1
|
Choi J, Park SJ, Park YJ, Hong J, Jeong S, Chang J, Kim SM, Song J, Cho Y, Park SM. Association between antibiotics and asthma risk among adults aged over 40 years: a nationally representative retrospective cohort study. BMJ Open Respir Res 2023; 10:e001643. [PMID: 37914233 PMCID: PMC10649713 DOI: 10.1136/bmjresp-2023-001643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
INTRODUCTION Several studies have reported that exposure to antibiotics can lead to asthma during early childhood. However, the association between antibiotic use and risk of asthma in the adult population remains unclear. This study aimed to investigate the association between antibiotic use and asthma in adults. METHODS We used data from the National Health Insurance Service (NHIS)-Health Screening Cohort, which included participants aged ≥40 years who had health screening examination data in 2005-2006. A total of 248 961 participants with a mean age of 55.43 years were enrolled in this retrospective cohort study. To evaluate antibiotic exposure from the NHIS database for 5 years (2002-2006), cumulative usage and multiclass prescriptions were identified, respectively. During the follow-up period (2007-2019), 42 452 patients were diagnosed with asthma. A multivariate Cox proportional hazard regression model was used to assess the association between antibiotic use and newly diagnosed asthma. RESULTS Participants with antibiotic use for ≥91 days showed a higher risk of asthma (adjusted HR (aHR) 1.84, 95% CI 1.72 to 1.96) compared with participants who did not use antibiotics (n=38 450), with a duration-dependent association (ptrend<0.001). Furthermore, ≥4 antibiotic class user group had an increased risk of asthma (aHR 1.44, 95% CI 1.39 to 1.49) compared with one class of antibiotic use (n=64 698). Also, one class of antibiotic use had a higher risk of asthma (aHR 1.21, 95% CI 1.17 to 1.26) compared with non-users, and it also showed a duration-dependent relationship in all classes, including 1, 2, 3 and ≥4 class group (ptrend<0.001). The duration-response relationship between antibiotic use and increased risk of asthma remained in our sensitivity analyses with the washout and shifting of the index date. CONCLUSIONS The duration-response pattern observed in antibiotic use and asthma may suggest the implication of proper antibiotic use and management in adults.
Collapse
Affiliation(s)
- Jiwon Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, The Republic of Korea
- Department of Public Health Science, Seoul National University, Gwanak-gu, The Republic of Korea
| | - Sun Jae Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, The Republic of Korea
| | - Young Jun Park
- Medical Research Center, Genomic Medicine Institute, Seoul National University, Seoul, The Republic of Korea
| | - Jaeyi Hong
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Seogsong Jeong
- Department of Biomedical Informatics, CHA University School of Medicine, Seongnam, The Republic of Korea
| | - Jooyoung Chang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, The Republic of Korea
| | - Sung Min Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, The Republic of Korea
| | - Jihun Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, The Republic of Korea
| | - Yoosun Cho
- Total Healthcare Center, Kangbuk Samsung Hospital,Sungkyunkwan University School of Medicine, Seoul, The Republic of Korea
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, The Republic of Korea
- Department of Family Medicine, Seoul National University Hospital, Jongno-gu, The Republic of Korea
| |
Collapse
|
2
|
Di Pierro F, Campedelli I, De Marta P, Fracchetti F, Del Casale A, Cavecchia I, Matera M, Cazzaniga M, Bertuccioli A, Guasti L, Zerbinati N. Bifidobacterium breve PRL2020: Antibiotic-Resistant Profile and Genomic Detection of Antibiotic Resistance Determinants. Microorganisms 2023; 11:1649. [PMID: 37512822 PMCID: PMC10383950 DOI: 10.3390/microorganisms11071649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Antibiotics are one of the greatest scientific achievements of modern medicine, but excessive use is creating challenges for the future of medicine. Antibiotic resistance (AR) is thought to cause changes in bowel habits and an increased risk of gastroenteritis, but it may also increase the risk of overweight, obesity, autoimmune and atopic diseases, and a low response to vaccines and cancer, likely mediated by antibiotic-induced gut dysbiosis. Probiotic add-on therapy could partially prevent antibiotic-induced gut dysbiosis, but their antibiotic sensitivity features likely limits this potential. The EFSA (European Food Safety Authority) guidelines consider the use of probiotics whose antibiotic-resistant profile could be transferable an important hazard. Recently, a strain of B. breve (PRL2020) has shown to be resistant to amoxicillin and amoxicillin-clavulanate (AC) by applying the microdilution protocol according EFSA guidelines. After verifying that horizontal gene transfer is unlikely to take place, this feature suggests its concomitant use with these specific antibiotics. The results of our tests demonstrated that the strain PRL2020 is indeed endowed with amoxicillin- and AC-resistant properties and that it is also insensitive to ampicillin. In-depth analysis of the annotated genome sequence of B. breve PRL2020 was employed to query the Comprehensive Antibiotic Resistance Database (CARD) using Resistance Gene Identifier (RGI) software (version 5.2.1). The similarity among the AR determinants found was studied through nucleotide sequence alignment, and it was possible to verify not only the absence of genes explaining these features in the flanking regions but also the presence of genetic sequences (rpoB and erm(X)) putatively responsible for rifampicin and erythromycin resistance. Both features are not phenotypically expressed, and for these antibiotics, the strain is within the EFSA limits. Analysis of the flanking regions of these genes revealed possible mobile elements upstream and downstream only in the case of the erm(X) gene, but the features of the Insertion Sequences (IS) are described as not to cause horizontal transfer. Our findings on strain PRL2020 demonstrate that its AR profile is compatible with antibiotics when taken with the aim of reducing the risk of dysbiosis.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20125 Milan, Italy
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | | | | | | | | | | | - Mariarosaria Matera
- Department of Pediatric Emergencies, Misericordia Hospital, 58100 Grosseto, Italy
| | | | - Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
3
|
Kiecka A, Macura B, Szczepanik M. Modulation of allergic contact dermatitis via gut microbiota modified by diet, vitamins, probiotics, prebiotics, and antibiotics. Pharmacol Rep 2023; 75:236-248. [PMID: 36729361 PMCID: PMC10060339 DOI: 10.1007/s43440-023-00454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023]
Abstract
Allergic contact dermatitis is one of the most common recorded occupational diseases. There are many different substances that the skin comes into contact with on a daily basis and that can cause ACD, e.g., preservatives, surfactants, and antimicrobial agents. The development of a mouse model of ACD has provided insight into the immune mechanisms involved. Drugs used in the treatment of skin diseases have many side effects. Therefore, alternative methods of suppressing the immune response to reduce the symptoms of skin diseases are being sought. In recent years, high hopes have been placed on dietary modulation and supplementation to affect the intestinal microbial composition and promote anti-inflammatory responses. In addition, other studies have shown the crucial role of intestinal microbiota in many immune-mediated diseases. Recognition and characterization of pro- and anti-inflammatory nutrients and supplements may be crucial to support the treatment of diseases such as atopic dermatitis, acne vulgaris, psoriasis, and allergic contact dermatitis.
Collapse
Affiliation(s)
- Aneta Kiecka
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland.
| | - Barbara Macura
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland
| | - Marian Szczepanik
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland
| |
Collapse
|
4
|
Melamed E, Palmer JL, Fonken C. Advantages and limitations of experimental autoimmune encephalomyelitis in breaking down the role of the gut microbiome in multiple sclerosis. Front Mol Neurosci 2022; 15:1019877. [PMID: 36407764 PMCID: PMC9672668 DOI: 10.3389/fnmol.2022.1019877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 08/22/2023] Open
Abstract
Since the first model of experimental autoimmune encephalomyelitis (EAE) was introduced almost a century ago, there has been an ongoing scientific debate about the risks and benefits of using EAE as a model of multiple sclerosis (MS). While there are notable limitations of translating EAE studies directly to human patients, EAE continues to be the most widely used model of MS, and EAE studies have contributed to multiple key breakthroughs in our understanding of MS pathogenesis and discovery of MS therapeutics. In addition, insights from EAE have led to a better understanding of modifiable environmental factors that can influence MS initiation and progression. In this review, we discuss how MS patient and EAE studies compare in our learning about the role of gut microbiome, diet, alcohol, probiotics, antibiotics, and fecal microbiome transplant in neuroinflammation. Ultimately, the combination of rigorous EAE animal studies, novel bioinformatic approaches, use of human cell lines, and implementation of well-powered, age- and sex-matched randomized controlled MS patient trials will be essential for improving MS patient outcomes and developing novel MS therapeutics to prevent and revert MS disease progression.
Collapse
Affiliation(s)
- Esther Melamed
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | | | | |
Collapse
|
5
|
Jávor P, Mácsai A, Butt E, Baráth B, Jász DK, Horváth T, Baráth B, Csonka Á, Török L, Varga E, Hartmann P. Mitochondrial Dysfunction Affects the Synovium of Patients with Rheumatoid Arthritis and Osteoarthritis Differently. Int J Mol Sci 2022; 23:ijms23147553. [PMID: 35886901 PMCID: PMC9319158 DOI: 10.3390/ijms23147553] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence regarding the role of mitochondrial dysfunction in osteoarthritis (OA) and rheumatoid arthritis (RA). However, quantitative comparison of synovial mitochondrial derangements in these main arthritis forms is missing. A prospective clinical study was conducted on adult patients undergoing knee surgery. Patients were allocated into RA and OA groups based on disease-specific clinical scores, while patients without arthritis served as controls. Synovial samples were subjected to high-resolution respirometry to analyze mitochondrial functions. From the total of 814 patients, 109 cases were enrolled into the study (24 RA, 47 OA, and 38 control patients) between 1 September 2019 and 31 December 2021. The decrease in complex I-linked respiration and dyscoupling of mitochondria were characteristics of RA patients, while both arthritis groups displayed reduced OxPhos activity compared to the control group. However, no significant difference was found in complex II-related activity between the OA and RA groups. The cytochrome C release and H2O2 formation were increased in both arthritis groups. Mitochondrial dysfunction was present in both arthritis groups; however, to a different extent. Consequently, mitochondrial protective agents may have major benefits for arthritis patients. Based on our current study, we recommend focusing on respiratory complex I in rheumatoid arthritis research.
Collapse
Affiliation(s)
- Péter Jávor
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
| | - Attila Mácsai
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
| | - Edina Butt
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
| | - Bálint Baráth
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
- Institute of Surgical Research, University of Szeged, 6720 Szeged, Hungary; (D.K.J.); (T.H.)
| | - Dávid Kurszán Jász
- Institute of Surgical Research, University of Szeged, 6720 Szeged, Hungary; (D.K.J.); (T.H.)
| | - Tamara Horváth
- Institute of Surgical Research, University of Szeged, 6720 Szeged, Hungary; (D.K.J.); (T.H.)
| | - Bence Baráth
- Department of Pathology, University of Szeged, 6720 Szeged, Hungary;
| | - Ákos Csonka
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
| | - László Török
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
- Department of Sports Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Endre Varga
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
| | - Petra Hartmann
- Department of Traumatology, University of Szeged, 6720 Szeged, Hungary; (P.J.); (A.M.); (E.B.); (B.B.); (Á.C.); (L.T.); (E.V.)
- Correspondence:
| |
Collapse
|
6
|
Abstract
Our skin is the interface through which we mediate lifelong interactions with our surrounding environment. Initial development of the skin's epidermis, adnexal structures, and barrier function is necessary for normal cutaneous microbial colonization, immune development, and prevention of disease. Early life microbial exposures can have unique and long-lasting impacts on skin health. The identity of neonatal skin microbes and the context in which they are first encountered, i.e., through a compromised skin barrier or in conjunction with cutaneous inflammation, can have additional short- and long-term health consequences. Here, we discuss key attributes of infant skin and endogenous and exogenous factors that shape its relationship to the early life cutaneous microbiome, with a focus on their clinical implications.
Collapse
Affiliation(s)
- Laura R Dwyer
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Tiffany C Scharschmidt
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Garabatos N, Santamaria P. Gut Microbial Antigenic Mimicry in Autoimmunity. Front Immunol 2022; 13:873607. [PMID: 35572569 PMCID: PMC9094498 DOI: 10.3389/fimmu.2022.873607] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota plays a major role in the developmental biology and homeostasis of cells belonging to the adaptive and innate arms of the immune system. Alterations in its composition, which are known to be regulated by both genetic and environmental factors, can either promote or suppress the pathogenic processes underlying the development of various autoimmune diseases, including inflammatory bowel disease, multiple sclerosis, systemic lupus erythematosus, type 1 diabetes and rheumatoid arthritis, to just name a few. Cross-recognition of gut microbial antigens by autoreactive T cells as well as gut microbe-driven alterations in the activation and homeostasis of effector and regulatory T cells have been implicated in this process. Here, we summarize our current understanding of the positive and negative associations between alterations in the composition of the gut microbiota and the development of various autoimmune disorders, with a special emphasis on antigenic mimicry.
Collapse
Affiliation(s)
- Nahir Garabatos
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Julia McFarlane Diabetes Research Centre (JMDRC), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Mashiah J, Karady T, Fliss‐Isakov N, Sprecher E, Slodownik D, Artzi O, Samuelov L, Ellenbogen E, Godneva A, Segal E, Maharshak N. Clinical efficacy of fecal microbial transplantation treatment in adults with moderate-to-severe atopic dermatitis. Immun Inflamm Dis 2022; 10:e570. [PMID: 34931478 PMCID: PMC8926506 DOI: 10.1002/iid3.570] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a remitting relapsing chronic eczematous pruritic disease. Several studies suggest that gut microbiota may influence AD by immune system regulation. METHODS We performed the first in-human efficacy and safety assessment of fecal microbiota transplantation (FMT) for AD adult patients. All patients received 2 placebo transplantations followed by 4 FMTs each 2 weeks apart. AD severity and fecal microbiome profile were evaluated by the Scoring Atopic Dermatitis Score (SCORAD), the weekly frequency of topical corticosteroids usage, and gut microbiota metagenomic analysis, at the study beginning, before every FMT, and 1-8 months after the last FMT. RESULTS Nine patients completed the study protocol. There was no significant change in the SCORAD score following the two placebo transplants. The average SCORAD score significantly decreased from baseline at Weeks 4-12 (before and 2 weeks after 4 times of FMT) (59.2 ± 34.9%, Wilcoxon p = .011), 50% and 75% decrease was achieved by 7 (77%) and 4 (44%) patients, respectively. At Week 18 (8 weeks after the last FMT) the average SCORAD score decreased from baseline at Week 4 (85.5 ± 8.4%, Wilcoxon p = .018), 50% and 75% decrease was achieved by 7 (77%) and 6 (66.7%) patients respectively. Weekly topical corticosteroids usage was diminished during the study and follow-up period as well. Two patients had a quick relapse and were switched to a different treatment. Two patients developed exacerbations alleviated after an additional fifth FMT. Metagenomic analysis of the fecal microbiota of patients and donors showed bacterial strains transmission from donors to patients. No adverse events were recorded during the study and follow-up period. CONCLUSIONS FMT may be a safe and effective therapeutic intervention for AD patients, associated with transfer of specific microbial species from the donors to the patients. Further studies are required to reconfirm these results.
Collapse
Affiliation(s)
- Jacob Mashiah
- Division of Dermatology and VenereologyTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Pediatric Dermatology Unit, Dana Children's HospitalTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Tal Karady
- Department of Computer Science and Applied MathematicsWeizamnn Institute of ScienceRehovotIsrael
| | - Naomi Fliss‐Isakov
- Department of Gastroenterology and Liver DiseasesTel Aviv Medical CenterTel AvivIsrael
| | - Eli Sprecher
- Division of Dermatology and VenereologyTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Pediatric Dermatology Unit, Dana Children's HospitalTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Dan Slodownik
- Division of Dermatology and VenereologyTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Ofir Artzi
- Division of Dermatology and VenereologyTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Liat Samuelov
- Division of Dermatology and VenereologyTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Pediatric Dermatology Unit, Dana Children's HospitalTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Eran Ellenbogen
- Division of Dermatology and VenereologyTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Anastasia Godneva
- Department of Computer Science and Applied MathematicsWeizamnn Institute of ScienceRehovotIsrael
| | - Eran Segal
- Department of Computer Science and Applied MathematicsWeizamnn Institute of ScienceRehovotIsrael
| | - Nitsan Maharshak
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
- Department of Gastroenterology and Liver DiseasesTel Aviv Medical CenterTel AvivIsrael
| |
Collapse
|
9
|
Jiao L, Su CW, Cao T, Zheng S, Walker WA, Shi HN. Maternal Influences and Intervention Strategies on the Development of Food Allergy in Offspring. Front Immunol 2022; 13:817062. [PMID: 35281070 PMCID: PMC8904425 DOI: 10.3389/fimmu.2022.817062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
Food allergies and other immune-mediated diseases have become serious health concerns amongst infants and children in developed and developing countries. The absence of available cures limits disease management to allergen avoidance and symptomatic treatments. Research has suggested that the presence of maternal food allergies may expose the offspring to genetic predisposition, making them more susceptible to allergen sensitization. The following review has focused on epidemiologic studies regarding maternal influences of proneness to develop food allergy in offspring. The search strategy was "food allergy OR maternal effects OR offspring OR prevention". A systematically search from PubMed/MEDLINE, Science Direct and Google Scholar was conducted. Specifically, it discussed the effects of maternal immunity, microbiota, breastfeeding, genotype and allergy exposure on the development of food allergy in offspring. In addition, several commonly utilized prenatal and postpartum strategies to reduce food allergy proneness were presented, including early diagnosis of high-risk infants and various dietary interventions.
Collapse
Affiliation(s)
- Lefei Jiao
- School of Marine Sciences, Ningbo University, Ningbo, China
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Chien-Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Tinglan Cao
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Shasha Zheng
- Department of Nutrition, California Baptist University, Riverside, CA, United States
| | - W. Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Hai Ning Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
10
|
Locke AV, Larsen JM, Graversen KB, Licht TR, Bahl MI, Bøgh KL. Amoxicillin does not affect the development of cow’s milk allergy in a Brown Norway rat model. Scand J Immunol 2022; 95:e13148. [PMID: 35152475 PMCID: PMC9285443 DOI: 10.1111/sji.13148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/12/2022] [Accepted: 02/04/2022] [Indexed: 11/29/2022]
Abstract
The use of antibiotics as well as changes in the gut microbiota have been linked to development of food allergy in childhood. It remains unknown whether administration of a single clinically relevant antibiotic directly promotes food allergy development when administrated during the sensitisation phase in an experimental animal model. We investigated whether the antibiotic amoxicillin affected gut microbiota composition, development of cow's milk allergy (CMA) and frequencies of allergic effector cells and regulatory T cells in the intestine. Brown Norway rats were given daily oral gavages of amoxicillin for six weeks and whey protein concentrate (WPC) with or without cholera toxin three times per week for the last five weeks. Microbiota composition in faeces and small intestine was analysed by 16S rRNA sequencing. The development of CMA was assessed by WPC‐specific IgE in serum, ear swelling response to WPC and body hypothermia following oral gavage of WPC. Allergic effector cells were analysed by histology, and frequencies of regulatory and activated T cells were analysed by flow cytometry. Amoxicillin administration reduced faecal microbiota diversity, reduced the relative abundance of Firmicutes and increased the abundance of Bacteroidetes and Proteobacteria. Despite these effects, amoxicillin did not affect the development of CMA, nor the frequencies of allergic effector cells or regulatory T cells. Thus, amoxicillin does not carry a direct risk for food allergy development when administrated in an experimental model of allergic sensitisation to WPC via the gut. This finding suggests that confounding factors may better explain the epidemiological link between antibiotic use and food allergy.
Collapse
Affiliation(s)
| | | | | | - Tine Rask Licht
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| | - Martin Iain Bahl
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| | | |
Collapse
|
11
|
Bilski J, Pierzchalski P, Szczepanik M, Bonior J, Zoladz JA. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells 2022; 11:cells11010160. [PMID: 35011721 PMCID: PMC8750433 DOI: 10.3390/cells11010160] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity and ageing place a tremendous strain on the global healthcare system. Age-related sarcopenia is characterized by decreased muscular strength, decreased muscle quantity, quality, and decreased functional performance. Sarcopenic obesity (SO) is a condition that combines sarcopenia and obesity and has a substantial influence on the older adults’ health. Because of the complicated pathophysiology, there are disagreements and challenges in identifying and diagnosing SO. Recently, it has become clear that dysbiosis may play a role in the onset and progression of sarcopenia and SO. Skeletal muscle secretes myokines during contraction, which play an important role in controlling muscle growth, function, and metabolic balance. Myokine dysfunction can cause and aggravate obesity, sarcopenia, and SO. The only ways to prevent and slow the progression of sarcopenia, particularly sarcopenic obesity, are physical activity and correct nutritional support. While exercise cannot completely prevent sarcopenia and age-related loss in muscular function, it can certainly delay development and slow down the rate of sarcopenia. The purpose of this review was to discuss potential pathways to muscle deterioration in obese individuals. We also want to present the current understanding of the role of various factors, including microbiota and myokines, in the process of sarcopenia and SO.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-008 Krakow, Poland
- Correspondence: ; Tel.: +48-12-421-93-51
| | - Piotr Pierzchalski
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Marian Szczepanik
- Department of Medical Biology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland;
| |
Collapse
|
12
|
Lim JS, Kim CR, Shin KS, Lee SJ, Yoon TJ, Park HJ. Synergistic effect of Korean red ginseng extract and GABA mixture on the IgE production in mice via Th1/Th2 cell balance. Food Sci Biotechnol 2021; 30:1571-1580. [PMID: 34868705 DOI: 10.1007/s10068-021-00985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022] Open
Abstract
It has been recently reported that the immune system has been linked to the nervous system. This study was conducted to investigate the effect of administration of two components, gamma-aminobutyric acid (GABA) and Panax ginseng Meyer (GIN), on the production of IgE and Th1-Th2 dominant cytokines. Antibody and inflammatory mediator levels in serum, and the cytokines secreted to spleen cells of ovalbumin (OVA) immunized mice were analyzed. The group of GABA and GIN mixture significantly reduced IgE level and dramatically increased OVA-IgG2a antibody production. In addition, rising effect on IFN-gamma and GM-CSF levels related to Th1 cytokine was observed only in the group of GABA + GIN. The mixture alleviated allergic symptoms by reducing the level of histamine and prostaglandin. These studies suggest that GIN + GABA administration in the allergen-induced mouse model may regulate the Th1-Th2 balance by strongly acting on the immune response associated with Th1.
Collapse
Affiliation(s)
- Jung Sik Lim
- Department of Food and Nutrition, Yuhan University, 590, Kyungin-ro, Buchoen, 14780 Republic of Korea
| | - Chae Rim Kim
- Department of Food and Nutrition, Yuhan University, 590, Kyungin-ro, Buchoen, 14780 Republic of Korea
| | - Kwang Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, 154-42, Gwnggyosan-ro, Yeongtong-gu, Suwon, 16227 Republic of Korea
| | - Sue Jung Lee
- Department of Food Science and Biotechnology, Kyonggi University, 154-42, Gwnggyosan-ro, Yeongtong-gu, Suwon, 16227 Republic of Korea
| | - Taek Joon Yoon
- Department of Food and Nutrition, Yuhan University, 590, Kyungin-ro, Buchoen, 14780 Republic of Korea
| | - Hee Jung Park
- Department of Foodservice Management and Nutrition, Sangmyung University, 20, Hongjimun 2-gil, Jongno-gu, Seoul, 03016 Republic of Korea
| |
Collapse
|
13
|
Tramper‐Stranders G, Ambrożej D, Arcolaci A, Atanaskovic‐Markovic M, Boccabella C, Bonini M, Karavelia A, Mingomataj E, O' Mahony L, Sokolowska M, Untersmayr E, Feleszko W. Dangerous liaisons: Bacteria, antimicrobial therapies, and allergic diseases. Allergy 2021; 76:3276-3291. [PMID: 34390006 DOI: 10.1111/all.15046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
Microbiota composition and associated metabolic activities are essential for the education and development of a healthy immune system. Microbial dysbiosis, caused by risk factors such as diet, birth mode, or early infant antimicrobial therapy, is associated with the inception of allergic diseases. In turn, allergic diseases increase the risk for irrational use of antimicrobial therapy. Microbial therapies, such as probiotics, have been studied in the prevention and treatment of allergic diseases, but evidence remains limited due to studies with high heterogeneity, strain-dependent effectiveness, and variable outcome measures. In this review, we sketch the relation of microbiota with allergic diseases, the overuse and rationale for the use of antimicrobial agents in allergic diseases, and current knowledge concerning the use of bacterial products in allergic diseases. We urgently recommend 1) limiting antibiotic therapy in pregnancy and early childhood as a method contributing to the reduction of the allergy epidemic in children and 2) restricting antibiotic therapy in exacerbations and chronic treatment of allergic diseases, mainly concerning asthma and atopic dermatitis. Future research should be aimed at antibiotic stewardship implementation strategies and biomarker-guided therapy, discerning those patients that might benefit from antibiotic therapy.
Collapse
Affiliation(s)
- Gerdien Tramper‐Stranders
- Department of Pediatrics Franciscus Gasthuis & Vlietland Rotterdam the Netherlands
- Department of Neonatology Erasmus Medical CenterSophia Children's Hospital Rotterdam the Netherlands
| | - Dominika Ambrożej
- Department of Pediatric Pneumonology and Allergy Medical University of Warsaw Warsaw Poland
- Doctoral School Medical University of Warsaw Warsaw Poland
| | - Alessandra Arcolaci
- Immunology Unit University of Verona and General Hospital Borgo Roma Hospital Verona Italy
| | | | - Cristina Boccabella
- Department of Cardiovascular and Thoracic Sciences Università Cattolica del Sacro CuoreFondazione Policlinico Universitario A. Gemelli – IRCCS Rome Italy
| | - Matteo Bonini
- Department of Cardiovascular and Thoracic Sciences Università Cattolica del Sacro CuoreFondazione Policlinico Universitario A. Gemelli – IRCCS Rome Italy
- National Heart and Lung Institute (NHLI) Imperial College London London UK
| | - Aspasia Karavelia
- Department of Ear‐Nose‐Throat surgery General Hospital of Kozani Kozani Greece
| | - Ervin Mingomataj
- Department of Allergology & Clinical Immunology ‘Mother Theresa’ School of Medicine Tirana Albania
| | - Liam O' Mahony
- Departments of Medicine and Microbiology APC Microbiome IrelandNational University of Ireland Cork Ireland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Zurich Switzerland
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Wojciech Feleszko
- Department of Pediatric Pneumonology and Allergy Medical University of Warsaw Warsaw Poland
| | | |
Collapse
|
14
|
Lin SH, Chang YS, Lin TM, Hu LF, Hou TY, Hsu HC, Shen YC, Kuo PI, Chen WS, Lin YC, Chen JH, Chang CC. Proton Pump Inhibitors Increase the Risk of Autoimmune Diseases: A Nationwide Cohort Study. Front Immunol 2021; 12:736036. [PMID: 34659225 PMCID: PMC8514990 DOI: 10.3389/fimmu.2021.736036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Background Previous study revealed proton pump inhibitors (PPIs) have an effect on gut microbiota. Alteration of the microbiome causes changes of the host immune system and then induces the development of autoimmune diseases (ADs). This study aimed to explore the possible association between PPIs use and ADs. Methods This study was conducted using data from the Taiwan National Health Insurance Research Database in the period between 2002 and 2015. We performed multivariate and stratified analysis through the Kaplan-Meier method and Cox proportional hazard models to estimate the association between proton pump inhibitor use and the risk of autoimmune diseases. Results Of the 297,099 patients treated with PPI identified, the overall mean (SD) age was 49.17 (15.63) years and 56.28% of the subjects was male. As compared with the non-PPI group, the adjusted hazard ratio (aHR) were higher for incident organ specific ADs such as Graves disease (aHR=3.28), Hashmoto thyroiditis (aHR=3.61), autoimmune hemolytic anemia (aHR=8.88), immune thrombocytopenic purpura (aHR=5.05) Henoch-Schonlein pupura (aHR=4.83) and Myasthenia gravis (aHR=8.73). Furthermore, the adjusted hazard ratio (aHR) were also higher for incident systemic ADs such as ankylosing spondylitis (aHR=3.67), rheumatoid arthritis (aHR=3.96), primary Sjogren syndrome (aHR=7.81), systemic lupus erythemtoasus (aHR=7.03). systemic vasculitis (aHR=5.10), psoriasis (aHR=2.57), systemic scleroderma (aHR=15.85) and inflammatory myopathy (aHR=37.40). Furthermore, we observed no dose-dependent effect between PPI use and the risk of ADs. Conclusions Our retrospective population-based cohort study showed that the prescription of proton pump inhibitors is associated with a higher risk of ADs.
Collapse
Affiliation(s)
- Sheng-Hong Lin
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Min Lin
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Li-Fang Hu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Tsung-Yun Hou
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ching Hsu
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chuan Shen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Pei-I Kuo
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Cardinal Tien Hospital, Yonghe Branch, New Taipei City, Taiwan
| | - Wei-Sheng Chen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taipei Veterans General Hospital, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chun Lin
- Biostatistics Center, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Jin-Hua Chen
- Biostatistics Center, College of Management, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Chi-Ching Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
15
|
Risk Factors for Gut Dysbiosis in Early Life. Microorganisms 2021; 9:microorganisms9102066. [PMID: 34683389 PMCID: PMC8541535 DOI: 10.3390/microorganisms9102066] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/22/2022] Open
Abstract
Dysbiosis refers to a reduction in microbial diversity, combined with a loss of beneficial taxa, and an increase in pathogenic microorganisms. Dysbiosis of the intestinal microbiota can have a substantial effect on the nervous and immune systems, contributing to the onset of several inflammatory diseases. Epidemiological studies provided insight in how changes in the living environment have contributed to an overall loss of diversity and key taxa in the gut microbiome, coinciding with increased reports of atopy and allergic diseases. The gut microbiome begins development at birth, with major transition periods occurring around the commencement of breastfeeding, and the introduction of solid foods. As such, the development of the gut microbiome remains highly plastic and easily influenced by environmental factors until around three years of age. Developing a diverse and rich gut microbiome during this sensitive period is crucial to setting up a stable gut microbiome into adulthood and to prevent gut dysbiosis. Currently, the delivery route, antibiotic exposure, and diet are the best studied drivers of gut microbiome development, as well as risk factors of gut dysbiosis during infancy. This review focuses on recent evidence regarding key environmental factors that contribute to promoting gut dysbiosis.
Collapse
|
16
|
Boone K, Wisdom C, Camarda K, Spencer P, Tamerler C. Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides. BMC Bioinformatics 2021; 22:239. [PMID: 33975547 PMCID: PMC8111958 DOI: 10.1186/s12859-021-04156-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Current methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning and related neural networking methods have state-of-the-art performance, their vulnerability in decision making processes leading to irrational outcomes is a major concern for their implementation. With the rising antibiotic resistance, antimicrobial peptides (AMPs) have increasingly gained attention as novel therapeutic agents. This challenging design problem requires peptides which meet the multiple constraints of limiting drug-resistance in bacteria, preventing secondary infections from imbalanced microbial flora, and avoiding immune system suppression. AMPs offer a promising, bioinspired design space to targeting antimicrobial activity, but their versatility also requires the curated selection from a combinatorial sequence space. This space is too large for brute-force methods or currently known rational design approaches outside of machine learning. While there has been progress in using the design space to more effectively target AMP activity, a widely applicable approach has been elusive. The lack of transparency in machine learning has limited the advancement of scientific knowledge of how AMPs are related among each other, and the lack of general applicability for fully rational approaches has limited a broader understanding of the design space. METHODS Here we combined an evolutionary method with rough set theory, a transparent machine learning approach, for designing antimicrobial peptides (AMPs). Our method achieves the customization of AMPs using supervised learning boundaries. Our system employs in vitro bacterial assays to measure fitness, codon-representation of peptides to gain flexibility of sequence selection in DNA-space with a genetic algorithm and machine learning to further accelerate the process. RESULTS We use supervised machine learning and a genetic algorithm to find a peptide active against S. epidermidis, a common bacterial strain for implant infections, with an improved aggregation propensity average for an improved ease of synthesis. CONCLUSIONS Our results demonstrate that AMP design can be customized to maintain activity and simplify production. To our knowledge, this is the first time when codon-based genetic algorithms combined with rough set theory methods is used for computational search on peptide sequences.
Collapse
Affiliation(s)
- Kyle Boone
- Bioengineering Program, University of Kansas, Institute of Bioengineering Research, University of Kansas, 1530 W 15th Street, Learned Hall, Room 5109, Lawrence, KS 66045 USA
| | - Cate Wisdom
- Bioengineering Program, University of Kansas, Institute of Bioengineering Research, University of Kansas, 1530 W 15th Street, Learned Hall, Room 5109, Lawrence, KS 66045 USA
| | - Kyle Camarda
- Chemical and Petroleum Engineering Department, University of Kansas, 1530 West 15th Street, Learned Hall, Room 4154, Lawrence, KS 66045 USA
| | - Paulette Spencer
- Mechanical Engineering Department, University of Kansas, 1530 West 15th Street, Learned Hall, Room 3111, Lawrence, KS 66045 USA
- Institute of Bioengineering Research, University of Kansas, 1530 West 15th Street, Learned Hall, Room 3111, Lawrence, KS 66045 USA
| | - Candan Tamerler
- Mechanical Engineering Department, University of Kansas, 1530 W 15th St, Learned Hall, Room 3135A, Lawrence, KS 66045 USA
- Institute of Bioengineering Research, University of Kansas, 1530 W 15th St, Learned Hall, Room 3135A, Lawrence, KS 66045 USA
| |
Collapse
|
17
|
Perinatal treatment of parents with the broad-spectrum antibiotic enrofloxacin aggravates contact sensitivity in adult offspring mice. Pharmacol Rep 2021; 73:664-671. [PMID: 33481210 PMCID: PMC7994221 DOI: 10.1007/s43440-021-00217-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Antibiotics, while eliminating pathogens, also partially deplete commensal bacteria. Antibiotic-induced dysbiosis may contribute to the observed rise in "immune-mediated" diseases, including autoimmunity and allergy. The aim of this study is to investigate the impact of perinatal antibiotic treatment on T cell-mediated immune response in adult mice. METHODS Oral treatment with broad-spectrum antibiotic enrofloxacin during gestation and breastfeeding or breastfeeding or gestation alone was used to evaluate whether antibiotic exposure early in life could modulate contact sensitivity (CS) in adult mice. RESULTS Here, we demonstrated that enrofloxacin treatment during gestation and breastfeeding, but not during pregnancy or breastfeeding alone, aggravated CS reaction in adult mice measured by ear swelling. These data correlate with increased myeloperoxidase (MPO) activity in the ear extracts and elevated production of IL-6 and IL-17A by auricular lymph node cells (ELNC) and was not influenced by food consumption and body weight. In each dosing regimen, enrofloxacin treatment reduced the relative abundance of Enterococcus spp. but did not influence the relative abundances of Lactobacillus, Clostridium cluster XIVa, XIVab, I, Bacteroidetes, and segmented filamentous bacteria (SFB). However, prolonged enrofloxacin-treatment during both gestation and breastfeeding decreased the relative abundance of Clostridium cluster IV. CONCLUSION These data show that long-term perinatal enrofloxacin treatment induces intestinal dysbiosis, characterized by decreased levels of anti-inflammatory Clostridium cluster IV, and alters T cell-dependent immune responses, enhancing CS reaction in adult mice.
Collapse
|
18
|
Witte K, Koch E, Volk HD, Wolk K, Sabat R. The herbal extract EPs® 7630 increases the antimicrobial airway defense through monocyte-dependent induction of IL-22 in T cells. J Mol Med (Berl) 2020; 98:1493-1503. [PMID: 32948884 PMCID: PMC7524690 DOI: 10.1007/s00109-020-01970-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
The phytotherapeutic compound EPs® 7630, an extract manufactured from Pelargonium sidoides roots, is frequently used for the treatment of airway infections. Nevertheless, the knowledge of the mode of action of EPs® 7630 is still sparse. Our study aimed at further elucidating the underlying pharmacological mechanisms by focusing on antimicrobial defense mechanisms of EPs® 7630. While investigating the influence of EPs® 7630 on lymphokine production by PBMCs, we found that EPs® 7630 is a novel inducer of IL-22 and IL-17. This cytokine-inducing effect was most pronounced for IL-22 and clearly dose-dependent starting from 1 μg/ml of the extract. Furthermore, EPs® 7630 pretreatment selectively enhanced the IL-22 and IL-17 production capacity of CD3/28-activated PBMCs while strongly limiting the IFN-γ production capacity of innate lymphoid cells. The relevance of EPs® 7630-induced IL-22 production was proven in vitro and in vivo, where IL-22 provoked a strong increase of the antimicrobial protein S100A9 in lung epithelial cells and pulmonary tissue, respectively. A detailed analysis of IL-22 induction modi revealed no direct influence of EPs® 7630 on the basal or anti-CD3/CD28 antibody-induced IL-22 production by CD4+ memory T cells. In fact, EPs® 7630-induced IL-22 production by CD4+ memory T cells was found to be essentially dependent on soluble mediators (IL-1/IL-23) as well as on direct cellular contact with monocytes. In summary, our study reveals a new immune-modulating function of EPs® 7630 that might confer IL-22 and IL-17-induced protection from bacterial airway infection. KEY MESSAGES: EPs® 7630 selectively strengthens IL-22 and IL-17 production of memory T cells. EPs® 7630 limits the IFN-y production capacity of innate lymphoid cells. EPs® 7630-caused IL-22 production by T cells is essentially dependent on monocytes. IL-22 increase antimicrobial proteins (AMPs) in airway epithelium. EPs® 7630 might protect against airway infection by induction of AMP-inducers.
Collapse
Affiliation(s)
- Katrin Witte
- Interdisciplinary Group of Molecular Immunopathology Dermatology/Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin, Berlin, Germany
| | - Egon Koch
- Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
- , Karlsruhe, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin, Berlin, Germany
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Wolk
- Interdisciplinary Group of Molecular Immunopathology Dermatology/Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin, Berlin, Germany
- Psoriasis Research and Treatment Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Sabat
- Interdisciplinary Group of Molecular Immunopathology Dermatology/Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Psoriasis Research and Treatment Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
19
|
Gut microbiota and metabolites in the pathogenesis of endocrine disease. Biochem Soc Trans 2020; 48:915-931. [DOI: 10.1042/bst20190686] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) and Hashimoto's thyroiditis (HT) are the two most common autoimmune endocrine diseases that have rising global incidence. These diseases are caused by the immune-mediated destruction of hormone-producing endocrine cells, pancreatic beta cells and thyroid follicular cells, respectively. Both genetic predisposition and environmental factors govern the onset of T1D and HT. Recent evidence strongly suggests that the intestinal microbiota plays a role in accelerating or preventing disease progression depending on the compositional and functional profile of the gut bacterial communities. Accumulating evidence points towards the interplay between the disruption of gut microbial homeostasis (dysbiosis) and the breakdown of host immune tolerance at the onset of both diseases. In this review, we will summarize the major recent findings about the microbiome alterations associated with T1D and HT, and the connection of these changes to disease states. Furthermore, we will discuss the potential mechanisms by which gut microbial dysbiosis modulates the course of the disease, including disruption of intestinal barrier integrity and microbial production of immunomodulatory metabolites. The aim of this review is to provide broad insight into the role of gut microbiome in the pathophysiology of these diseases.
Collapse
|
20
|
Savcı A, Koçpınar EF, Budak H, Çiftci M, Şişecioğlu M. The Effects of Amoxicillin, Cefazolin, and Gentamicin Antibiotics on the Antioxidant System in Mouse Heart Tissues. Protein Pept Lett 2020; 27:614-622. [PMID: 31721686 DOI: 10.2174/0929866526666191112125949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/27/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Free radicals lead to destruction in various organs of the organism. The improper use of antibiotics increases the formation of free radicals and causes oxidative stress. OBJECTIVE In this study, it was aimed to determine the effects of gentamicin, amoxicillin, and cefazolin antibiotics on the mouse heart. METHODS 20 male mice were divided into 4 groups (1st control, 2nd amoxicillin, 3rd cefazolin, and 4th gentamicin groups). The mice in the experimental groups were administered antibiotics intraperitoneally at a dose of 100 mg / kg for 6 days. The control group received normal saline in the same way. The gene expression levels and enzyme activities of SOD, CAT, GPx, GR, GST, and G6PD antioxidant enzymes were investigated. RESULTS GSH levels decreased in both the amoxicillin and cefazolin groups, while GR, CAT, and SOD enzyme activities increased. In the amoxicillin group, Gr, Gst, Cat, and Sod gene expression levels increased. CONCLUSION As a result, it was concluded that amoxicillin and cefazolin caused oxidative stress in the heart, however, gentamicin did not cause any effects.
Collapse
Affiliation(s)
- Ahmet Savcı
- Department of Chemistry, Faculty of Art and Science, Bingol University, Bingol, Turkey
| | - Enver Fehim Koçpınar
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Mus Alparslan University, Mus, Turkey
| | - Harun Budak
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mehmet Çiftci
- Department of Chemistry, Faculty of Art and Science, Bingol University, Bingol, Turkey
| | - Melda Şişecioğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
21
|
Kim HJ, Kim YJ, Lee HJ, Hong JY, Park AY, Chung EH, Lee SY, Lee JS, Park YL, Lee SH, Kim JE. Systematic review and meta-analysis: Effect of Helicobacter pylori eradication on chronic spontaneous urticaria. Helicobacter 2019; 24:e12661. [PMID: 31523897 DOI: 10.1111/hel.12661] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Helicobacter pylori (HP) infection is considered to play a role in the pathogenesis of chronic spontaneous urticaria (CSU). However, the efficacy of HP eradication therapy on CSU symptom improvement has not been well established. This meta-analysis was conducted to estimate the association between HP infection and CSU and to evaluate whether HP eradication therapy benefits patients with CSU. MATERIAL AND METHODS In October 2018, we searched databases for studies investigating the efficacy of HP eradication therapy for patients with CSU. Risk ratios (RRs) and 95% confidence intervals (CIs) were pooled using random effects models. RESULTS The meta-analysis included 22 studies with a total of 1385 patients with CSU. When comparing the spontaneous remission of urticarial symptom in patients with HP-positive to HP-negative patients, HP-negative patients showed significantly higher spontaneous remission of urticarial symptoms. (risk ratio 0.39; 95% confidence interval: 0.19-0.81). Among HP-positive CSU patients, remission of CSU was more likely shown in HP eradication therapy group compared to untreated group, aside from achieving HP elimination (risk ratio 2.10; 95% confidence interval: 1.20-3.68). However, there was no significant difference in the remission of CSU whether antibiotic therapy was successful in eradication of HP or not (risk ratio 1.00; 95% confidence interval: 0.65-1.54). CONCLUSIONS The results of this meta-analysis show that HP might be associated with the occurrence and persistence of CSU. The effectiveness of HP eradication therapy in suppressing CSU symptoms was significant. Interestingly, we found that resolution of CSU was not associated with successful eradication of HP infection. CSU Patients who were undergone antibiotic therapy for HP eradication showed significant higher CSU remission with or without HP eradication. Further studies are recommended to evaluate the mechanisms associated with relation of HP with CSU.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
| | - Yeon-Ji Kim
- Department of Internal Medicine, St. Vincent's Hospital, The Catholic University College of Medicine, Suwon, Korea
| | - Ho Jung Lee
- Department of Dermatology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jeong Yeon Hong
- Department of Dermatology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - A Young Park
- Department of Dermatology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Euy Hyun Chung
- Department of Dermatology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sung Yul Lee
- Department of Dermatology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jong Suk Lee
- Department of Dermatology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Young Lip Park
- Department of Dermatology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Sang Hoon Lee
- Department of Dermatology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Jung Eun Kim
- Department of Dermatology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
22
|
Polkowska‐Pruszyńska B, Gerkowicz A, Krasowska D. The gut microbiome alterations in allergic and inflammatory skin diseases – an update. J Eur Acad Dermatol Venereol 2019; 34:455-464. [DOI: 10.1111/jdv.15951] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Affiliation(s)
- B. Polkowska‐Pruszyńska
- Department of Dermatology, Venerology and Paediatric Dermatology Medical University of Lublin Lublin Poland
| | - A. Gerkowicz
- Department of Dermatology, Venerology and Paediatric Dermatology Medical University of Lublin Lublin Poland
| | - D. Krasowska
- Department of Dermatology, Venerology and Paediatric Dermatology Medical University of Lublin Lublin Poland
| |
Collapse
|
23
|
Strzępa A, Marcińska K, Majewska-Szczepanik M, Szczepanik M. Oral treatment with enrofloxacin creates anti-inflammatory environment that supports induction of tolerogenic dendritic cells. Int Immunopharmacol 2019; 77:105966. [PMID: 31679846 DOI: 10.1016/j.intimp.2019.105966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oral enrofloxacin treatment altered the gut microbiome promoting anti-inflammatory bacteria. The dysbiosis promotes regulatory cell induction in the intestines and in the periphery, which suppresses contact sensitivity. Bacterial-derived signals promote regulatory cell induction both directly and indirectly by influencing the phenotype of dendritic cells (DC). METHODS Oral treatment with broad-spectrum antibiotic enrofloxacin was used to evaluate how gut flora perturbation shapes the immune response in the gut and the periphery. RESULTS Enrofloxacin-induced dysbiosis creates an anti-inflammatory environment characterized by increased IL-10 concentration in the gut lumen and tissues. The production of IFN-γ and IL-17A did not change. Oral enrofloxacin treatment skewed the profile of the immune response towards an anti-inflammatory phenotype locally in small intestinal Peyer's Patches (PP) and systematically in the spleen (SPL). Enrofloxacin administration changed immune response in PP by increasing TGF-β secretion from an increased percentage of TGF-β-producing. In the SPL, enrofloxacin treatment increased the secretion of TGF-β and IL-10 and decreased the secretion of IL-17A and IFN-γ. The shift in cytokine profile correlated with a higher percentage of latency-associated peptide and IL-10-producing cells and a decreased percentage of IFN-γ-producing T cells. This anti-inflammatory immune response in the PP and SPL promoted a higher frequency of tolerogenic DC. CONCLUSION Our data indicate that two-week enrofloxacin treatment induces dysbiosis, skews immune response towards an anti-inflammatory phenotype, and elevates secretion of TGF-β and IL-10 in the intestines and periphery. Additionally, we observed higher frequencies of tolerogenic DC, characterized by CD11b and IL-10 expression, which are known inducers of Treg cells.
Collapse
Affiliation(s)
- Anna Strzępa
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 7, 31-034 Krakow, Poland
| | - Katarzyna Marcińska
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 7, 31-034 Krakow, Poland
| | - Monika Majewska-Szczepanik
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 7, 31-034 Krakow, Poland
| | - Marian Szczepanik
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Kopernika 7, 31-034 Krakow, Poland.
| |
Collapse
|
24
|
Zimmermann P, Curtis N. The effect of antibiotics on the composition of the intestinal microbiota - a systematic review. J Infect 2019; 79:471-489. [PMID: 31629863 DOI: 10.1016/j.jinf.2019.10.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/13/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Antibiotics change the composition of the intestinal microbiota. The magnitude of the effect of antibiotics on the microbiota and whether the effects are short-term or persist long-term remain uncertain. In this review, we summarise studies that have investigated the effect of antibiotics on the composition of the human intestinal microbiota. METHODS A systematic search was done to identify original studies that have investigated the effect of systemic antibiotics on the intestinal microbiota in humans. RESULTS We identified 129 studies investigating 2076 participants and 301 controls. Many studies reported a decrease in bacterial diversity with antibiotic treatment. Penicillin only had minor effects on the intestinal microbiota. Amoxicillin, amoxcillin/clavulanate, cephalosporins, lipopolyglycopeptides, macrolides, ketolides, clindamycin, tigecycline, quinolones and fosfomycin all increased abundance of Enterobacteriaea other than E. coli (mainly Citrobacter spp., Enterobacter spp. and Klebsiella spp.). Amoxcillin, cephalosporins, macrolides, clindamycin, quinolones and sulphonamides decreased abundance of E. coli, while amoxcillin/clavulante, in contrast to other penicillins, increased abundance of E. coli. Amoxicllin, piperacillin and ticarcillin, cephalosporins (except fifth generation cephalosporins), carbapenems and lipoglycopeptides were associated with increased abundance of Enterococcus spp., while macrolides and doxycycline decreased its abundance. Piperacillin and ticarcillin, carbapenems, macrolides, clindamycin and quinolones strongly decreased the abundance of anaerobic bacteria. In the studies that investigated persistence, the longest duration of changes was reported after treatment with ciprofloxacin (one year), clindamycin (two years) and clarithromycin plus metronidazole (four years). Many antibiotics were associated with a decrease in butyrate or butryrate-producing bacteria. CONCLUSION Antibiotics have profound and sometimes persisting effects on the intestinal microbiota, characterised by diminished abundance of beneficial commensals and increased abundance of potentially detrimental microorganisms. Understanding these effects will help tailor antibiotic treatment and the use of probiotics to minimise this 'collateral damage'.
Collapse
Affiliation(s)
- Petra Zimmermann
- Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Switzerland; Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia.
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia
| |
Collapse
|
25
|
D'Argenio V, Sarnataro D. Microbiome Influence in the Pathogenesis of Prion and Alzheimer's Diseases. Int J Mol Sci 2019; 20:E4704. [PMID: 31547531 PMCID: PMC6801937 DOI: 10.3390/ijms20194704] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 12/14/2022] Open
Abstract
Misfolded and abnormal β-sheets forms of wild-type proteins, such as cellular prion protein (PrPC) and amyloid beta (Aβ), are believed to be the vectors of neurodegenerative diseases, prion and Alzheimer's disease (AD), respectively. Increasing evidence highlights the "prion-like" seeding of protein aggregates as a mechanism for pathological spread in AD, tauopathy, as well as in other neurodegenerative diseases, such as Parkinson's. Mutations in both PrPC and Aβ precursor protein (APP), have been associated with the pathogenesis of these fatal disorders with clear evidence for their pathogenic significance. In addition, a critical role for the gut microbiota is emerging; indeed, as a consequence of gut-brain axis alterations, the gut microbiota has been involved in the regulation of Aβ production in AD and, through the microglial inflammation, in the amyloid fibril formation, in prion diseases. Here, we aim to review the role of microbiome ("the other human genome") alterations in AD and prion disease pathogenesis.
Collapse
Affiliation(s)
- Valeria D'Argenio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate, via G. Salvatore 486, 80145 Naples, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy.
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate, via G. Salvatore 486, 80145 Naples, Italy.
| |
Collapse
|
26
|
D'Argenio V. The Prenatal Microbiome: A New Player for Human Health. High Throughput 2018; 7:ht7040038. [PMID: 30544936 PMCID: PMC6306741 DOI: 10.3390/ht7040038] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
The last few years have featured an increasing interest in the study of the human microbiome and its correlations with health status. Indeed, technological advances have allowed the study of microbial communities to reach a previously unthinkable sensitivity, showing the presence of microbes also in environments usually considered as sterile. In this scenario, microbial communities have been described in the amniotic fluid, the umbilical blood cord, and the placenta, denying a dogma of reproductive medicine that considers the uterus like a sterile womb. This prenatal microbiome may play a role not only in fetal development but also in the predisposition to diseases that may develop later in life, and also in adulthood. Thus, the aim of this review is to report the current knowledge regarding the prenatal microbiome composition, its association with pathological processes, and the future perspectives regarding its manipulation for healthy status promotion and maintenance.
Collapse
Affiliation(s)
- Valeria D'Argenio
- CEINGE-BiotecnologieAvanzate, via G. Salvatore via G. Salvatore 486, 80145 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|