IL-6 and HO-1 level compared to LPS-treated rats. Conversely, RSV treatment significantly increased HSPB1, Nrf2, albumin, GSH, and CAT levels compared to LPS rats. RSV is effective for amelioration of ALI and thus can be used as adjuvant therapy for ALI.
Collapse
Affiliation(s)
- Hana H Abdallah
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Neven A Salah
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Omali Y El-Khawaga
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Li J, Chen W, Liu H, Liu H, Xiang S, You F, Jiang Y, Lin J, Zhang D, Zheng C. Pharmacologic effects approach of essential oils and their components on respiratory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:115962. [PMID: 36529244 DOI: 10.1016/j.jep.2022.115962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Essential oils (EOs) are concentrated hydrophobic liquids with volatility and a unique aroma. Formed by aromatic plants as secondary metabolites, EOs have been used as traditional medicines to treat various health problems worldwide. Historical records show that herbs rich in EOs have been widely used to treat respiratory diseases in China, Europe, and many other regions. AIM OF THE REVIEW This review summarizes the traditional applications and modern pharmacological mechanisms of EOs derived from aromatic herbs and their active ingredients in respiratory diseases in preclinical and clinical trials through multitarget synergy. MATERIALS AND METHODS Information about EOs and respiratory diseases was collected from electronic databases, such as ScienceDirect, Web of Science, PubMed, Google Scholar, Baidu Scholar, and the China National Knowledge Infrastructure (CNKI). RESULTS This review presents the preventive and therapeutic effects of EOs on respiratory diseases, including chronic obstructive pulmonary disease, bronchial asthma, acute lung injury, pulmonary infection, and pulmonary fibrosis. The molecular mechanisms of EOs in treating different lung diseases are summarized, including anti-inflammation, anti-oxidation, mucolytic, and immune regulatory mechanisms. CONCLUSIONS EOs show potential as supplements or substitutes for treating lung diseases.
Collapse
Affiliation(s)
- Jia Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Wu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Huimin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu, 611137, China.
| | - Hong Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Sirui Xiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu, 611137, China.
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
4
|
Xu L, Lyu W, Wei P, Zheng Q, Li C, Zhang Z, Li J. Lower preoperative serum uric acid level may be a risk factor for postoperative delirium in older patients undergoing hip fracture surgery: a matched retrospective case-control study. BMC Anesthesiol 2022; 22:282. [PMID: 36071379 PMCID: PMC9450341 DOI: 10.1186/s12871-022-01824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/26/2022] [Indexed: 11/11/2022] Open
Abstract
Background Postoperative delirium (POD) is a common complication after hip fracture surgery that is associated with various short- and long-term outcomes. The mechanism of POD may be associated with the oxidative stress process. Uric acid has been shown to provide a neuroprotective effect in various neurodegenerative diseases through its antioxidant properties. However, it is unclear whether lower preoperative serum uric acid levels are associated with the development of POD after hip fracture surgery. Therefore, this study assessed the association of lower preoperative uric acid levels in patients with POD during hospitalization. Methods This is a matched retrospective case-control study that included 96 older patients (≥65 y) who underwent hip fracture surgery. POD was diagnosed using the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Patients diagnosed with POD (cases) were matched 1:1 with patients without POD (controls) on the basis of age, sex, and anesthesia type. The relationship between preoperative uric acid and POD was analyzed by multivariable analysis. Results The POD and non-POD groups each had 48 patients. In the univariate analysis, lower log preoperative serum uric acid value, higher neutrophil-to-lymphocyte ratio, and cerebrovascular disease were more likely in patients with POD than in those with no POD. Multivariable conditional logistic regression analysis showed that lower log preoperative serum uric acid (adjusted odds ratio [aOR], 0.028; confidence interval [CI], 0.001–0.844; p = 0.040), higher neutrophil-to-lymphocyte ratio (aOR, 1.314; 95% CI, 1.053–1.638; p = 0.015), and increased surgery duration (aOR, 1.034; 95% CI, 1.004–1.065; p = 0.024) were associated with increased risk of POD. Conclusions Lower preoperative serum uric acid levels may be an independent risk factor for POD after adjustment for possible confounding factors. However, large prospective studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Lin Xu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P.R. China.,Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, 250000, P.R. China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P.R. China
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P.R. China
| | - Qiang Zheng
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P.R. China
| | - Chengwei Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P.R. China.,Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, 250000, P.R. China
| | - Zheng Zhang
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P.R. China.,Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, 250000, P.R. China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P.R. China. .,Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, 250000, P.R. China.
| |
Collapse
|
5
|
Tao T, Ye B, Xu Y, Wang Y, Zhu Y, Tian Y. β-Patchoulene Preconditioning Protects Mice Against Hepatic Ischemia–Reperfusion Injury by Regulating Nrf2/HO-1 Signaling Pathway. J Surg Res 2022; 275:161-171. [DOI: 10.1016/j.jss.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 10/18/2022]
|
6
|
Tu H, Wang W, Feng Y, Zhang L, Zhou H, Cheng C, Ji L, Cai Q, Feng Y. β-Patchoulene represses hypoxia-induced proliferation and epithelial-mesenchymal transition of liver cancer cells. Bioengineered 2022; 13:11907-11922. [PMID: 35546067 PMCID: PMC9275994 DOI: 10.1080/21655979.2022.2065945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor originating from liver epithelial cells with a high clinical mortality rate. β-Patchoulene (β-PAE) is a compound extracted from patchouli, which has analgesic, anti-inflammatory and antioxidant effects. This research aims to probe the impacts of β-PAE on hypoxia-induced HCC cell proliferation and epithelial-mesenchymal transition (EMT). Firstly, hypoxic injury models were constructed in HCC Huh-7 and MHCC97 cells, and the hypoxic injury cell models were then treated with different concentrations of β-PAE. The cell viability, proliferation, migration, invasion and apoptosis were checked by the cell counting kit-8 (CCK-8) assay, colony formation assay, Transwell assay, flow cytometry and terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay. The expression of Survivin protein, EMT markers and the NF-κB/HIF-1α pathway was gauged by Western blot (WB) or cellular immunofluorescence or reverse transcription-polymerase chain reaction (RT-PCR). The in-vivo experiment was conducted to confirm the anti-tumor role of β-PAE. As a result, β-PAE abated hypoxia-induced HCC cell growth, proliferation, migration, invasion and EMT and facilitated apoptosis in vitro and in vivo dose-dependently. Further mechanism studies displayed that β-PAE inactivated the NF-κB/HIF-1α pathway, and HIF-1α activation significantly reversed the β-PAE-mediated tumor inhibition. β-PAE repressed the proliferation and EMT of hypoxia-induced HCC cells by choking the NF-κB/HIF-1α pathway, suggesting that β-PAE was a potential drug for HCC treatment.
Collapse
Affiliation(s)
- Huahua Tu
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Yanqing Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Linfei Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Huadong Zhou
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Caitao Cheng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Lei Ji
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Qinghe Cai
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Yong Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| |
Collapse
|
7
|
Ge C, Liu J, Fu Y, Jia L, Long L, Dong S. MicroRNA-21 protects against sepsis-induced acute lung injury by targeting phosphatase and tensin homolog in mice. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221120978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: Sepsis can cause acute lung injury (ALI), one of the leading causes of death in critically ill patients. The underlying mechanisms of sepsis-induced acute lung injury include excessive inflammation, oxidative stress, cell apoptosis, pulmonary edema, and lung tissue dysfunction. Recent studies have shown that miRNA-21 (miR-21) plays a vital role in sepsis-induced acute kidney injury. Relatively few studies have focused on the protective effects of ALI. This study aimed to determine the potential role of miR-21 in sepsis-induced ALI. Methods: We performed quantitative real-time polymerase chain reaction in a septic mouse model induced by cecal ligation and puncture (CLP) and found that miR-21 expression was upregulated. We then transfected the miR-21 precursor to upregulate miR-21 expression and miR-21 inhibitor to downregulate miR-21 expression. The sham group was exposed only to the cecum. ALI was induced by CLP, and the pre-miR-21+ALI and anti-miR-21+ALI groups were treated with miR-21 precursor or miR-21 inhibitor in the caudal vein before CLP. Pre-miR-21+ALI+PTEN inhibition (Pre-miR-21+ALI+PI) and anti-miR-21+ALI+PTEN inhibition (Anti-miR-21+ALI+PI) groups were treated with PTEN inhibition into the caudal vein after miR-21 transfection. Inflammatory cytokines, oxidative stress indicators, lung tissue cell apoptosis, oxygenation index (OI), lung wet/dry weight ratio, and lung pathological changes in the lung were observed in each group. Results: Compared with ALI mice, inflammatory response, oxidative stress indicators, lung tissue cell apoptosis, and the degree of lung injury were remarkably alleviated in Pre-miR-21+ALI mice and aggravated in Anti-miR-21+ALI mice. Western blot analysis showed that phosphatase and tensin homolog (PTEN) protein expression was decreased in CLP-treated mics. PTEN protein expression was decreased in the Pre-miR-21+ALI group but increased in the Anti-miR-21+ALI group. Moreover, the effect of miR-21 on anti-inflammatory, anti-oxidative stress, and anti-apoptosis enhanced after PTEN inhibition. Conclusion: This study revealed that miR-21 has a protective effect in sepsis-induced ALI by regulating PTEN in mice.
Collapse
Affiliation(s)
- Chen Ge
- Department of Intensive Medicine, Hebei General Hospital, Shijiazhuang, P.R. China
| | - Junhang Liu
- Department of Orthopaedics Surgery, Children’s Hospital of Hebei, Shijiazhuang, P.R. China
| | - You Fu
- Department of Intensive Medicine, Hebei General Hospital, Shijiazhuang, P.R. China
| | - Lijing Jia
- Department of Intensive Medicine, Hebei General Hospital, Shijiazhuang, P.R. China
| | - Ling Long
- Department of Intensive Medicine, Hebei General Hospital, Shijiazhuang, P.R. China
| | - Shimin Dong
- Department of Emergency, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, P.R. China
| |
Collapse
|
8
|
Cinnamon and Eucalyptus Oils Suppress the Inflammation Induced by Lipopolysaccharide In Vivo. Molecules 2021; 26:molecules26237410. [PMID: 34885991 PMCID: PMC8659246 DOI: 10.3390/molecules26237410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammation caused by bacterial lipopolysaccharide (LPS) disrupts epithelial homeostasis and threatens both human and animal health. Therefore, the discovery and development of new anti-inflammatory drugs is urgently required. Plant-derived essential oils (EOs) have good antioxidant and anti-inflammatory activities. Thus, this study aims to screen and evaluate the effects of cinnamon oil and eucalyptus oil on anti-inflammatory activities. The associated evaluation indicators include body weight gain, visceral edema coefficient, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), nitrogen monoxide (NO), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), Urea, Crea, ALT, TLR4, MyD88, NF-κB, IκB-α, iNOS, and Mn-SOD. In addition, tissue injury was determined by H&E staining. The results revealed that cinnamon oil and eucalyptus oil suppressed inflammation by decreasing SOD, TNF-α, and NF-κB levels. We also found that cinnamon oil increased the level of GSH-Px, MDA, and Mn-SOD, as well as the visceral edema coefficient of the kidney and liver. Altogether, these findings illustrated that cinnamon oil and eucalyptus oil exhibited wide antioxidant and anti-inflammatory activities against LPS-induced inflammation.
Collapse
|
9
|
Timalsina D, Pokhrel KP, Bhusal D. Pharmacologic Activities of Plant-Derived Natural Products on Respiratory Diseases and Inflammations. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1636816. [PMID: 34646882 PMCID: PMC8505070 DOI: 10.1155/2021/1636816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Respiratory inflammation is caused by an air-mediated disease induced by polluted air, smoke, bacteria, and viruses. The COVID-19 pandemic is also a kind of respiratory disease, induced by a virus causing a serious effect on the lungs, bronchioles, and pharynges that results in oxygen deficiency. Extensive research has been conducted to find out the potent natural products that help to prevent, treat, and manage respiratory diseases. Traditionally, wider floras were reported to be used, such as Morus alba, Artemisia indica, Azadirachta indica, Calotropis gigantea, but only some of the potent compounds from some of the plants have been scientifically validated. Plant-derived natural products such as colchicine, zingerone, forsythiaside A, mangiferin, glycyrrhizin, curcumin, and many other compounds are found to have a promising effect on treating and managing respiratory inflammation. In this review, current clinically approved drugs along with the efficacy and side effects have been studied. The study also focuses on the traditional uses of medicinal plants on reducing respiratory complications and their bioactive phytoconstituents. The pharmacological evidence of lowering respiratory complications by plant-derived natural products has been critically studied with detailed mechanism and action. However, the scientific validation of such compounds requires clinical study and evidence on animal and human models to replace modern commercial medicine.
Collapse
Affiliation(s)
- Deepak Timalsina
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | | | - Deepti Bhusal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
10
|
Du J, Wang G, Luo H, Liu N, Xie J. JNK‑IN‑8 treatment alleviates lipopolysaccharide‑induced acute lung injury via suppression of inflammation and oxidative stress regulated by JNK/NF‑κB signaling. Mol Med Rep 2020; 23:150. [PMID: 33355369 PMCID: PMC7789102 DOI: 10.3892/mmr.2020.11789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022] Open
Abstract
JNK serves critical roles in numerous types of inflammation- and oxidative stress-induced disease, including acute lung injury (ALI). JNK-IN-8 is the first irreversible JNK inhibitor that has been described. However, whether JNK-IN-8 can prevent lipopolysaccharide (LPS)-induced ALI by inhibiting JNK activation and its downstream signaling is poorly understood. The objective of the present study was to investigate the specific therapeutic effects of JNK-IN-8 on LPS-induced ALI and the molecular mechanisms involved. JNK-IN-8 attenuated myeloperoxidase activity, malondialdehyde and superoxide dismutase content and the lung wet/dry ratio, and improved the survival rate following lethal injection of LPS. Additionally, JNK-IN-8 decreased bronchoalveolar lavage fluid protein levels, lactate dehydrogenase activity, neutrophil infiltration and the number of macrophages (as demonstrated by flow cytometry), as well as the production of TNF-α, IL-6 and IL-1β (as evaluated via ELISA). In addition, reverse transcription-quantitative PCR and ELISA showed that JNK-IN-8 attenuated LPS-induced inflammatory cytokine production and oxidative stress in primary murine peritoneal macrophages and RAW264.7 cells in vitro. Furthermore, the present study demonstrated that the JNK/NF-κB signaling pathway was involved in the therapeutic effect of JNK-IN-8 against LPS-induced injury both in vivo and in vitro. In conclusion, these findings indicated that JNK-IN-8 had a therapeutic effect on LPS-induced ALI in mice. The mechanism may be associated with inhibition of the JNK/NF-κB signaling pathway. JNK-IN-8 may be a potential therapeutic agent for the treatment of ALI.
Collapse
Affiliation(s)
- Jingxian Du
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Gaojian Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, P.R. China
| | - Huanyu Luo
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, P.R. China
| | - Na Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, P.R. China
| | - Junran Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
11
|
Cheng Z, McCann S, Faraone N, Clarke JA, Hudson EA, Cloonan K, Hillier NK, Tahlan K. Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces spp. Microorganisms 2020; 8:microorganisms8111767. [PMID: 33187102 PMCID: PMC7697265 DOI: 10.3390/microorganisms8111767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Streptomyces produce a great diversity of specialized metabolites, including highly volatile compounds with potential biological activities. Volatile organic compounds (VOCs) produced by nine Streptomyces spp., some of which are of industrial importance, were collected and identified using gas chromatography–mass spectrometry (GC-MS). Biosynthetic gene clusters (BGCs) present in the genomes of the respective Streptomyces spp. were also predicted to match them with the VOCs detected. Overall, 33 specific VOCs were identified, of which the production of 16 has not been previously reported in the Streptomyces. Among chemical classes, the most abundant VOCs were terpenes, which is consistent with predicted biosynthetic capabilities. In addition, 27 of the identified VOCs were plant-associated, demonstrating that some Streptomyces spp. can also produce such molecules. It is possible that some of the VOCs detected in the current study have roles in the interaction of Streptomyces with plants and other higher organisms, which might provide opportunities for their application in agriculture or industry.
Collapse
Affiliation(s)
- Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - Sean McCann
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Nicoletta Faraone
- Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada;
| | - Jody-Ann Clarke
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - E. Abbie Hudson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Kevin Cloonan
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - N. Kirk Hillier
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
- Correspondence: (N.K.H.); (K.T.)
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
- Correspondence: (N.K.H.); (K.T.)
| |
Collapse
|
12
|
Zhang XR, Li TN, Ren YY, Zeng YJ, Lv HY, Wang J, Huang QW. The Important Role of Volatile Components From a Traditional Chinese Medicine Dayuan-Yin Against the COVID-19 Pandemic. Front Pharmacol 2020; 11:583651. [PMID: 33101037 PMCID: PMC7546797 DOI: 10.3389/fphar.2020.583651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Aromatic Chinese herbs have been used to prevent plagues since ancient times. Traditional Chinese medicine has unique advantages in the prevention and treatment of epidemic diseases. According to the traditional Chinese medicine treatment plan in the National COVID-19 Diagnosis and Treatment Plan (Trial Seventh Edition) of the National Health Commission, Chinese patent medicines or prescriptions rich in aromatic Chinese herbs are selected for prevention and treatment during the period of medical observation, clinical treatment, and recovery of confirmed COVID-19 patients. Some local health committees or traditional Chinese medicine administrations recommend a variety of other ways of using traditional aromatic Chinese herbs to prevent and cure COVID-19. These involve external fumigation, use of moxibustion, and wearing of sachet. The efficacy of aromatic Chinese herbs plays a decisive role in the prevention and treatment of COVID-19. The unique properties, chemical composition, and mechanism of action of aromatic Chinese herbs are worthy of extensive and in-depth experimental and clinical research. The findings are expected to provide a reference for follow-up treatment of novel coronavirus and the development of corresponding drugs. In 2003, Dayuan-Yin produced excellent results in the treatment of the SARS virus. Individually, 112 confirmed cases were administered this drug between January and April 2003, and more than 93.7% of the patients showed noticeable mitigation of the symptoms, as well as recovery. Dayuan-Yin also was selected as one of the nationally recommended prescriptions for the COVID-19. Based on the national recommendation of Dayuan-Yin prescription, this review discusses the role of volatile components in the prevention and treatment of COVID-19, and speculates the possible mechanism of action, so as to provide a basis for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Thota SM, Balan V, Sivaramakrishnan V. Natural products as home-based prophylactic and symptom management agents in the setting of COVID-19. Phytother Res 2020; 34:3148-3167. [PMID: 32881214 PMCID: PMC7461159 DOI: 10.1002/ptr.6794] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease (COVID‐19) caused by the novel coronavirus (SARS‐CoV‐2) has rapidly spread across the globe affecting 213 countries or territories with greater than six million confirmed cases and about 0.37 million deaths, with World Health Organization categorizing it as a pandemic. Infected patients present with fever, cough, shortness of breath, and critical cases show acute respiratory infection and multiple organ failure. Likelihood of these severe indications is further enhanced by age as well as underlying comorbidities such as diabetes, cardiovascular, or thoracic problems, as well as due to an immunocompromised state. Currently, curative drugs or vaccines are lacking, and the standard of care is limited to symptom management. Natural products like ginger, turmeric, garlic, onion, cinnamon, lemon, neem, basil, and black pepper have been scientifically proven to have therapeutic benefits against acute respiratory tract infections including pulmonary fibrosis, diffuse alveolar damage, pneumonia, and acute respiratory distress syndrome, as well as associated septic shock, lung and kidney injury, all of which are symptoms associated with COVID‐19 infection. This review highlights the potential of these natural products to serve as home‐based, inexpensive, easily accessible, prophylactic agents against COVID‐19.
Collapse
Affiliation(s)
- Sai Manohar Thota
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, India
| | - Venkatesh Balan
- Engineering Technology Department, College of Technology, University of Houston, Sugar Land, Texas, USA
| | | |
Collapse
|
14
|
Mo M, Li S, Dong Z, Li C, Sun Y, Li A, Zhao Z. S-allylmercaptocysteine ameliorates lipopolysaccharide-induced acute lung injury in mice by inhibiting inflammation and oxidative stress via nuclear factor kappa B and Keap1/Nrf2 pathways. Int Immunopharmacol 2020; 81:106273. [PMID: 32070920 DOI: 10.1016/j.intimp.2020.106273] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/19/2020] [Accepted: 01/30/2020] [Indexed: 10/24/2022]
Abstract
The garlic-derived organosulfur compound S-allylmercaptocysteine (SAMC) has been reported to exhibit anti-inflammatory and anti-oxidative activities, whereas its potential therapeutic effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) is unknown. In this study, we focused on exploring the therapeutic effects of SAMC on LPS-induced ALI mice and the involvement of underlying molecular mechanisms. BalB/c mice were treated with SAMC (10, 30 and 60 mg/kg) or positive control N-acetylcysteine (NAC, 500 mg/kg) by gavage after intratracheal instillation of LPS for 30 min and were sacrificed 24 h after LPS administration. Our results indicate that the treatment with SAMC not only ameliorated the histological changes but also decreased LPS-triggered lung edema. Moreover, SAMC displayed an anti-inflammatory effect through reducing inflammatory cells infiltration, myeloperoxidase (MPO) formation and inhibiting pro-inflammatory cytokines/mediator production including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) via suppressing the activation of nuclear factor-kappaB (NF-κB) signaling pathway. Furthermore, SAMC attenuated oxidative stress evoked by LPS via diminishing malondialdehyde (MDA) formation and reversing glutathione (GSH) and superoxide dismutase (SOD) depletion. Meanwhile, SAMC up-regulated expressions of endogenous antioxidant/detoxifying proteins including heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1(NQO1) through reversing the suppression of Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid-2 related factor 2 (Nrf2) signaling pathway. Our results demonstrate that SAMC effectively attenuated LPS-induced ALI which was largely dependent upon inhibition of inflammation and oxidative stress via NF-κB and Keap1/Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Min Mo
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Shandong Key University Laboratory of Pharmaceutics & Drug Delivery Systems, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Siying Li
- School of Basic Medical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Zhonghua Dong
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Shandong Key University Laboratory of Pharmaceutics & Drug Delivery Systems, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Chunyan Li
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Shandong Key University Laboratory of Pharmaceutics & Drug Delivery Systems, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Yueyue Sun
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Shandong Key University Laboratory of Pharmaceutics & Drug Delivery Systems, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Ang Li
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Shandong Key University Laboratory of Pharmaceutics & Drug Delivery Systems, 44 West Wenhua Road, Jinan, Shandong 250012, China.
| |
Collapse
|
15
|
Huang XT, Liu W, Zhou Y, Sun M, Yang HH, Zhang CY, Tang SY. Galectin-1 ameliorates lipopolysaccharide-induced acute lung injury via AMPK-Nrf2 pathway in mice. Free Radic Biol Med 2020; 146:222-233. [PMID: 31711983 DOI: 10.1016/j.freeradbiomed.2019.11.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022]
Abstract
Inflammation and oxidative stress contribute to the progression of acute lung injury (ALI). Galectin-1 (Gal-1) has important anti-inflammatory properties in renal ischemia-reperfusion injury, arthritis, uveitis, and hepatitis. However, whether Gal-1 could protect against ALI is still poorly elucidated. The current study aimed to investigate the protective effects of Gal-1 against lipopolysaccharide (LPS)-induced ALI and the underlying mechanisms. Accordingly, we found that pretreatment with Gal-1 attenuated the lung tissue injury induced by LPS, with the recovery of lung function, protecting against the production of pro-inflammatory cytokines and oxidative stress. We also confirmed the therapeutic potential of Gal-1 on the survival rate of LPS-challenged mice. In vitro studies demonstrated the protective effects of exogenous Gal-1 through downregulating pro-inflammatory cytokines release and oxidative stress in primary macrophages challenged by LPS. In addition, Gal-1 suppressed TXNIP-NLRP3 inflammasome activation in ALI mice and LPS-treated primary macrophages partly through directly binding to the NLRP3 protein. Gal-1 alleviated LPS-induced lung injury via activation of Nrf-2, which may be associated with AMPK phosphorylation. Collectively, our experimental results firstly provided the support that Gal-1 effectively protected against LPS-induced ALI via suppression of inflammation response and oxidative stress, which were largely dependent on the upregulation of the Nrf2 pathway via phosphorylation of AMPK. These results suggest that Gal-1 could be a valuable therapeutic candidate in the treatment of ALI.
Collapse
Affiliation(s)
- Xiao-Ting Huang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mei Sun
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Li Z, Howell K, Fang Z, Zhang P. Sesquiterpenes in grapes and wines: Occurrence, biosynthesis, functionality, and influence of winemaking processes. Compr Rev Food Sci Food Saf 2019; 19:247-281. [PMID: 33319521 DOI: 10.1111/1541-4337.12516] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Grapes are an important global horticultural product, and are mainly used for winemaking. Typically, grapes and wines are rich in various phytochemicals, including phenolics, terpenes, pyrazines, and benzenoids, with different compounds responsible for different nutritional and sensory properties. Among these compounds, sesquiterpenes, a subcategory of the terpenes, are attracting increasing interest as they affect aroma and have potential health benefits. The characteristics of sesquiterpenes in grapes and wines in terms of classification, biosynthesis pathway, and active functions have not been extensively reviewed. This paper summarizes 97 different sesquiterpenes reported in grapes and wines and reviews their biosynthesis pathways and relevant bio-regulation mechanisms. This review further discusses the functionalities of these sesquiterpenes including their aroma contribution to grapes and wines and potential health benefits, as well as how winemaking processes affect sesquiterpene concentrations.
Collapse
Affiliation(s)
- Zizhan Li
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Wang Y, Jiang F, Cheng H, Tan X, Liu Y, Wei C, Song E. Astragaloside IV Protects Against Oxidative Stress in Calf Small Intestine Epithelial Cells via NFE2L2-Antioxidant Response Element Signaling. Int J Mol Sci 2019; 20:ijms20246131. [PMID: 31817362 PMCID: PMC6941087 DOI: 10.3390/ijms20246131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress can damage intestinal epithelial cell integrity and function, causing gastrointestinal disorders. Astragaloside IV (ASIV) exhibits a variety of biological and pharmacological properties, including anti-inflammatory and antioxidant effects. The purpose of this research was to investigate the cytoprotective action of ASIV and its mechanisms in calf small intestine epithelial cells with hydrogen peroxide (H2O2)-induced oxidative stress. ASIV pretreatment not only increased cell survival, but it also decreased reactive oxygen species generation and apoptosis, enhanced superoxide dismutase, catalase, and glutathione peroxidase levels, and it reduced malondialdehyde formation. Furthermore, pretreatment with ASIV elevated the mRNA and protein levels of nuclear factor erythroid 2-related factor 2 (NFE2L2), heme oxygenase-1 (HMOX1), and NAD(P)H quinone dehydrogenase 1 (NQO1). The NFE2L2 inhibitor ML385 inhibited NFE2L2 expression and then blocked HMOX1 and NQO1 expression. These results demonstrate that ASIV treatment effectively protects against H2O2-induced oxidative damage in calf small intestine epithelial cells through the activation of the NFE2L2-antioxidant response element signaling pathway.
Collapse
Affiliation(s)
- Yafang Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, East Wenhua Road Number 88, Jinan 250014, China
| | - Fugui Jiang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
| | - Haijian Cheng
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
| | - Xiuwen Tan
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
| | - Yifan Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
| | - Chen Wei
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
| | - Enliang Song
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road, Number 8, Jinan 250100, China; (Y.W.); (F.J.); (H.C.); (C.W.)
- Shandong Key Laboratory of Animal Disease Control and Breeding, Sangyuan Road, Number 8, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, East Wenhua Road Number 88, Jinan 250014, China
- Correspondence:
| |
Collapse
|
18
|
Wu X, Xu N, Li M, Huang Q, Wu J, Gan Y, Chen L, Luo H, Li Y, Huang X, Su Z, Liu Y. Protective Effect of Patchouli Alcohol Against High-Fat Diet Induced Hepatic Steatosis by Alleviating Endoplasmic Reticulum Stress and Regulating VLDL Metabolism in Rats. Front Pharmacol 2019; 10:1134. [PMID: 31632274 PMCID: PMC6779828 DOI: 10.3389/fphar.2019.01134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common chronic hepatic disorder worldwide. The earliest stage of NAFLD is simple steatosis, which is characterized by the accumulation of triglycerides in hepatocytes. Inhibition of steatosis is a potential treatment for NAFLD. Patchouli alcohol (PA) is an active component of Pogostemon cablin (Blanco) Benth. (Labiatae), which is a medicinal food in Asia countries and proved to possess hepatoprotective effect. This research aimed to investigate the effectiveness of PA against high fat diet (HFD)-induced hepatic steatosis in rats. In this study, male Sprague Dawley rats were fed a HFD for 4 weeks to induce NAFLD. Oral administration with PA significantly reduced pathological severity of steatosis in HFD-fed rats. It was associated with suppressing endoplasmic reticulum (ER) stress and regulating very low-density lipoprotein (VLDL) metabolism. Our data showed that PA treatment effectively attenuated ER stress by inhibiting the activation of protein kinase-like ER kinase (PERK), inositol-requiring transmembrane kinase/endoribonuclease 1 (IRE1), and activating transcription factor 6 (ATF6). Moreover, PA decreased hepatic VLDL uptake by suppressing very low-density lipoprotein receptor (VLDLR) expression. It also restored VLDL synthesis and export by increasing apolipoprotein B100 (apoB 100) secretion and microsomal triglyceride-transfer protein (MTP) activity. Taken together, PA exerted a protective effect on the treatment of NAFLD in HFD-fed rats and may be potential therapeutic agent acting on hepatic steatosis.
Collapse
Affiliation(s)
- Xue Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nan Xu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minyao Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qionghui Huang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiazhen Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuxuan Gan
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liping Chen
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huijuan Luo
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yucui Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqi Huang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuhong Liu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Zhao P, Liu G, Cui Y, Sun X. Propylene glycol alginate sodium sulphate attenuates LPS-induced acute lung injury in a mouse model. Innate Immun 2019; 25:513-521. [PMID: 31495247 PMCID: PMC6900665 DOI: 10.1177/1753425919874491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Propylene glycol alginate sodium sulphate, a sulphated polysaccharide,
has been used to treat hyperlipidaemia and ischaemia–reperfusion
injury of liver. This study aimed to investigate the effect of
propylene glycol alginate sodium sulphate on LPS-induced acute lung
injury. Propylene glycol alginate sodium sulphate was injected
intraperitoneally into male C57BL/6 mice with or without LPS
administration. Survival rates were calculated. Serum, bronchoalveolar
lavage fluid and lung tissues were collected to determine lung
histology, wet/dry ratio, Evans blue albumin permeability, protein
levels, the counts of immune cells and the levels of inflammatory
cytokines and chemokines. Serum alanine aminotransferase, aspartate
transaminase, creatinine and blood urea nitrogen levels were also
measured. Additionally, NF-κB signalling was detected in the lung.
Propylene glycol alginate sodium sulphate treatment significantly
improved the survival of mice suffering from LPS. Lung histological
injury, wet/dry ratio, Evans blue albumin permeability, neutrophils
and the inflammatory cytokines and chemokines were significantly
reduced by propylene glycol alginate sodium sulphate treatment. NF-κB
signalling was significantly inhibited by propylene glycol alginate
sodium sulphate in the lung of mice subjected to LPS. Furthermore,
serum alanine aminotransferase, aspartate transaminase, creatinine and
blood urea nitrogen levels were also significantly decreased after
propylene glycol alginate sodium sulphate administration. This study
suggests that NF-κB signalling and inhibition of pro-inflammatory
cytokines, chemokines and neutrophil accumulation may be involved in
the process of acute lung injury attenuation by propylene glycol
alginate sodium sulphate.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Anaesthesiology, The Second Hospital of Jilin University, PR China
| | - Guoliang Liu
- Department of Anaesthesiology, The Second Hospital of Jilin University, PR China
| | - Yunfeng Cui
- Department of Anaesthesiology, The Second Hospital of Jilin University, PR China
| | - Xufang Sun
- Department of Anaesthesiology, The Second Hospital of Jilin University, PR China
| |
Collapse
|
20
|
Mei X, Tong J, Zhu W, Zhu Y. lncRNA‑NR024118 overexpression reverses LPS‑induced inflammatory injury and apoptosis via NF‑κB/Nrf2 signaling in ATDC5 chondrocytes. Mol Med Rep 2019; 20:3867-3873. [PMID: 31485657 PMCID: PMC6755246 DOI: 10.3892/mmr.2019.10639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent types of chronic joint diseases. Chondrocytes survival is closely associated with the destruction of joints in patients with OA. Long noncoding RNAs (lncRNAs) serve a critical role in OA. However, to the best of our knowledge, the role of lncRNAs NR024118 in OA has not been examined. In the present study, the expression levels of NR024118 in lipopolysaccharide (LPS)-induced chondrocytes was measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and the apoptosis levels of cells was determined using flow cytometry. The levels of scavenged reactive oxygen species and expression levels of the antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and heme oxygenase-1 (HO-1) were measured using specialized detection kits. The expression of interleukin (IL)-1β, IL-6 and IL-18 were measured using ELISA. Expression of the cell apoptosis markers Bcl-2, Bax, Bcl-2-like protein 11, NF-κB, phosphorylated (p)-NF-κB inhibitor β (IκBβ), IκBβ, p-transcription factor p65 (p65) and p65, and nuclear factor erythroid-2 related factor 2 (Nrf2) signaling pathways-associated proteins, Nrf2, HO-1 and quinone oxidoreductase-1 were detected by western blot analysis and RT-qPCR. The results indicated that in ATDC5 cells, apoptosis, oxidative stress and inflammation were significantly increased and the expression level of NR024118 was significantly decreased by LPS-mediated induction. NR024118 overexpression significantly reversed the effects of LPS treatment in the ATDC5 cell line. In addition, the overexpression of NR024118 decreased NF-κB expression levels and activated the Nrf2 signaling pathways in LPS-induced ATDC5 cells. The present study demonstrated that NR024118 attenuated the effects of LPS-induction on ATDC5 cells. These results suggest that NR024118 may be a potential target for diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Xiaoliang Mei
- Department of Orthopedics, The Affiliated Taizhou People's Hospital of Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Jian Tong
- Department of Orthopedics, The Affiliated Taizhou People's Hospital of Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Wei Zhu
- Department of Orthopedics, The Affiliated Taizhou People's Hospital of Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Yongliang Zhu
- Department of Orthopedics, Nanjing Central Hospital, Nanjing, Jiangsu 210018, P.R. China
| |
Collapse
|
21
|
Pachypodol, a Methoxyflavonoid Isolated from Pogostemon cablin Bentham Exerts Antioxidant and Cytoprotective Effects in HepG2 Cells: Possible Role of ERK-Dependent Nrf2 Activation. Int J Mol Sci 2019; 20:ijms20174082. [PMID: 31438541 PMCID: PMC6747508 DOI: 10.3390/ijms20174082] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of many diseases including chronic liver diseases. Nrf2 is a master transcriptional factor regulating the induction of cellular antioxidant defense systems. Here, the Nrf2-activating effect of the crude methanol extract of dried leaves of Pogostemon cablin Bentham was demonstrated by measuring the antioxidant response element (ARE)-driven luciferase activity and pachypodol, 4′,5-dihydroxy-3,3′,7-trimethoxyflavone, was isolated by bioactivity-guided fractionation and further separation using chromatographic techniques. To our knowledge, this is the first study to evaluate the antioxidant and cytoprotective effects of pachypodol in HepG2 cells as well as the underlying molecular mechanisms. Indeed, pachypodol protected HepG2 cells from cell death caused by tert-butylhydroperoxide-induced oxidative stress and also attenuated ROS production. The ability of pachypodol to activate Nrf2/ARE pathway was further confirmed by observing Nrf2 expression in nuclear fraction, mRNA levels of Nrf2 target antioxidants, and cellular glutathione content in HepG2 cells. Extracellular signal-regulated kinase (ERK) is one of the important kinases involved in Nrf2 activation. Pachypodol increased ERK phosphorylation and ERK inhibition by PD98059 totally abrogated the increase in ARE luciferase activity, nuclear Nrf2 accumulation and mRNA levels of antioxidant enzymes by pachypodol. In conclusion, pachypodol isolated from P. cablin can protect hepatocytes from oxidative injury, possibly mediated by enhancing endogenous antioxidant defense system through ERK-dependent Nrf2 activation.
Collapse
|
22
|
Huang X, Zhu J, Jiang Y, Xu C, Lv Q, Yu D, Shi K, Ruan Z, Wang Y. SU5416 attenuated lipopolysaccharide-induced acute lung injury in mice by modulating properties of vascular endothelial cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1763-1772. [PMID: 31213766 PMCID: PMC6536715 DOI: 10.2147/dddt.s188858] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Background and aim: A potent and selective vascular endothelial growth factor receptor (VEGFR) inhibitor SU5416, has been developed for the treatment of solid human tumors. The binding of VEGF to VEGFR plays a crucial role in the pathophysiology of respiratory disorders. However, the impact of SU5416 on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains unclear. Thus, this study aimed to illuminate the biofunction of SU5416 in the mouse model of ALI. Methods: Wild-type (WT) and toll-like receptor 4 (TLR4)-deficient (TLR4−/-) C57BL/6 mice were used to establish LPS-induced ALI model. The primary pulmonary microvascular endothelial cell (PMVEC) was extracted for detection of endothelial barrier function. Results: LPS significantly increased the number of inflammatory cells and inflammatory cytokines in bronchoalveolar lavage fluid (BALF). In addition, LPS increased alveolar epithelial cells injury, inflammation infiltration and vascular permeability of PMVEC in WT and TLR4−/- mice. Western blotting experiment indicated VEGF/VEGFR and TLR4/NF-κB pathways were involved in the progression of LPS-stimulated ALI. Consistent with previous research, dexamethasone treatment appeared to be an effective therapeutic for mice with ALI. Moreover, treatment with SU5416 dramatically attenuated LPS-induced immune responses in mice lung tissues via inhibiting VEGF/VEGFR and TLR4/NF-κB pathways. Finally, SU5416 also decreased vascular permeability of PMVEC in vitro. Conclusion: SU5416 ameliorated alveolar epithelial cells injury and histopathological changes in mice lung via inhibiting VEGF/VEGFR and TLR4/NF-κB signaling pathways. We also confirmed that SU5416 could restrain vascular permeability in PMVEC through improving the integrity of endothelial cell. These findings suggested that SU5416 may serve as a potential agent for the treatment of patients with ALI.
Collapse
Affiliation(s)
- Xuqing Huang
- Department of Respiratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Junqi Zhu
- Department of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuyue Jiang
- Department of Respiratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Changqing Xu
- Department of Respiratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Qun Lv
- Department of Respiratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Dongwei Yu
- Department of Respiratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Kai Shi
- Department of Respiratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhaoyang Ruan
- Department of Respiratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yan Wang
- Department of Respiratory Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
23
|
Hybertson BM, Gao B, Bose S, McCord JM. Phytochemical Combination PB125 Activates the Nrf2 Pathway and Induces Cellular Protection against Oxidative Injury. Antioxidants (Basel) 2019; 8:antiox8050119. [PMID: 31058853 PMCID: PMC6563026 DOI: 10.3390/antiox8050119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023] Open
Abstract
Bioactive phytochemicals in Rosmarinus officinalis, Withania somnifera, and Sophora japonica have a long history of human use to promote health. In this study we examined the cellular effects of a combination of extracts from these plant sources based on specified levels of their carnosol/carnosic acid, withaferin A, and luteolin levels, respectively. Individually, these bioactive compounds have previously been shown to activate the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor, which binds to the antioxidant response element (ARE) and regulates the expression of a wide variety of cytoprotective genes. We found that combinations of these three plant extracts act synergistically to activate the Nrf2 pathway, and we identified an optimized combination of the three agents which we named PB125 for use as a dietary supplement. Using microarray, quantitative reverse transcription-PCR, and RNA-seq technologies, we examined the gene expression induced by PB125 in HepG2 (hepatocellular carcinoma) cells, including canonical Nrf2-regulated genes, noncanonical Nrf2-regulated genes, and genes which appear to be regulated by non-Nrf2 mechanisms. Ingenuity Pathway Analysis identified Nrf2 as the primary pathway for gene expression changes by PB125. Pretreatment with PB125 protected cultured HepG2 cells against an oxidative stress challenge caused by cumene hydroperoxide exposure, by both cell viability and cell injury measurements. In summary, PB125 is a phytochemical dietary supplement comprised of extracts of three ingredients, Rosmarinus officinalis, Withania somnifera, and Sophora japonica, with specified levels of carnosol/carnosic acid, withaferin A, and luteolin, respectively. Each ingredient contributes to the activation of the Nrf2 pathway in unique ways, which leads to upregulation of cytoprotective genes and protection of cells against oxidative stress and supports the use of PB125 as a dietary supplement to promote healthy aging.
Collapse
Affiliation(s)
- Brooks M Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA.
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA.
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | - Joe M McCord
- Pathways Bioscience, Aurora, CO 80045, USA.
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
24
|
Fu L, Fu X, Mo J, Li X, Li R, Peng S. miR-146a-5p enhances hepatitis B virus replication through autophagy to promote aggravation of chronic hepatitis B. IUBMB Life 2019; 71:1336-1346. [PMID: 31018043 DOI: 10.1002/iub.2044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022]
Abstract
The objective of this study was to investigate the mechanism by which miR-146a-5p mediated autophagy and hepatitis B virus (HBV) replication. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the mRNA expression levels of miR-146a-5p and X-linked inhibitor of apoptosis (XIAP) and HBV DNA and RNA. The protein expression levels of XIAP, IκB-α, murine double minute 2 oncoprotein (MDM2) and p53, the phosphorylation of p65, and the conversion of light chain 3 (LC3)-I to LC3-II were detected by Western blotting. The expression levels of XIAP, HBV-related pro-inflammatory cytokines, and serum markers were detected by enzyme-linked immunosorbent assay (ELISA). miR-146a-5p was highly expressed in patients with chronic hepatitis B (CHB) and HBV-expressing hepatocytes. HBV core protein (HBc) and HBV X protein (HBx) were responsible for its effects on miR-146a-5p expression through the nuclear factor-κB pathway. Furthermore, the miR-146a-5p inhibitor suppressed autophagic response and HBV replication as well as MDM2/p53 expression. Luciferase reporter assay confirmed that XIAP was a direct target of miR-146a-5p. We therefore demonstrated that miR-146a-5p mediated positive feedback loop by regulating autophagy-induced HBV replication via targeting the XIAP-mediated MDM2/p53 axis. © 2019 IUBMB Life, 71(9):1336-1346, 2019.
Collapse
Affiliation(s)
- Lei Fu
- Department of Infectious Diseases, Key Laboratory of Hunan Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoyu Fu
- Department of Infectious Diseases, Key Laboratory of Hunan Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Mo
- Department of Infectious Diseases, Key Laboratory of Hunan Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaomei Li
- Department of Infectious Diseases, Key Laboratory of Hunan Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ronghua Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shifang Peng
- Department of Infectious Diseases, Key Laboratory of Hunan Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
25
|
Zhang FB, Wang JP, Zhang HX, Fan GM, Cui X. Effect of β-patchoulene on cerebral ischemia-reperfusion injury and the TLR4/NF-κB signaling pathway. Exp Ther Med 2019; 17:3335-3342. [PMID: 30988709 PMCID: PMC6447785 DOI: 10.3892/etm.2019.7374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
β-patchoulene (β-PAE), an active constituent of the Pogostemon cablin, is well known for its anti-inflammatory and antioxidative functions in various diseases. However, little is known about the impact of β-PAE on the cerebral ischemia-reperfusion (I/R) injury. The current study aimed to determine the neuroprotective effect of β-PAE and the underlying mechanisms on cerebral I/R injury. Following pretreatment with β-PAE (10 mg/kg body weight) by tail intravenous injection for 1 h, Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 2 h and reperfusion for 24 h. The results indicated that pretreatment with β-PAE could diminish the infarct volume, decrease the brain water content, reduce the neurological deficit score and restore the mitochondrial membrane potential, compared with the untreated I/R injury group. Furthermore, cell apoptosis was markedly suppressed by β-PAE, and this effect was associated with the decreased apoptosis regulator BAX/apoptosis regulator Bcl-2 expression ratio and caspase-3 activity. In addition, β-PAE significantly inhibited the release of proinflammatory factors, including tumor necrosis factor-α, interleukin (IL)-1β and IL-6. Superoxide generation and malondialdehyde levels were reduced while the levels of glutathione peroxidase and superoxide dismutase were elevated following treatment with β-PAE, indicating the antioxidative role of β-PAE in cerebral I/R injury. Furthermore, the Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was inhibited by β-PAE, as demonstrated by the decreased TLR4 expression and nuclear translocation of p65, and increased IκBα level. Taken together, the results suggested that β-PAE may exhibit a neuroprotective effect on cerebral I/R injury in rats through inactivating the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fu-Bo Zhang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Jian-Ping Wang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Hong-Xia Zhang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Gui-Mei Fan
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Xin Cui
- Department of Rheumatology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
26
|
Zhuang S, Yu R, Zhong J, Liu P, Liu Z. Rhein from Rheum rhabarbarum Inhibits Hydrogen-Peroxide-Induced Oxidative Stress in Intestinal Epithelial Cells Partly through PI3K/Akt-Mediated Nrf2/HO-1 Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2519-2529. [PMID: 30779558 DOI: 10.1021/acs.jafc.9b00037] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rheum rhabarbarum has been widely used as a herbal medicine and food in China. The objective of this study was to investigate the cytoprotective action and underlying mechanisms of rhein, one active ingredient isolated from R. rhabarbarum, on H2O2-challenged rat small intestine epithelial cells (IEC-6 cells). H2O2-challenged IEC-6 cells were incubated in the pretreatment with or without rhein or LY294002, a PI3K/Akt inhibitor. The cell viability, apoptosis, intracellular reactive oxygen species (ROS), and antioxidants were measured. The expressions of heme oxygenase 1 (HO-1), nuclear factor erythroid 2-related factor (Nrf2), Akt, and p-Akt were evaluated by western blotting. Meanwhile, LY294002 was also used to investigate the role of PI3K/Akt in the rhein-induced cytoprotective role. The results showed that pretreatment of rhein could reverse the inhibition of cell viability and suppress the apoptosis, caspase-3 activity, and intracellular ROS induced by H2O2. Rhein also supported SOD activity catalase activity, glutathione S-transferase activity, and glutathione content. Furthermore, rhein induced the protein expression of HO-1 together with its upstream mediator Nrf2 and activated the phosphorylation of Akt in IEC-6 cells. LY294002 inhibited increased cell viability, upregulated the lowered apoptotic rate, and enhanced the weakened ROS levels. Although the inhibition of PI3K/Akt did not inhibit the Nrf2 nuclear level under 4 μM rhein, LY294002 inhibited the Nrf2 nuclear level under 2 μM rhein and blocked HO-1 expression. These data demonstrated that rhein protected IEC-6 cells against oxidative damage partly via PI3K/Akt and Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Shen Zhuang
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Ruyang Yu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Jia Zhong
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Ping Liu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Zhongjie Liu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| |
Collapse
|
27
|
Colquhounia Root Tablet Protects Rat Pulmonary Microvascular Endothelial Cells against TNF- α-Induced Injury by Upregulating the Expression of Tight Junction Proteins Claudin-5 and ZO-1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1024634. [PMID: 30581478 PMCID: PMC6276400 DOI: 10.1155/2018/1024634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/14/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023]
Abstract
Background There are currently limited effective pharmacotherapy agents for acute lung injury (ALI). Inflammatory response in the lungs is the main pathophysiological process of ALI. Our preliminary data have shown that colquhounia root tablet (CRT), a natural herbal medicine, alleviates the pulmonary inflammatory responses and edema in a rat model with oleic acid-induced ALI. However, the potential molecular action mechanisms underlining its protective effects against ALI are poorly understood. This study aimed to investigate the effects and mechanism of CRT in rat pulmonary microvascular endothelial cells (PMEC) with TNF-α-induced injury. Methods PMECs were divided into 6 groups: normal control, TNF-α (10 ng/mL TNF-α), Dex (1×10−6 M Dex + 10 ng/mL TNF-α), CRT high (1000 ng/mL CRT + 10 ng/mL TNF-α), CRT medium (500 ng/mL CRT + 10 ng/mL TNF-α), and CRT low group (250 ng/mL CRT + 10 ng/mL TNF-α). Cell proliferation and apoptosis were detected by MTT assay and flow cytometry. Cell micromorphology was observed under transmission electron microscope. The localization and expression of tight junction proteins Claudin-5 and ZO-1 were analyzed by immunofluorescence staining and Western blot, respectively. Results TNF-a had successfully induced an acute endothelial cell injury model. Dex and CRT treatments had significantly stimulated the growth and reduced the apoptosis of PMECs (all p < 0.05 or 0.01) and alleviated the TNF-α-induced cell injury. The expression of Claudin-5 and ZO-1 in Dex and all 3 CRT groups was markedly increased compared with TNF-a group (all p < 0.05 or 0.01). Conclusion CRT effectively protects PMECs from TNF-α-induced injury, which might be mediated via stabilizing the structure of tight junction. CRT might be a promising, effective, and safe therapeutic agent for the treatment of ALI.
Collapse
|
28
|
Zhang LM, Zhang J, Zhang Y, Wang L, Fei C, Yi ZW, Dong L. Interleukin-18 binding protein attenuates lipopolysaccharide-induced acute lung injury in mice via suppression NF-κB and activation Nrf2 pathway. Biochem Biophys Res Commun 2018; 505:837-842. [PMID: 30301527 DOI: 10.1016/j.bbrc.2018.09.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/29/2018] [Indexed: 12/17/2022]
Abstract
Interleukin (IL)-18 belongs to a rather large IL-1 gene family and is a proinflammatory cytokine. IL-18 plays important roles in lung injury. IL-18 binding protein (IL-18BP), a natural antagonist of IL-18, binds IL-18 with high affinity. IL-18BP is able to neutralize IL-18 biological activity and has a protective effect against renal fibrosis. The aim of this study was to evaluate the potential protective effect of IL-18BP on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and to illuminate the underlying mechanisms. Results indicated that pretreatment with IL-18BP significantly attenuated LPS-induced pulmonary pathological injury. Meanwhile, IL-18BP pretreatment markedly inhibited infiltration of inflammatory cell and release of inflammatory factor in ALI mice in vivo and in primary macrophages after LPS insult in vitro. IL-18BP treatment dramatically reduced oxidative stress through increasing superoxide dismutase (SOD) and glutathione (GSH) contents, and decreasing the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in LPS-induced ALI mice and primary macrophages. Additionally, IL-18BP was also observed to markedly decreased the activation of nuclear factor-kappa B (NF-κB) and upregulated the nuclear factor erythroid 2-related factor 2 (Nrf2). Taken together, IL-18BP possessed protective effect against LPS-induced ALI, which might be associated with its regulation of NF-κB and Nrf2 activities. The results rendered IL-18BP worthy of further development into a pharmaceutical drug for the treatment of ALI.
Collapse
Affiliation(s)
- Li-Ming Zhang
- Hunan University of Medicine, Huaihua, Hunan, 410208, China
| | - Jun Zhang
- Hunan University of Medicine, Huaihua, Hunan, 410208, China
| | - Ying Zhang
- Hunan University of Medicine, Huaihua, Hunan, 410208, China
| | - Lin Wang
- Hunan University of Medicine, Huaihua, Hunan, 410208, China
| | - Chang Fei
- Hunan University of Medicine, Huaihua, Hunan, 410208, China
| | - Zong-Wei Yi
- Hunan University of Medicine, Huaihua, Hunan, 410208, China
| | - Liang Dong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
29
|
Zhu WD, Xu J, Zhang M, Zhu TM, Zhang YH, Sun K. MicroRNA-21 inhibits lipopolysaccharide-induced acute lung injury by targeting nuclear factor-κB. Exp Ther Med 2018; 16:4616-4622. [PMID: 30542412 PMCID: PMC6257314 DOI: 10.3892/etm.2018.6789] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 08/17/2018] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury (ALI) is a frequent, but severe complication following sepsis in patients with critical illness. The present study aimed to investigate the potential role of microRNA-21 (miR-21) in the regulation of inflammation in the ALI induced by lipopolysaccharide (LPS) in vitro and in vivo. The levels of inflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β and IL-10, and the level of miR-21 expression were measured in the lungs of LPS-induced ALI rats and NR8383 alveolar macrophages (AMs). To confirm the regulatory effect of miR-21 in the inflammatory reactions of ALI, NR8383 cells were transfected with a mimic of miR-21 or an anti-miR-21 inhibitor, and the subsequent changes of the miR-21 level and the levels of inflammatory cytokines were detected. The underlying molecular mechanism was also investigated. LPS-induced ALI in rats resulted in significant overexpression of pro-inflammatory cytokines, TNF-α, IL-6 and IL-1β, and miR-21, but reduced the expression of the anti-inflammatory cytokine IL-10. LPS treatment also led to a higher expression level of miR-21 and increased secretion of pro-inflammatory cytokines in NR8383 cells in a time-dependent manner. Manipulation with the miR-21 mimic significantly suppressed the LPS-mediated induction of TNF-α, IL-6 and IL-1β in NR8383 cells, while that induction was upregulated when miR-21 expression was silenced via transfection with the anti-miR-21 inhibitor. Further mechanism experiments revealed that miR-21 regulates LPS-induced inflammation responses via the Toll-like receptor 4 and nuclear factor-κB (Nf-κB) signaling pathway. miR-21 negatively regulates inflammatory responses in LPS-induced ALI by targeting the NF-κB signaling pathway, providing further insight into the molecular mechanism of ALI progression.
Collapse
Affiliation(s)
- Wei-Dong Zhu
- Emergency Department, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang 311800, P.R. China
| | - Jia Xu
- Personnel Section, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang 311800, P.R. China
| | - Mao Zhang
- Emergency Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Tie-Ming Zhu
- Hepatobiliary Surgery Department, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang 311800, P.R. China
| | - Yun-Hua Zhang
- Intensive Care Unit, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang 311800, P.R. China
| | - Ke Sun
- Orthopedics Department, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang 311800, P.R. China
| |
Collapse
|
30
|
Huang QH, Wu X, Chen XH, Wu JZ, Su ZR, Liang JL, Li YC, Lai XP, Chen JN, Liu YH. Patchouli oil isolated from the leaves of Pogostemon cablin ameliorates ethanol-induced acute liver injury in rats via inhibition of oxidative stress and lipid accumulation. RSC Adv 2018; 8:24399-24410. [PMID: 35539211 PMCID: PMC9082196 DOI: 10.1039/c8ra02422g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/14/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Excessive alcohol consumption can cause serious hepatic injury which is associated with oxidative stress and fatty metabolic disturbance. Patchouli oil (PO) is a sort of food supplement with high medicinal value in hepatoprotection, but its ability against ethanol-induced liver failure has not been demonstrated. Thus, this study aimed to investigate the potential hepatoprotection of PO through an ethanol-induced hepatotoxicity rat model. Our results showed that PO pretreatment could dramatically decrease the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in serum, paralleled by an improvement of histopathology alterations. Additionally, PO could markedly suppress the content of reactive oxygen species (ROS), tumor necrosis factor alpha (TNF-α), free fatty acid (FFA), and triglyceride (TG), while enhancing the activities of glutathione (GSH), glutathione reductase (GR), and superoxide dismutase (SOD) as well as the ratio of glutathione to oxidized glutathione (GSH/GSSG) in liver. The protective effect of PO against oxidative stress was interrelated with restraining the mRNA and protein expression of hepatic microsomal enzyme cytochrome P450 2E1 (CYP2E1). What's more, PO pretreatment could also accelerate lipometabolism via up-regulating expressions of adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPAR-α), and carnitine palmitoyltransferase 1 (CPT-1) and down-regulating expressions of nuclear factor-kappaB (NF-κB) p65, sterol regulatory element-binding protein 1 (SREBP-1c), fatty acid synthase (FAS), and stearoyl-CoA desaturase 1 (SCD-1). To conclude, PO showed potent effect against ethanol-induced hepatotoxicity by relieving oxidative stress and preventing lipid accumulation. Excessive alcohol consumption can cause serious hepatic injury which is associated with oxidative stress and fatty metabolic disturbance.![]()
Collapse
|