1
|
Li JY, Feng TS, Gao J, Yang XX, Li XC, Deng ZH, Xia YX, Wu ZS. Differentiation and immunosuppressive function of CD19 +CD24 hiCD27 + regulatory B cells are regulated through the miR-29a-3p/NFAT5 pathway. Hepatobiliary Pancreat Dis Int 2024; 23:472-480. [PMID: 38724321 DOI: 10.1016/j.hbpd.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 04/12/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Regulatory B cells (Bregs) is an indispensable element in inducing immune tolerance after liver transplantation. As one of the microRNAs (miRNAs), miR-29a-3p also inhibits translation by degrading the target mRNA, and yet the relationship between Bregs and miR-29a-3p has not yet been fully explored. This study aimed to investigate the impact of miR-29a-3p on the regulation of differentiation and immunosuppressive functions of memory Bregs (mBregs) and ultimately provide potentially effective therapies in inducing immune tolerance after liver transplantation. METHODS Flow cytometry was employed to determine the levels of Bregs in peripheral blood mononuclear cells. TaqMan low-density array miRNA assays were used to identify the expression of different miRNAs, electroporation transfection was used to induce miR-29a-3p overexpression and knockdown, and dual luciferase reporter assay was used to verify the target gene of miR-29a-3p. RESULTS In patients experiencing acute rejection after liver transplantation, the proportions and immunosuppressive function of mBregs in the circulating blood were significantly impaired. miR-29a-3p was found to be a regulator of mBregs differentiation. Inhibition of miR-29a-3p, which targeted nuclear factor of activated T cells 5 (NFAT5), resulted in a conspicuous boost in the differentiation and immunosuppressive function of mBregs. The inhibition of miR-29a-3p in CD19+ B cells was capable of raising the expression levels of NFAT5, thereby promoting B cells to differentiate into mBregs. In addition, the observed enhancement of differentiation and immunosuppressive function of mBregs upon miR-29a-3p inhibition was abolished by the knockdown of NFAT5 in B cells. CONCLUSIONS miR-29a-3p was found to be a crucial regulator for mBregs differentiation and immunosuppressive function. Silencing miR-29a-3p could be a potentially effective therapeutic strategy for inducing immune tolerance after liver transplantation.
Collapse
Affiliation(s)
- Jin-Yang Li
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing 210029, China
| | - Tian-Shuo Feng
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing 210029, China
| | - Ji Gao
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing 210029, China
| | - Xin-Xiang Yang
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing 210029, China
| | - Xiang-Cheng Li
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing 210029, China
| | - Zhen-Hua Deng
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing 210029, China
| | - Yong-Xiang Xia
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing 210029, China
| | - Zheng-Shan Wu
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Lu H, Zhang J, Cao Y, Wu S, Wei Y, Yin R. Advances in applications of artificial intelligence algorithms for cancer-related miRNA research. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:231-243. [PMID: 38650448 PMCID: PMC11057993 DOI: 10.3724/zdxbyxb-2023-0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 04/25/2024]
Abstract
MiRNAs are a class of small non-coding RNAs, which regulate gene expression post-transcriptionally by partial complementary base pairing. Aberrant miRNA expressions have been reported in tumor tissues and peripheral blood of cancer patients. In recent years, artificial intelligence algorithms such as machine learning and deep learning have been widely used in bioinformatic research. Compared to traditional bioinformatic tools, miRNA target prediction tools based on artificial intelligence algorithms have higher accuracy, and can successfully predict subcellular localization and redistribution of miRNAs to deepen our understanding. Additionally, the construction of clinical models based on artificial intelligence algorithms could significantly improve the mining efficiency of miRNA used as biomarkers. In this article, we summarize recent development of bioinformatic miRNA tools based on artificial intelligence algorithms, focusing on the potential of machine learning and deep learning in cancer-related miRNA research.
Collapse
Affiliation(s)
- Hongyu Lu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Jia Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Yixin Cao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Shuming Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
3
|
Macieira KV, Caetano DG, De Lima SMB, Wagner Giacoia-Gripp CB, Côrtes FH, Da Silva Cazote A, De Souza Azevedo Soares A, Dos Santos Alves N, De Souza Borges Quintana M, Costa M, Brandão LGP, De Andrade MM, Grinsztejn B, Coelho LE, De Almeida DV. Differential gene expression of cytokines, receptors, and miRNAs in individuals living with HIV-1 and vaccinated against yellow fever. Mol Immunol 2023; 164:58-65. [PMID: 37952362 DOI: 10.1016/j.molimm.2023.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Between 2016 and 2018, Brazil faced a yellow fever (YF) outbreak, which led to an expansion of vaccination coverage. The coexistence of the YF outbreak and the HIV-1 epidemic in Brazil raised concerns regarding the immune response and vaccine effectiveness in individuals living with HIV (PLWH). The aim of this study was to investigate the immune response to YF vaccination in PLWH and HIV-uninfected individuals as controls. Transcript levels of immunomodulatory molecules, including IL-6, IL-10, IL-21, TGF-β, CD19, CD163, miR-21, miR-146, and miR-155, were measured using RTqPCR. TCD4+ cells were evaluated by cytometry, and neutralizing antibody (Nab) titers were detected by a micro plaque-reduction neutralization test. The findings of our study revealed several noteworthy observations. First, there was a notable reduction in the circulation of TCD4+ cells postvaccination. Among people living with HIV (PLWH), we observed an increase in the expression of IL-10 following vaccination, while IL-6 expression was diminished in PLWH with lower TCD4+ counts. Furthermore, we identified the downregulation of CD19 and TGF-β, along with the upregulation of IL-21 and CD163. Notably, we observed positive correlations between the levels of IL-10/IL-21, IL-10/CD163, and IL-6/CD19. Additionally, there was a positive correlation between miRNAs 146 and 155. It is important to emphasize that all participants exhibited robust neutralizing antibody responses after receiving 17DD YF vaccination. In this context, the gene expression data presented can be useful for biomarker studies of protective antibodies induced by YF vaccination. This study sheds light on immune mechanisms in individuals living with HIV and YF vaccination.
Collapse
Affiliation(s)
- Karine Venegas Macieira
- Laboratório de Aids e Imunologia Molecular (LABAIDS), Instituto Oswaldo Cruz, Fiocruz, Rio De Janeiro, Brazil
| | - Diogo Gama Caetano
- Laboratório de Aids e Imunologia Molecular (LABAIDS), Instituto Oswaldo Cruz, Fiocruz, Rio De Janeiro, Brazil
| | - Sheila Maria Barbosa De Lima
- Departamento de Desenvolvimento Experimental e pré-Clínico (DEDEP), Bio-Manguinhos/Fiocruz, Rio de Janeiro, Brazil
| | | | - Fernanda Heloise Côrtes
- Laboratório de Aids e Imunologia Molecular (LABAIDS), Instituto Oswaldo Cruz, Fiocruz, Rio De Janeiro, Brazil
| | - Andressa Da Silva Cazote
- Laboratório de Aids e Imunologia Molecular (LABAIDS), Instituto Oswaldo Cruz, Fiocruz, Rio De Janeiro, Brazil
| | | | | | | | - Marcellus Costa
- Instituto Nacional de Infectologia Evandro Chagas (INI) - Fiocruz, Rio De Janeiro, Brazil
| | | | | | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas (INI) - Fiocruz, Rio De Janeiro, Brazil
| | - Lara Esteves Coelho
- Instituto Nacional de Infectologia Evandro Chagas (INI) - Fiocruz, Rio De Janeiro, Brazil
| | | |
Collapse
|
4
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Ding Y, Zhong J, Wang Y, Xie W. Proteomic and microRNA-omic profiles and potential mechanisms of dysfunction in pancreatic islet cells primed by inflammation. Exp Ther Med 2020; 21:122. [PMID: 33335585 PMCID: PMC7739849 DOI: 10.3892/etm.2020.9554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes is an inflammatory disease that induces pancreatic islet dysfunction. However, to the best of our knowledge, the potential underlying molecular mechanisms of this inflammatory process remains unknown. The present study investigated microRNA (miRNA/miR) and protein expression profiles through proteomics and miRNA-omics. Lipopolysaccharide-induced macrophage cell medium (LRM) was used to stimulate inflammation in mouse Beta-TC-6 islet cells. Protein analysis revealed that 87 proteins were upregulated and 42 proteins were downregulated in LRM-treated Beta-TC-6 cells compared with control cells. Additionally, miRNA analysis revealed that 11 miRNAs were upregulated, while 28 miRNAs were downregulated in LRM-treated Beta-TC-6 cells compared with control cells. Islet cells exposed to inflammation exhibited markedly downregulated protein levels of transcription factor MafA, pancreatic and duodenal homeobox 1, paired box 6, homeobox protein Nkx-2.2, synaptosomal-associated protein 25, glucagon and insulin-2, while the expression of miR-146a-5p and miR-21a-5p were upregulated. It was also determined that upregulated miR-146a-5p and miR-21a-5p levels may be mediated by NF-κB activation. The downregulation of islet functional factor mRNA was partially reversed by treating islet cells with an inhibitor of miR-21a-5p. However, treatment with an miR-146a-5p inhibitor did not exert the same effect. Overall, the present study determined the molecular profiles of islet cell inflammation based on proteomics and miRNA-omics, and indicated that the proteins and miRNAs with altered expressions may form a large network that serves a role in islet dysfunction. Particularly, miR-21a-5p upregulation in response to inflammation may contribute to islet cell dysfunction. However, how these miRNAs regulated the expression of certain mRNAs and proteins in islet cell inflammation requires further investigation.
Collapse
Affiliation(s)
- Yipei Ding
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Jin Zhong
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| | - Yangyang Wang
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| | - Weidong Xie
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China.,Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
6
|
Meng G, Wei J, Wang Y, Qu D, Zhang J. miR-21 regulates immunosuppression mediated by myeloid-derived suppressor cells by impairing RUNX1-YAP interaction in lung cancer. Cancer Cell Int 2020; 20:495. [PMID: 33061847 PMCID: PMC7549228 DOI: 10.1186/s12935-020-01555-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) are known suppressors of antitumor immunity and contribute to immunosuppressive microenvironment during tumor development including lung cancer. Accumulating evidence shows microRNAs (miRNAs) affect tumor-expanded MDSC accumulation and function in tumor microenvironment and favor solid tumor growth. Herein, we aim to characterize the role of miR-21 in regulating the accumulation and activity of MDSCs in lung cancer. Methods The proportions of MDSCs, T helper cells (Th), and cytotoxic T lymphocytes (CTL) were evaluated by flow cytometric analyses of peripheral blood and tumor tissues collected from Lewis lung-cancer-bearing mice. T cell proliferation assay was performed in CD4+ or CD8+ T cells cocultured with MDSCs. MDSC apoptosis was examined by flow cytometric analysis. The levels of IL-10, TGF-β, and GM-CSF in mouse serum were determined by ELISA. miR-21 targeting RUNX1 and RUNX1 interaction with YAP were evaluated by RIP, dual-luciferase reporter gene, and ChIP assays. Results MiR-21 inhibition by its antagomir reduced the proportion of MDSCs, increased the proportion of Th and CTL in peripheral blood and tumor tissues of Lewis lung-cancer-bearing mice, protected Th and CTL from the suppression of MDSCs, increased apoptosis of MDSCs, but reduced IL-10, TGF-β and GM-CSF levels in mouse serum. RUNX1 could transcriptionally inhibit the YAP expression, whereas miR-21 targeting RUNX1 led to elevated YAP expression levels. Mechanistic investigation showed that miR-21 maintained MDSC accumulation in tumor microenvironment and promoted immunosuppressive ability of MDSCs in Lewis lung-cancer-bearing mice by down-regulating RUNX1and up-regulating YAP. Conclusions Taken together, the study provides evidence that targeting miR-21 in MDSCs may be developed as an immunotherapeutic approach to combat lung cancer development.
Collapse
Affiliation(s)
- Guangping Meng
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130000 Jilin People's Republic of China
| | - Jinying Wei
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130000 Jilin People's Republic of China.,Department of General Practice, The First Hospital of Jilin University, Changchun, 130021 People's Republic of China
| | - Yanjun Wang
- Department of Nursing, The Second Hospital of Jilin University, Changchun, 130000 People's Republic of China
| | - Danhua Qu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130000 Jilin People's Republic of China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130000 Jilin People's Republic of China
| |
Collapse
|
7
|
Therapeutic Potentials of MicroRNAs for Curing Diabetes Through Pancreatic β-Cell Regeneration or Replacement. Pancreas 2020; 49:1131-1140. [PMID: 32852323 DOI: 10.1097/mpa.0000000000001655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
MicroRNAs are a type of noncoding RNAs that regulates the expression of target genes at posttranscriptional level. MicroRNAs play essential roles in regulating the expression of different genes involved in pancreatic development, β-cell mass maintenance, and β-cell function. Alteration in the level of miRNAs involved in β-cell function leads to the diabetes. Being an epidemic, diabetes threatens the life of millions of patients posing a pressing demand for its urgent resolve. However, the currently available therapies are not substantial to cure the diabetic epidemic. Thus, researchers are trying to find new ways to replenish the β-cell mass in patients with diabetes. One promising approach is the in vivo regeneration of β-cell mass or increasing the efficiency of β-cell function. Another clinical strategy is the transplantation of in vitro developed β-like cells. Owing to their role in pancreatic β-cell development, maintenance, functioning and their involvement in diabetes, overexpression or attenuation of different miRNAs can cause β-cell regeneration in vivo or can direct the differentiation of various kinds of stem/progenitor cells to β-like cells in vitro. Here, we will summarize different strategies used by researchers to investigate the therapeutic potentials of miRNAs, with focus on miR-375, for curing diabetes through β-cell regeneration or replacement.
Collapse
|
8
|
Wu L, Xia J, Li D, Kang Y, Fang W, Huang P. Mechanisms of M2 Macrophage-Derived Exosomal Long Non-coding RNA PVT1 in Regulating Th17 Cell Response in Experimental Autoimmune Encephalomyelitisa. Front Immunol 2020; 11:1934. [PMID: 33013847 PMCID: PMC7500097 DOI: 10.3389/fimmu.2020.01934] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/17/2020] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNA (lncRNA) is pivotal for multiple sclerosis (MS), but the potential mechanism of lncRNA PVT1 in MS animal model, experimental autoimmune encephalomyelitis (EAE) still remains unclear. In this study, macrophages were firstly isolated and induced to polarize into M2 macrophages. M2 macrophage-derived exosomes (M2-exos) were extracted and identified, and EAE mouse model was established and treated with M2-exos. The effect of M2-exos on EAE mice was evaluated by clinical scores. The proportion of Treg and Th17 cells in spinal cord cells and splenocytes, and levels of inflammatory factors were measured. The targeting relationships among PVT1, miR-21-5p, and SOCS5 were verified. The expression of JAKs/STAT3 pathway-related proteins was measured. After M2-exo treatment, the clinical score of EAE mice decreased, and demyelination and inflammatory infiltration improved; Th17 cells decreased, Treg cells increased, and the levels of inflammatory factors decreased significantly. SOCS5 and PVT1 were downregulated and miR-21-5p was upregulated in EAE mice. PVT1 could sponge miR-21-5p to regulate SOCS5. SOCS5 alleviated EAE symptoms by repressing the JAKs/STAT3 pathway. Together, M2-exos-carried lncRNA PVT1 sponged miR-21-5p to upregulate SOCS5 and inactivate the JAKs/STAT3 pathway, thus reducing inflammation and protecting EAE mice. This study may offer novel treatments for MS.
Collapse
Affiliation(s)
- Lei Wu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, China
| | - Jinjin Xia
- Department of Neurology, Changxing Hospital, Second Affiliated Hospital of Medical College of Zhejiang University, Huzhou, China
| | - Donghui Li
- Department of Neurology, Changxing Hospital, Second Affiliated Hospital of Medical College of Zhejiang University, Huzhou, China
| | - Ying Kang
- Department of Pollution Source Statistics, Zhejiang Provincial Environmental Monitoring Center, Hangzhou, China
| | - Wei Fang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Peng Huang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
9
|
Al-Heety RA, Al-Hadithi HS. Circulating miRNA-21-5p role in the development of orbitopathy in Graves disease. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Lee FT, Dangi A, Shah S, Burnette M, Yang YG, Kirk AD, Hering BJ, Miller SD, Luo X. Rejection of xenogeneic porcine islets in humanized mice is characterized by graft-infiltrating Th17 cells and activated B cells. Am J Transplant 2020; 20:1538-1550. [PMID: 31883299 PMCID: PMC7286695 DOI: 10.1111/ajt.15763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/18/2019] [Accepted: 12/18/2019] [Indexed: 01/25/2023]
Abstract
Xenogeneic porcine islet transplantation is a promising potential therapy for type 1 diabetes (T1D). Understanding human immune responses against porcine islets is crucial for the design of optimal immunomodulatory regimens for effective control of xenogeneic rejection of porcine islets in humans. Humanized mice are a valuable tool for studying human immune responses and therefore present an attractive alternative to human subject research. Here, by using a pig-to-humanized mouse model of xenogeneic islet transplantation, we described the human immune response to transplanted porcine islets, a process characterized by dense islet xenograft infiltration of human CD45+ cells comprising activated human B cells, CD4+ CD44+ IL-17+ Th17 cells, and CD68+ macrophages. In addition, we tested an experimental immunomodulatory regimen in promoting long-term islet xenograft survival, a triple therapy consisting of donor splenocytes treated with ethylcarbodiimide (ECDI-SP), and peri-transplant rituximab and rapamycin. We observed that the triple therapy effectively inhibited graft infiltration of T and B cells as well as macrophages, promoted transitional B cells both in the periphery and in the islet xenografts, and provided a superior islet xenograft protection. Our study therefore indicates an advantage of donor ECDI-SP treatment in controlling human immune cells in promoting long-term islet xenograft survival.
Collapse
Affiliation(s)
- Frances T. Lee
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Sahil Shah
- Department of Biomedical Engineering, Northwestern University, Evanston, Ilinois
| | - Melanie Burnette
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Yong-Guang Yang
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Allan D. Kirk
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Bernhard J. Hering
- Schulze Diabetes Institute, University of Minnesota, Minneapolis, Minnesota
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina,Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
11
|
MicroRNA-21-5p participates in IgA nephropathy by driving T helper cell polarization. J Nephrol 2019; 33:551-560. [PMID: 31863364 DOI: 10.1007/s40620-019-00682-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/02/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Previous studies have revealed abnormal lymphocyte subsets in IgA nephropathy (IgAN). Some microRNAs have been reported to influence T helper differentiation. Here, we explored the underlying mechanism regarding how miRNAs regulate lymphocyte subsets in IgAN. METHODS First, miRNA and mRNA profiles in PBMCs from IgAN patients and controls were obtained by next-generation sequencing and gene expression array. The target miRNAs and mRNAs were identified through combined analysis. Then, in an independent population, we detected the expression of target miRNA in CD3+ T cells and CD19+ B cells. Next, we detected T helper cell subgroups and plasma IgA1 levels in another independent population and analyzed the correlations between them. RESULTS In total, 22 differentially expressed miRNAs were identified between IgAN patients and controls. Among them, microRNA-21-5p (miR-21) showed the highest expression, and SPRY1, SPRY2, and FASLG were chosen as miR-21 target genes. Then, we confirmed elevated miR-21 levels in CD3+ T cells of IgAN patients. Accordingly, decreased mRNA levels of SPRY1, SPRY2, and FASLG were found, and miR-21 showed a significant negative correlation with SPRY1 levels in CD3+ T cells of IgAN patients. Finally, we revealed that the proportion of Th17 cells was significantly elevated in IgAN patients and negatively correlated with SPRY1 expression. Furthermore, the proportion of Th17 cells showed a positive correlation trend with plasma IgA1 levels. CONCLUSIONS Our results suggested that in IgAN, the upregulated miR-21 expression in T lymphocytes inhibited SPRY1 expression and thereby induced Th17 polarization, which might influence the characteristic feature of IgA1 overproduction in IgAN patients.
Collapse
|
12
|
Nucleic acid-based theranostics in type 1 diabetes. Transl Res 2019; 214:50-61. [PMID: 31491371 DOI: 10.1016/j.trsl.2019.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/01/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022]
Abstract
Application of RNAi interference for type 1 diabetes (T1D) therapy bears tremendous potential. This review will discuss vehicles for oligonucleotide delivery, imaging modalities used for delivery monitoring, therapeutic targets, and different theranostic strategies that can be applied for T1D treatment.
Collapse
|
13
|
Al-Ghezi ZZ, Miranda K, Nagarkatti M, Nagarkatti PS. Combination of Cannabinoids, Δ9- Tetrahydrocannabinol and Cannabidiol, Ameliorates Experimental Multiple Sclerosis by Suppressing Neuroinflammation Through Regulation of miRNA-Mediated Signaling Pathways. Front Immunol 2019; 10:1921. [PMID: 31497013 PMCID: PMC6712515 DOI: 10.3389/fimmu.2019.01921] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/29/2019] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic and disabling disorder of the central nervous system (CNS) characterized by neuroinflammation leading to demyelination. Recently a combination of Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) extracted from Cannabis has been approved in many parts of the world to treat MS-related spasticity. THC+CBD combination was also shown to suppresses neuroinflammation, although the mechanisms remain to be further elucidated. In the current study, we demonstrate that THC+CBD combination therapy (10 mg/kg each) but not THC or CBD alone, attenuates murine experimental autoimmune encephalomyelitis (EAE) by reducing neuroinflammation and suppression of Th17 and Th1 cells. These effects were mediated through CB1 and CB2 receptors inasmuch as, THC+CBD failed to ameliorate EAE in mice deficient in CB1 and CB2. THC+CBD treatment also caused a decrease in the levels of brain infiltrating CD4+ T cells and pro-inflammatory molecules (IL-17, INF-γ, TNF-α, IL-1β, IL-6, and TBX21), while increasing anti-inflammatory phenotype such as FoxP3, STAT5b, IL-4, IL-10, and TGF-β. Also, the brain-derived cells showed increased apoptosis along with decreased percentage in G0/G1 phase with increased percentage in G2/M phase of cell cycle. miRNA microarray analysis of brain-derived CD4+ T cells revealed that THC+CBD treatment significantly down-regulated miR-21a-5p, miR-31-5p, miR-122-5p, miR-146a-5p, miR-150-5p, miR-155-5p, and miR-27b-5p while upregulating miR-706-5p and miR-7116. Pathway analysis showed that majority of the down-regulated miRs targeted molecules involved in cycle arrest and apoptosis such as CDKN2A, BCL2L11, and CCNG1, as well as anti-inflammatory molecules such as SOCS1 and FoxP3. Additionally, transfection studies involving miR-21 and use of Mir21-/- mice suggested that while this miR plays a critical role in EAE, additional miRs may also be involved in THC+CBD-mediated attenuation of EAE. Collectively, this study suggests that combination of THC+CBD suppresses neuroinflammation and attenuates clinical EAE development and that this effect is associated with changes in miRNA profile in brain-infiltrating cells.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/therapeutic use
- Brain/cytology
- Cannabidiol/therapeutic use
- Cells, Cultured
- Cytokines/genetics
- Cytokines/immunology
- Dronabinol/therapeutic use
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- MicroRNAs/genetics
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Signal Transduction
- Spinal Cord/drug effects
- Spinal Cord/pathology
- Spleen/cytology
Collapse
Affiliation(s)
| | | | | | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|