1
|
Khanna V, Singh K. MicroRNAs as promising drug delivery target to ameliorate chronic obstructive pulmonary disease using nano-carriers: a comprehensive review. Mol Cell Biochem 2024:10.1007/s11010-024-05110-0. [PMID: 39254870 DOI: 10.1007/s11010-024-05110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a deteriorating condition triggered by various factors, such as smoking, free radicals, and air pollution. This worsening disease is characterized by narrowing and thickening of airways, painful cough, and dyspnea. In COPD, numerous genes as well as microRNA (miRNA) play a significant role in the pathogenesis of the disease. Many in vivo and in vitro studies suggest that upregulation or suppression of certain miRNAs are effective treatment options for COPD. They have been proven to be more beneficial than the current symptomatic treatments, such as bronchodilators and corticosteroids. MiRNAs play a crucial role in immune cell development and regulate inflammatory responses in various tissues. MiRNA treatment thus allows for precision therapy with improved outcomes. Nanoparticle drug delivery systems such as polymeric nanoparticles, inorganic nanoparticles, dendrimers, polymeric micelles, and liposomes are an efficient method to ensure the biodistribution of the miRNAs to the target site. Identification of the right nanoparticle depending on the requirements and compatibility is essential for achieving maximum therapeutic effect. In this review, we offer a thorough comprehension of the pathology and genetics of COPD and the significance of miRNAs concerning various pathologies of the lung, as potential targets for treating the disease. The present review offers the latest insights into the nanoparticle drug delivery systems that can efficiently carry and deliver miRNA or antagomirs to the specific target site and hence help in effective management of COPD.
Collapse
Affiliation(s)
- Vamika Khanna
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
2
|
De Rubis G, Paudel KR, Corrie L, Mehndiratta S, Patel VK, Kumbhar PS, Manjappa AS, Disouza J, Patravale V, Gupta G, Manandhar B, Rajput R, Robinson AK, Reyes RJ, Chakraborty A, Chellappan DK, Singh SK, Oliver BGG, Hansbro PM, Dua K. Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2793-2833. [PMID: 37991539 DOI: 10.1007/s00210-023-02830-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Vyoma K Patel
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Arehalli Sidramappa Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
- Department of Pharmaceutics, Vasantidevi Patil Institute of Pharmacy, Kodoli, Kolkapur, Maharashtra, 416114, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Rashi Rajput
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Alexandra Kailie Robinson
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Ruby-Jean Reyes
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Amlan Chakraborty
- Division of Immunology, Immunity to Infection and Respiratory Medicine (DIIIRM), School of Biological Sciences I Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
3
|
Fu Y, Zhao J, Chen J, Zheng Y, Mo R, Zhang L, Zhang B, Lin Q, He C, Li S, Lin L, Xie T, Ding Y. miR‑186‑5p regulates the inflammatory response of chronic obstructive pulmonary disorder by targeting HIF‑1α. Mol Med Rep 2024; 29:34. [PMID: 38214374 PMCID: PMC10804437 DOI: 10.3892/mmr.2024.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/14/2023] [Indexed: 01/13/2024] Open
Abstract
Chronic obstructive pulmonary disorder (COPD) is a chronic respiratory disease that is a major cause of morbidity and mortality worldwide. Previous studies have shown that miR‑186‑5p expression is significantly increased in COPD and is involved in multiple physiological and pathological processes. However, the role of miRNA‑186‑5p in the inflammatory response of COPD remains unclear. In this study, an in vitro model of COPD was established using lipopolysaccharide (LPS)‑induced human bronchial epithelial cells (BEAS‑2B). CCK‑8 assays, flow cytometry, and a Muse cell analyzer were used to determine cell viability, cell cycle distribution, and apoptosis, respectively. The production of TNF‑α and IL‑6 were measured by ELISA. Reverse‑transcription‑quantitative PCR and western blotting were used to analyze mRNA and protein expression levels. The targeting relation between miR‑186‑5p and HIF‑1α was discovered using dual‑luciferase reporter assays. The results showed that transfection of miR‑186‑5p inhibitor inhibited cell proliferation and promoted cell apoptosis in the LPS‑induced BEAS‑2B cells. Inhibition of miR‑186‑5p markedly increased the levels of TNF‑α and IL‑6. miR‑186‑5p directly targeted and negatively regulated HIF‑1α expression. In addition, inhibition of miR‑186‑5p increased the expression of the NF‑κB pathway protein p‑p65. In conclusion, it was found that inhibiting miR‑186‑5p may improve inflammation of COPD through HIF‑1α in LPS‑induced BEAS‑2B cells, possibly by regulating NF‑κB signaling. These findings provide a novel potential avenue for the clinical management of COPD. Future research is required to determine the mechanism of the interaction between miR‑186‑5p and HIF‑1α in COPD.
Collapse
Affiliation(s)
- Yihui Fu
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Jie Zhao
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Jie Chen
- Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Yamei Zheng
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Rubing Mo
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Lei Zhang
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Bingli Zhang
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Qi Lin
- Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Chanyi He
- Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Siguang Li
- Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Lingsang Lin
- Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Tian Xie
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Yipeng Ding
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
- Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
4
|
Gu P, Wang Z, Yu X, Wu N, Wu L, Li Y, Hu X. Mechanism of KLF9 in airway inflammation in chronic obstructive pulmonary. Immun Inflamm Dis 2023; 11:e1043. [PMID: 37904708 PMCID: PMC10568256 DOI: 10.1002/iid3.1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an airway-associated lung disorder, resulting in airway inflammation. This article aimed to explore the role of the krüppel-like factor 9 (KLF9)/microRNA (miR)-494-3p/phosphatase and tensin homolog (PTEN) axis in airway inflammation and pave a theoretical foundation for the treatment of COPD. METHODS The COPD mouse model was established by exposure to cigarette smoke, followed by measurements of total cells, neutrophils, macrophages, and hematoxylin and eosin staining. The COPD cell model was established on human lung epithelial cells BEAS-2B using cigarette smoke extract. Cell viability was assessed by cell counting kit-8 assay. miR-494-3p, KLF9, PTEN, and NLR family, pyrin domain containing 3 (NLRP3) levels in tissues and cells were measured by quantitative real-time polymerase chain reaction or Western blot assay. Inflammatory factors (TNF-α/IL-6/IL-8/IFN-γ) were measured by enzyme-linked immunosorbent assay. Interactions among KLF9, miR-494-3p, and PTEN 3'UTR were verified by chromatin immunoprecipitation and dual-luciferase assays. RESULTS KLF9 was upregulated in lung tissues of COPD mice. Inhibition of KLF9 alleviated airway inflammation, reduced intrapulmonary inflammatory cell infiltration, and repressed NLRP3 expression. KLF9 bound to the miR-494-3p promoter and increased miR-494-3p expression, and miR-494-3p negatively regulated PTEN expression. miR-494-3p overexpression or Nigericin treatment reversed KLF9 knockdown-driven repression of NLRP3 inflammasome and inflammation. CONCLUSION KLF9 bound to the miR-494-3p promoter and repressed PTEN expression, thereby facilitating NLRP3 inflammasome-mediated inflammation.
Collapse
Affiliation(s)
- Peijie Gu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Zhen Wang
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Xin Yu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Nan Wu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Liang Wu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Yihang Li
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Xiaodong Hu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| |
Collapse
|
5
|
Kopa-Stojak PN, Pawliczak R. Comparison of effects of tobacco cigarettes, electronic nicotine delivery systems and tobacco heating products on miRNA-mediated gene expression. A systematic review. Toxicol Mech Methods 2023; 33:18-37. [PMID: 35722939 DOI: 10.1080/15376516.2022.2089610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVES This work attempts to summarize current knowledge on the effects of cigarettes, electronic nicotine delivery systems and tobacco heating products on miRNA-mediated gene expression regulation and on their possible impact on smoking-related respiratory disease development. MATERIALS AND METHODS Literature search by terms combination: 'smoking', 'cigarette' 'THP', 'tobacco heating product', 'ENDS', 'electronic nicotine delivery system', 'e-cigarette', electronic cigarette' and 'miRNA-mediated gene expression' has been performed from October 2021 to February 2022. In this systematic review all relevant literature, including clinical trials, cellular and animal-based studies were included. RESULTS Cigarette smoke (CS) significantly altered transcriptome, including miRNAs expression profile. MiRNA-mediated gene expression is mentioned as one of the mechanisms associated with smoking-related respiratory disease development. Differential expression of miRNAs was reduced in aerosol from e-cigarettes (EC) and tobacco heating products (THP) when compared to CS. However, there was a significant alteration of some miRNAs expression when compared to air-controls in both EC and THP. DISCUSSION CS negatively affects transcriptome and miRNA-mediated gene expression regulation because of a huge number of hazardous substances which predispose to smoking-related diseases. Despite the reduced effect of ENDS and THP on miRNAs profile compared to CS, differences in expression of miRNAs when compared to air-control were observed, which may be harmful to never-smokers who may perceive such alternative smoking products as non-hazardous. To clearly indicate the role of ENDS and THP in the alteration of miRNA-mediated gene expression and the development of smoking-related respiratory diseases associated with this mechanism, more long-term studies should be performed in the future.
Collapse
Affiliation(s)
- Paulina Natalia Kopa-Stojak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Yang J, Zhang MY, Du YM, Ji XL, Qu YQ. Identification and Validation of CDKN1A and HDAC1 as Senescence-Related Hub Genes in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2022; 17:1811-1825. [PMID: 35975032 PMCID: PMC9375999 DOI: 10.2147/copd.s374684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/31/2022] [Indexed: 01/06/2023] Open
Abstract
Purpose Cellular senescence participates in the occurrence and development of chronic obstructive pulmonary disease (COPD). This study aimed to identify senescence-related hub genes and explore effective diagnostic markers and therapeutic targets for COPD. Methods The microarray data from the GSE38974 dataset was downloaded from the Gene Expression Omnibus (GEO) database. The overlapping genes between genes from the GSE38974 dataset and CellAge database were considered differentially expressed senescence-related genes (DESRGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using R software. Protein-protein interaction (PPI), miRNA-mRNA network, and competitive endogenous RNA (ceRNA) network were constructed and visualized by Cytoscape software. GSE100281 and GSE103174 datasets were employed to validate the expression and diagnostic value of hub genes. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to measure the mRNA levels of hub genes in peripheral blood mononuclear cells (PBMCs) from COPD and control samples. Results A total of 23 DESRGs were identified between COPD samples and healthy controls. Enrichment analysis revealed that DESRGs were mainly related to apoptosis and senescence. Moreover, four hub genes and two key clusters were acquired by Cytohubba and MCODE plugin, respectively. CDKN1A and HDAC1 were verified as final hub genes based on GSE100281 and GSE103174 datasets validation. The mRNA expression level of CDKN1A was negatively related to forced expiratory volume in 1 second/forced vital capacity (FEV1/FVC), and HDAC1 expression had the opposite correlation. Finally, an HDAC1-based ceRNA network, including 6 miRNAs and 11 lncRNAs, was constructed. Conclusion We identified two senescence-related hub genes, CDKN1A and HDAC1, which may be effective biomarkers for COPD diagnosis and treatment. An HDAC1-related ceRNA network was constructed to clarify the role of senescence in COPD pathogenesis.
Collapse
Affiliation(s)
- Jie Yang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People's Republic of China.,Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People's Republic of China
| | - Yi-Ming Du
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Xiu-Li Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan, People's Republic of China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, People's Republic of China
| |
Collapse
|
7
|
Zhong S, Yang L, Liu N, Zhou G, Hu Z, Chen C, Wang Y. Identification and validation of aging-related genes in COPD based on bioinformatics analysis. Aging (Albany NY) 2022; 14:4336-4356. [PMID: 35609226 PMCID: PMC9186770 DOI: 10.18632/aging.204064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a serious chronic respiratory disorder. One of the major risk factors for COPD progression is aging. Therefore, we investigated aging-related genes in COPD using bioinformatic analyses. Firstly, the Aging Atlas database containing 500 aging-related genes and the Gene Expression Omnibus database (GSE38974) were utilized to screen candidates. A total of 24 candidate genes were identified related to both COPD and aging. Using gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, we found that this list of 24 genes was enriched in genes associated with cytokine activity, cell apoptosis, NF-κB and IL-17 signaling. Four of these genes (CDKN1A, HIF1A, MXD1 and SOD2) were determined to be significantly upregulated in clinical COPD samples and in cigarette smoke extract-exposed Beas-2B cells in vitro, and their expression was negatively correlated with predicted forced expiratory volume and forced vital capacity. In addition, the combination of expression levels of these four genes had a good discriminative ability for COPD patients (AUC = 0.794, 95% CI 0.743-0.845). All four were identified as target genes of hsa-miR-519d-3p, which was significantly down-regulated in COPD patients. The results from this study proposed that regulatory network of hsa-miR-519d-3p/CDKN1A, HIF1A, MXD1, and SOD2 closely associated with the progression of COPD, which provides a theoretical basis to link aging effectors with COPD progression, and may suggest new diagnostic and therapeutic targets of this disease.
Collapse
Affiliation(s)
- Shan Zhong
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, P.R. China
| | - Li Yang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, P.R. China
| | - Naijia Liu
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China
| | - Guangkeng Zhou
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China
| | - Zhangli Hu
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China.,Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, P.R. China
| | - Yun Wang
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China
| |
Collapse
|
8
|
Liu JJ, Liu L, Mu HH, Li JY, Xu L, Wu YY, Li BX, Zhang Y, Zhang XY, Ye XW, Zhang C. Transfer of Invitro CD4 + T Cells with Hypomethylation of Perforin Promoter into Rats' Abdomens Causes Autoimmune Emphysema. COPD 2022; 19:255-261. [PMID: 35604834 DOI: 10.1080/15412555.2022.2072720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our previous study suggested that hypomethylation of perforin promoter of CD4 + T cells might be involved in the pathogenesis of autoimmune emphysema of rats. Whether transfer of this kind of cells hypomethylated in vitro into naive immunocompetent rats also results in emphysema is unknown yet. To test the hypothesis above, thirty Sprague Dawley (SD) rats were randomly divided into three groups: a model group (n = 10), a normal control group (n = 10) and a sham operation group (n = 10). In the model group, spleen-derived CD4 + T cells of normal rats were treated with 5-azacytidine (5-Aza), complete Freund's adjuvant and Phosphate Buffered Saline (PBS), then transferred into naive immunocompetent rats. The normal control group was injected with CD4 + T lymphocytes from spleens of normal rats and the same amount of adjuvant and PBS as above. In sham operation group, normal rats were injected intraperitoneally with complete Freund's adjuvant and PBS. Histopathological evaluations (mean linear Intercept (MLI) and mean alveolar numbers (MAN)), anti-endothelial cell antibodies (AECA) in serum and bronchoalveolar lavage fluid (BALF), lung vascular endothelial growth factor (VEGF)), the apoptotic index (AI) of alveolar septal cells and the methylation levels of perforin promoter of CD4 + T cells were investigated. The levels of the methylation above and MAN were lower in the model group than in the control and the sham operation group, while the AECA in serum and BALF, VEGF, MLI and the AI were greater (all p < 0.05). The methylation levels of perforin promoter were positively correlated with the MAN (r = 0.747, p < 0.05) and negatively correlated with AI, AECA, MLI, and VEGF (r was -0.789, -0.746, -0.743, -0.660, respectively, all p < 0.05). This study suggests that transfer of invitro CD4 + T cells with hypomethylation of perforin promoter into rats causes autoimmune emphysema, possibly by increasing expression of VEGF and promoting alveolar septal cell apoptosis.
Collapse
Affiliation(s)
- Jia-Jia Liu
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.,Department of Respiratory Medicine, The First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, Sichuan, China
| | - Lin Liu
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Hong-Hong Mu
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Jia-Yi Li
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Lin Xu
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yao-Yao Wu
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Ben-Xue Li
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Ye Zhang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xiang-Yan Zhang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xian-Wei Ye
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Cheng Zhang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
9
|
Mai Z, Mi Y, Jiang M, Wan S, Di Q. Expression and Related Mechanisms of miR-100 and TRIB2 in COPD Patients. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6556208. [PMID: 35494527 PMCID: PMC9050250 DOI: 10.1155/2022/6556208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is one of the most common chronic respiratory diseases in the world. COPD is a general term for a class of lung diseases, including emphysema, chronic bronchitis, and refractory asthma. It is characterized by irreversible airflow obstruction and chronic tracheal inflammation. Objective This study aimed to investigate the expression and related mechanisms of miR-100 and TRIB2 in patients with COPD. Methods We collected the serum of patients admitted to our hospital and healthy volunteers undergoing physical examination at the same time, pulmonary fibroblasts were purchased for the experiments, miR-100 was overexpressed, and TRIB2 expression was inhibited in cells. The miR-100 and TRIB2 expression levels in serum and cells were detected by qRT-PCR and Western blot, cell proliferation and apoptosis were detected by CCK-8 and flow cytometry, and the relationship between miR-100 and TRIB2 was explored by the dual-luciferase report. Results The miR-100 expression in the serum of the COPD group was expressed normally, while the TRIB2 expression was expressed abnormally (p < 0.05). The AUC of serum miR-146a and TRIB2 for COPD diagnosis were 0.965 and 0.954, respectively. Overexpressing miR-100 and inhibiting the TRIB2 expression could decrease cell proliferation and increase apoptosis rate. According to the dual-luciferase report, miR-100 and TRIB2 had a targeted regulatory relationship. Rescue experiments showed that overexpressing TRIB2 could reverse the changes of cell proliferation and apoptosis caused by overexpression of miR-100. Conclusion miR-100 and TRIB2 were expressed abnormally in serum of COPD patients, and miR-100 could inhibit proliferation of pulmonary fibroblasts and promote their apoptosis.
Collapse
Affiliation(s)
- Zhitao Mai
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou 061001, Hebei, China
| | - Ya Mi
- Hemodialysis Room, Cangzhou Central Hospital, Cangzhou 061001, Hebei, China
| | - Mingming Jiang
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou 061001, Hebei, China
| | - Shanzhi Wan
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou 061001, Hebei, China
| | - Qingguo Di
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou 061001, Hebei, China
| |
Collapse
|
10
|
Cerón-Pisa N, Iglesias A, Shafiek H, Martín-Medina A, Esteva-Socias M, Muncunill J, Fleischer A, Verdú J, Cosío BG, Sauleda J. Hsa-Mir-320c, Hsa-Mir-200c-3p, and Hsa-Mir-449c-5p as Potential Specific miRNA Biomarkers of COPD: A Pilot Study. PATHOPHYSIOLOGY 2022; 29:143-156. [PMID: 35466228 PMCID: PMC9036303 DOI: 10.3390/pathophysiology29020013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease commonly induced by cigarette smoke. The expression of miRNAs can be altered in patients with COPD and could be used as a biomarker. We aimed to identify a panel of miRNAs in bronchoalveolar lavage (BAL) to differentiate COPD patients from smokers and non-smokers with normal lung function. Accordingly, forty-five subjects classified as COPD, smokers, and non-smokers (n = 15 per group) underwent clinical, functional characterization and bronchoscopy with BAL. The mean age of the studied population was 61.61 ± 12.95 years, BMI 25.72 ± 3.82 Kg/m2, FEV1/FVC 68.37 ± 12.00%, and FEV1 80.07 ± 23.63% predicted. According to microarray analysis, three miRNAs of the most upregulated were chosen: miR-320c, miR-200c-3p, and miR-449c-5p. These miRNAs were validated by qPCR and were shown to be differently expressed in COPD patients. ROC analysis showed that these three miRNAs together had an area under the curve of 0.89 in differentiating COPD from controls. Moreover, in silico analysis of candidate miRNAs by DIANA-miRPath showed potential involvement in the EGFR and Hippo pathways. These results suggest a specific 3-miRNA signature that could be potentially used as a biomarker to distinguish COPD patients from smokers and non-smoker subjects.
Collapse
Affiliation(s)
- Noemi Cerón-Pisa
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Amanda Iglesias
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Hanaa Shafiek
- Chest Diseases Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Aina Martín-Medina
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Margalida Esteva-Socias
- Department of Molecular Biology, Wallenberg Centre for Molecular Medicine, Umea University, 90187 Umea, Sweden
| | - Josep Muncunill
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Aarne Fleischer
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Javier Verdú
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Borja G Cosío
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Jaume Sauleda
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
11
|
Shi XF, He X, Sun ZR, Wang JX, Gu YH, Xie YB, Duo J. Different expression of circulating microRNA profile and plasma SP-D in Tibetan COPD patients. Sci Rep 2022; 12:3388. [PMID: 35232961 PMCID: PMC8888752 DOI: 10.1038/s41598-022-05592-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
COPD is the fourth leading cause of mortality, and is predicted to be the third leading cause of death worldwide by 2020. But few studies on Tibetan COPD of China. This study identifies distinctive miRNA signatures in Tibetan COPD patients from Tibetan healthy subjects that could serve as diagnostic biomarkers or describe differential molecular mechanisms with potential therapeutic implications. In this study, a total of 210 differentially expressed miRNAs were screened. Analysis of the functions of target genes of differentially expressed miRNAs via GO enrichment analysis revealed that they mainly influenced guanyl-nucleotide exchange factor activity, cell morphogenesis and the positive regulation of GTPase activity. KEGG pathway enrichment analysis showed that these target genes were mainly enriched in signaling by NGF, Axon guidance, developmental biology, ubiquitin mediated proteolysis, and PDGF signaling pathways. MiR-106-5p and miR-486-5p expression was validated in the complete cohort. Age, plasma miR-106-5p, miR-486-5p, SP-D protein levels, and SP-D mRNA level were also determined to be correlated with FEV1%Pred, and may as the risk factors of Tibetan COPD. The combination of plasma miR-106-5p, miR-486-5p and SP-D mRNA expression may be the best model to assist the diagnosis of Tibetan COPD.
Collapse
Affiliation(s)
- Xue-Feng Shi
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, People's Republic of China
| | - Xiang He
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, People's Republic of China
| | - Ze-Rui Sun
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, People's Republic of China
| | - Jian-Xiang Wang
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, People's Republic of China
| | - Yu-Hai Gu
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, People's Republic of China
| | - You-Bang Xie
- Department of Hematology and Rheumatology, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, People's Republic of China.
| | - Jie Duo
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, People's Republic of China.
| |
Collapse
|
12
|
Zhang M, Lu Y, Liu L, Zhang X, Ning J. Role and mechanism of miR-181a-5p in mice with chronic obstructive pulmonary disease by regulating HMGB1 and the NF-κB pathway. Cells Tissues Organs 2022:000522155. [DOI: 10.1159/000522155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/16/2022] [Indexed: 11/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease. This study explored the mechanism of miR-181a-5p in the inflammatory response in COPD mice. COPD mouse models were established by cigarette smoke (CS) exposure following pretreatment with recombinant adeno-associated virus (rAAv)-miR-181a-5p, si-HMGB1 (high mobility group box 1), and NF-κB pathway inhibitor PDTC, respectively. Pathological changes of lung tissues were determined by HE staining. BALF was collected to count total cells, neutrophils and lymphocytes using a Countess II automatic cell counter. Expressions of NE and inflammatory factors (TNF-α, IL-6, IL-8 and IFN-γ) were detected by ELISA. Binding relationship between miR-181a-5p and HMGB1 was predicted on Starbase (http://starbase.sysu.edu.cn/index.php) and validated by dual-luciferase assay. miR-181a-5p expression was detected by RT-qPCR, and expressions of HMGB1, IκBα, p-IκBα were detected by Western blot. The expression level of miR-181a-5p was lower in lung tissues. miR-181a-5p overexpression alleviated inflammatory response and pathological changes of lung tissues in COPD mice, with decreased pulmonary inflammation scores, total cells, neutrophils, and lymphocytes and expressions of NE and inflammatory factors. HMGB1 expression level was increased in COPD mice. miR-181a-5p targeted HMGB1. si-HMGB1 relieved inflammatory responses in COPD mice. NF-κB was activated in COPD mice, evidenced by degraded IκBα and increased p-IκBα level. si-HMGB1 significantly restrained the activation of NF-κB pathway. Briefly, miR-181a-5p targets HMGB1 to inhibit the NF-κB pathway, thus alleviating the inflammatory response in COPD mice.
Collapse
|
13
|
Wang C, Feng D, Dong S, He R, Fan B. Dysregulated circulating microRNA‐126 in chronic obstructive pulmonary disease: linkage with acute exacerbation risk, severity degree, and inflammatory cytokines. J Clin Lab Anal 2022; 36:e24204. [PMID: 35064606 PMCID: PMC8906012 DOI: 10.1002/jcla.24204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Congying Wang
- Department of Respiratory and Critical Care Medicine Jiaozuo Coal Industry (Group) Co. Ltd. Central Hospital Jiaozuo China
| | - Dong Feng
- Department of Orthopedics Jiaozuo Coal Industry (Group) Co. Ltd. Central Hospital Jiaozuo China
| | - Shanfeng Dong
- Department of Urology Jiaozuo Coal Industry (Group) Co. Ltd. Central Hospital Jiaozuo China
| | - Ruilian He
- Department of Respiratory and Critical Care Medicine Jiaozuo Coal Industry (Group) Co. Ltd. Central Hospital Jiaozuo China
| | - Bosheng Fan
- Department of Neurology Jiaozuo Coal Industry (Group) Co. Ltd. Central Hospital Jiaozuo China
| |
Collapse
|
14
|
Zhang J, Liu J, Xu S, Yu X, Zhang Y, Li X, Zhang L, Yang J, Xing X. Bioinformatics analyses of the pathogenesis and new biomarkers of chronic obstructive pulmonary disease. Medicine (Baltimore) 2021; 100:e27737. [PMID: 34797299 PMCID: PMC8601278 DOI: 10.1097/md.0000000000027737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is one of the major cause of global death. The purpose of our analysis was to detect a more reliable biomarker and small-molecule drug candidates and to identify the precise mechanisms involved in COPD. METHODS Three data sets were downloaded from the Gene Expression Omnibus database and analysed by Gene Expression Omnibus 2R. Functional enrichment analyses were performed by Metascape. We use the STRING data to build a protein-protein interaction network. The targets of differentially expressed microRNA (DE miRNA) were predicted by the miRWalk database. Small-molecule drugs were predicted on connectivity map. RESULTS A total of 181 differentially expressed genes and 35 DE miRNAs were confirmed. The protein-protein interaction network including all integrated differentially expressed genes was constructed, and 4 modules were filtrated. The module genes were relative to immune, inflammatory and oxidative stress functions according to a pathway analysis. The top 20 key genes were screened. Among the DE miRNAs found to be regulating key genes, miR-194-3p, MiR-502-5p, MiR-5088-5p, MiR-3127-5p, and miR-23a-5p might be the most significant due to their high number of connecting nodes in COPD. In addition, cephaeline, emetine, gabapentin, and amrinone were found to be potential drugs to treat COPD patients. CONCLUSION Our study suggests that miR-194-3p, miR-502-5p, and miR-23a-5p might participate in the nosogenesis of COPD. In addition, 4 potential small-molecule drugs were considered potentially useful for treating COPD patients.
Collapse
Affiliation(s)
- Jihua Zhang
- Department of Respiratory Medicine, The People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Jie Liu
- The graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Shuanglan Xu
- The graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaochao Yu
- The graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Yi Zhang
- Department of Respiratory Medicine, The People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Xiao Li
- Department of Respiratory Medicine, The People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Liqiong Zhang
- Department of Respiratory Medicine, The People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Jiao Yang
- First Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiqian Xing
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
15
|
Neiburga KD, Vilne B, Bauer S, Bongiovanni D, Ziegler T, Lachmann M, Wengert S, Hawe JS, Güldener U, Westerlund AM, Li L, Pang S, Yang C, Saar K, Huebner N, Maegdefessel L, DigiMed Bayern Consortium, Lange R, Krane M, Schunkert H, von Scheidt M. Vascular Tissue Specific miRNA Profiles Reveal Novel Correlations with Risk Factors in Coronary Artery Disease. Biomolecules 2021; 11:1683. [PMID: 34827683 PMCID: PMC8615466 DOI: 10.3390/biom11111683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Non-coding RNAs have already been linked to CVD development and progression. While microRNAs (miRs) have been well studied in blood samples, there is little data on tissue-specific miRs in cardiovascular relevant tissues and their relation to cardiovascular risk factors. Tissue-specific miRs derived from Arteria mammaria interna (IMA) from 192 coronary artery disease (CAD) patients undergoing coronary artery bypass grafting (CABG) were analyzed. The aims of the study were 1) to establish a reference atlas which can be utilized for identification of novel diagnostic biomarkers and potential therapeutic targets, and 2) to relate these miRs to cardiovascular risk factors. Overall, 393 individual miRs showed sufficient expression levels and passed quality control for further analysis. We identified 17 miRs-miR-10b-3p, miR-10-5p, miR-17-3p, miR-21-5p, miR-151a-5p, miR-181a-5p, miR-185-5p, miR-194-5p, miR-199a-3p, miR-199b-3p, miR-212-3p, miR-363-3p, miR-548d-5p, miR-744-5p, miR-3117-3p, miR-5683 and miR-5701-significantly correlated with cardiovascular risk factors (correlation coefficient >0.2 in both directions, p-value (p < 0.006, false discovery rate (FDR) <0.05). Of particular interest, miR-5701 was positively correlated with hypertension, hypercholesterolemia, and diabetes. In addition, we found that miR-629-5p and miR-98-5p were significantly correlated with acute myocardial infarction. We provide a first atlas of miR profiles in IMA samples from CAD patients. In perspective, these miRs might play an important role in improved risk assessment, mechanistic disease understanding and local therapy of CAD.
Collapse
Affiliation(s)
| | - Baiba Vilne
- Bioinformatics Lab, Riga Stradiņš University, LV-1007 Riga, Latvia;
- SIA Net-OMICS, LV-1011 Riga, Latvia
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Sabine Bauer
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
| | - Dario Bongiovanni
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
- Department of Internal Medicine I, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (T.Z.); (M.L.)
| | - Tilman Ziegler
- Department of Internal Medicine I, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (T.Z.); (M.L.)
| | - Mark Lachmann
- Department of Internal Medicine I, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (T.Z.); (M.L.)
| | - Simon Wengert
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
| | - Johann S. Hawe
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Ulrich Güldener
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Annie M. Westerlund
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Ling Li
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Shichao Pang
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Chuhua Yang
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Kathrin Saar
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (K.S.); (N.H.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Norbert Huebner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (K.S.); (N.H.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Lars Maegdefessel
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
- Department of Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | | | - Rüdiger Lange
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
- German Heart Centre Munich, Department of Cardiac Surgery, Technical University Munich, 80636 Munich, Germany
| | - Markus Krane
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
- German Heart Centre Munich, Department of Cardiac Surgery, Technical University Munich, 80636 Munich, Germany
- Division of Cardiac Surgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Heribert Schunkert
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
| | - Moritz von Scheidt
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
| |
Collapse
|
16
|
Shen W, Wang S, Wang R, Zhang Y, Tian H, Yang X, Wei W. Analysis of the polarization states of the alveolar macrophages in chronic obstructive pulmonary disease samples based on miRNA-mRNA network signatures. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1333. [PMID: 34532470 PMCID: PMC8422127 DOI: 10.21037/atm-21-3815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Background Multiple gene expression studies have been performed to investigate the biomarkers of chronic obstructive pulmonary disease (COPD). However, few studies have related COPD to macrophage cells. Methods The gene expression levels of clinical samples of COPD smokers (COPD; n=6), healthy smokers (Smoke; n=11), and never smokers (Never; n=4) were downloaded from the Gene Expression Omnibus (GEO) repository of GSE124180. The expression levels of messenger RNAs (mRNAs) and microRNAs (miRNAs) in macrophage cells of M0 (n=7), M1 (n=7), and M2 (n=7) were downloaded from the GEO repository of GSE46903 and GSE51307. Differentially expressed (DE) mRNAs (DEmRNAs) were identified by edgeR and GEO2R, with an adjusted P value <0.05 and |log2fold change (FC)| ≥1 chosen as the cut-off threshold. The potential target genes of miRNA were identified using miRanda (v3.3a) and TargetScan (v6.0) with default settings. Gene Ontology (GO) and Reactome pathway analyses were performed. Results The composition of macrophages was quite different between COPD, Never, and Smoke samples. The proportion of M1 cells was lower than that of M0 and M2 cells in Smokers and COPD samples. Most of the genes specifically up-regulated in M1 are related to inflammation/immunity. The expression levels of miR-30a-5p, miR-200c-3p, miR-20b-5p, miR-199b-5p, and miR-301b-3p in M1 macrophages were all lower than that of M0. Their expression levels in M2 macrophages compared with M1 varied, with higher expression in miR-30a-5p, miR-20b-5p, and lower expression in miR-200c-3p, and miR-301b-3p. The mRNAs of the fms related receptor tyrosine kinase 1 (FLT1), cardiotrophin like cytokine factor 1 (CLCF1), phosphodiesterase 4D (PDE4D), coagulation factor III, and tissue factor (F3) were dysregulated in COPD and macrophage cells. Conclusions The present study mined the miRNA-mRNA signature which might play an essential role in COPD and macrophage polarization.
Collapse
Affiliation(s)
- Wen Shen
- Respiratory Medicine Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shukun Wang
- Respiratory Medicine Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruili Wang
- Respiratory Medicine Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Zhang
- Respiratory Medicine Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hong Tian
- Respiratory Medicine Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaolei Yang
- Respiratory Medicine Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Wei
- Respiratory Medicine Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
17
|
Li C, Liu JH, Su J, Lin WJ, Zhao JQ, Zhang ZH, Wu Q. LncRNA XIST knockdown alleviates LPS-induced acute lung injury by inactivation of XIST/miR-132-3p/MAPK14 pathway : XIST promotes ALI via miR-132-3p/MAPK14 axis. Mol Cell Biochem 2021; 476:4217-4229. [PMID: 34346000 PMCID: PMC8330477 DOI: 10.1007/s11010-021-04234-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
Acute lung injury (ALI) is a fatal inflammatory response syndrome. LncRNA XIST (XIST) is a lung cancer-related gene and participates in pneumonia. However, whether XIST participates in lipopolysaccharides (LPS)-induced ALI remains unclear. LPS-induced inflammation model was constructed in vitro, then cell viability, cytokines, cell apoptosis, protein, and mRNA expressions were individually detected by cell counting kit-8, enzyme-linked immunosorbent assay and flow cytometry, Western blot, and qRT-PCR. A dual-luciferase reporter assay confirmed the relationships among XIST, miR-132-3p, and MAPK14. Furthermore, inflammation and conditions after knockdown of XIST were assessed by hematoxylin and eosin staining, lung wet-to-dry weight ratio, PaO2/FiO2 ratio, and malondialdehyde (MDA) contents using LPS-induced in vivo model. Our findings indicated that the LPS challenge decreased cell viability, increased cell apoptosis, and caused secretions of pro-inflammatory cytokines. Noticeably, LPS significantly upregulated XIST, MAPK14, and downregulated miR-132-3p. Mechanistically, XIST acted as a molecular sponge to suppress miR-132-3p, and MAPK14 was identified as a target of miR-132-3p. Functional analyses demonstrated that XIST silencing remarkably increased cell survival and alleviated cell death and lung injury through decreasing TNF-α, IL-1β, IL-6, accumulation of inflammatory cells, alveolar hemorrhage, MDA release, and increased PaO2/FiO2 ratio, as well as upregulating Bcl-2, and downregulating Bax, MAPK14, and p-extracellular signal-regulated kinases ½. In contrast, inhibition of the miR-132-3p antagonized the effects of XIST silencing. In conclusion, inhibition of XIST exhibited a protective role in LPS-induced ALI through modulating the miR-132-3p/MAPK14 axis.
Collapse
Affiliation(s)
- Chen Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jian-Hua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jing Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Wei-Jia Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jian-Qing Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Zhi-Hua Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Qi Wu
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
18
|
The Role of miRNAs in Extracellular Matrix Repair and Chronic Fibrotic Lung Diseases. Cells 2021; 10:cells10071706. [PMID: 34359876 PMCID: PMC8304879 DOI: 10.3390/cells10071706] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
The lung extracellular matrix (ECM) plays a key role in the normal architecture of the lung, from embryonic lung development to mechanical stability and elastic recoil of the breathing adult lung. The lung ECM can modulate the biophysical environment of cells through ECM stiffness, porosity, topography and insolubility. In a reciprocal interaction, lung ECM dynamics result from the synthesis, degradation and organization of ECM components by the surrounding structural and immune cells. Repeated lung injury and repair can trigger a vicious cycle of aberrant ECM protein deposition, accompanied by elevated ECM stiffness, which has a lasting effect on cell and tissue function. The processes governing the resolution of injury repair are regulated by several pathways; however, in chronic lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary disease (IPF) these processes are compromised, resulting in impaired cell function and ECM remodeling. Current estimates show that more than 60% of the human coding transcripts are regulated by miRNAs. miRNAs are small non-coding RNAs that regulate gene expressions and modulate cellular functions. This review is focused on the current knowledge of miRNAs in regulating ECM synthesis, degradation and topography by cells and their dysregulation in asthma, COPD and IPF.
Collapse
|
19
|
Bersimbaev R, Aripova A, Bulgakova O, Kussainova А, Akparova A, Izzotti A. The Plasma Levels of hsa-miR-19b-3p, hsa-miR-125b-5p and hsa-miR-320c in Patients with Asthma, COPD and Asthma-COPD Overlap Syndrome (ACOS). Microrna 2021; 10:130-138. [PMID: 34151771 DOI: 10.2174/2211536610666210609142859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bronchial Asthma (BA) and Chronic Obstructive Pulmonary Disease (COPD) are chronic airway inflammation diseases. In recent years, patients with signs of both BA and COPD have been assigned to a separate group as Asthma-COPD Overlap Syndrome (ACOS). Free-circulating plasma microRNAs are considered as potential biomarkers of pulmonary diseases, including BA, COPD and ACOS. OBJECTIVE This study aimed to investigate the expression level of free-circulating plasma microRNAs hsa-miR-19b-3p, hsa-miR-125b-5p and hsa-miR-320c in patients with BA, COPD and ACOS for the detection and validation of new microRNAs as biomarkers for chronic lung diseases. METHODS The relative expression levels of 720 microRNAs were evaluated by Real Time-Polymerase Chain Reaction (RT-PCR) in patients with COPD and BA. Three upregulated microRNAs (hsa-miR-19b-3p, hsa-miR-125b-5p and hsa-miR-320c) were selected for further study. The obtained data was analyzed using the microRNA PCR Array Data Analysis tool. The sensitivity and specificity were estimated using the area under the Receiver Operating Characteristics curve (ROC). RESULTS The expression level of free-circulating hsa-miR-19b-3p was decreased in the blood plasma of patients with BA and ACOS, and increased in patients with COPD. hsa-miR-125b-5p was downregulated in the blood plasma of patients with COPD, and upregulated in patients with BA and ACOS. hsa-miR-320c was downregulated in the blood plasma of patients with BA, and upregulated in patients with COPD and ACOS. The ROC curves of patients with BA for hsa-miR-19b-3p, patients with ACOS for hsa-miR-125b-5p and patients with COPD for hsa-miR-320c revealed the probability of them as valuable biomarkers with AUCs of 0.824, 0.825, and 0.855, respectively. CONCLUSION Our study revealed three promising biomarkers for the diagnosis of COPD, BA and ACOS.
Collapse
Affiliation(s)
- Rakhmetkazhy Bersimbaev
- Department of General Biology and Genomics, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | - Akmaral Aripova
- Department of General Biology and Genomics, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | - Olga Bulgakova
- Department of General Biology and Genomics, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | - Аssya Kussainova
- Department of General Biology and Genomics, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | - Almira Akparova
- Department of General Biology and Genomics, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, I-16132 Genoa, Italy
| |
Collapse
|
20
|
Weidner J, Bartel S, Kılıç A, Zissler UM, Renz H, Schwarze J, Schmidt‐Weber CB, Maes T, Rebane A, Krauss‐Etschmann S, Rådinger M. Spotlight on microRNAs in allergy and asthma. Allergy 2021; 76:1661-1678. [PMID: 33128813 PMCID: PMC8246745 DOI: 10.1111/all.14646] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/16/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
In past 10 years, microRNAs (miRNAs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases and their potential as biomarkers in liquid biopsies. They act as master post‐transcriptional regulators that control most cellular processes. As one miRNA can target several mRNAs, often within the same pathway, dysregulated expression of miRNAs may alter particular cellular responses and contribute, or lead, to the development of various diseases. In this review, we give an overview of the current research on miRNAs in allergic diseases, including atopic dermatitis, allergic rhinitis, and asthma. Specifically, we discuss how individual miRNAs function in the regulation of immune responses in epithelial cells and specialized immune cells in response to different environmental factors and respiratory viruses. In addition, we review insights obtained from experiments with murine models of allergic airway and skin inflammation and offer an overview of studies focusing on miRNA discovery using profiling techniques and bioinformatic modeling of the network effect of multiple miRNAs. In conclusion, we highlight the importance of research into miRNA function in allergy and asthma to improve our knowledge of the molecular mechanisms involved in the pathogenesis of this heterogeneous group of diseases.
Collapse
Affiliation(s)
- Julie Weidner
- Department of Internal Medicine and Clinical Nutrition Krefting Research Centre Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Sabine Bartel
- Department of Pathology and Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Ayse Kılıç
- Channing Division of Network Medicine Brigham and Women's Hospital Boston MA USA
| | - Ulrich M. Zissler
- Center for Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
| | - Harald Renz
- Institut für Laboratoriumsmedizin und Pathobiochemie Philipps University of Marburg Marburg Germany
| | - Jürgen Schwarze
- Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Carsten B. Schmidt‐Weber
- Center for Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
| | - Tania Maes
- Department of Respiratory Medicine Ghent University Ghent Belgium
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Susanne Krauss‐Etschmann
- Research Center Borstel Borstel Germany
- Institute of Experimental Medicine Christian‐Albrechts University Kiel Kiel Germany
| | - Madeleine Rådinger
- Department of Internal Medicine and Clinical Nutrition Krefting Research Centre Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| |
Collapse
|
21
|
Zhou F, Cao C, Chai H, Hong J, Zhu M. Circ-HACE1 Aggravates Cigarette Smoke Extract-Induced Injury in Human Bronchial Epithelial Cells via Regulating Toll-Like Receptor 4 by Sponging miR-485-3p. Int J Chron Obstruct Pulmon Dis 2021; 16:1535-1547. [PMID: 34103911 PMCID: PMC8179752 DOI: 10.2147/copd.s304859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Background Smoking is the most common cause of chronic obstructive pulmonary disease (COPD), and the early diagnosis for COPD remains poor. Exploring the molecular mechanism and finding feasible biomarkers will be beneficial for clinical management of COPD. Circular RNAs (circRNAs) are noncoding RNAs that act as miRNA sponges to regulate the expression levels of genes, leading to the changes of cellular phenotypes and disease progression. CircRNA HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 (circ-HACE1) was abnormally expressed after the induction of cigarette smoke extract (CSE) in cell model. This study was performed to explore its function and mechanism in COPD. Methods Circ-HACE1, microRNA-485-3p (miR-485-3p) and toll-like receptor 4 (TLR4) detection was performed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis/cell cycle were respectively examined using cell counting kit-8 (CCK-8) and flow cytometry. Inflammatory cytokines were determined by enzyme-linked immunosorbent assay (ELISA). Oxidative stress was evaluated through the measurement of malondialdehyde (MDA) and superoxide dismutase (SOD). The target binding analysis was conducted via dual-luciferase reporter assay. Western blot was employed for protein expression detection of TLR4. Results Circ-HACE1 was overexpressed in smokers or smokers with COPD and CSE upregulated circ-HACE1 expression in 16HBE cells. Knockdown of circ-HACE1 attenuated CSE-stimulated cell viability and cell cycle repression, as well as the enhancement of cell apoptosis, inflammatory response and oxidative stress. MiR-485-3p was a target of circ-HACE1. Circ-HACE1 regulated CSE-induced cell injury via targeting miR-485-3p. TLR4 was a downstream target of miR-485-3p, and miR-485-3p inhibited the CSE-induced cell damages by directly downregulating the level of TLR4. Circ-HACE1/miR-485-3p regulated TLR4 expression in CSE-treated 16HBE cells, and TLR4 overexpression also reversed all effects of si-circ-HACE1 on CSE-treated 16HBE cells. Conclusion These findings elucidated that circ-HACE1 contributed to the CSE-induced cell damages in COPD cell models via regulating TLR4 by acting as the sponge of miR-485-3p.
Collapse
Affiliation(s)
- Fujun Zhou
- Department of Health and Nursing, Anhui Vocational College of City Management, Hefei City, Anhui Province, People's Republic of China
| | - Cheng Cao
- Department of Thoracic Surgery, 4th Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
| | - Huiping Chai
- Department of Thoracic Surgery, 4th Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
| | - Jingfang Hong
- School of Nursing, Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
| | - Min Zhu
- Department of Health and Nursing, Anhui Vocational College of City Management, Hefei City, Anhui Province, People's Republic of China
| |
Collapse
|
22
|
Zeng Q, Zeng J. Inhibition of miR-494-3p alleviates oxidative stress-induced cell senescence and inflammation in the primary epithelial cells of COPD patients. Int Immunopharmacol 2021; 92:107044. [PMID: 33461161 DOI: 10.1016/j.intimp.2020.107044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a disease associated with accelerated aging that threatens the lives of people worldwide and imposes heavy social and economic burdens. Cellular senescence is commonly observed in COPD and contributes to aging-related diseases. PURPOSE To identify the possible molecular pathways modulating cellular senescence in COPD. METHODS MiR-494-3p expression levels in COPD tissues, small airway epithelial cells (SAECs) and BEAS-2B cells were detected by qRT-PCR. After transfection with miR-494-3p mimic or inhibitor in COPD SAECs, miR-494-3p modulation of senescence markers and senescence-associated secretory phenotype (SASP) proteins was detected. A luciferase assay was employed to verify the direct binding of SIRT3 and miR-494-3p. VX745 and c-myc siRNA were used to investigate the regulation of p38MAPK and c-myc by miR-494-3p. RESULTS As a result of oxidative stress, MiR-494-3p was increased via the p38MAPK-c-myc signaling pathway in the lung tissues and cells of patients with COPD, and the increase in miR-494-3p was accompanied by increases in senescence markers (p27, p21 and p16) and SASP proteins (IL-1β, TNF-α, MMP2 and MMP9). MiR-494-3p was directly bound to SIRT3 in SAECs and was involved in cellular senescence. The upregulation of miR-494-3p decreased SIRT3 expression while increasing p27 expression in SAECs. Inhibition of miR-494-3p in SAECs from COPD patients reduced cell cycle arrest and the expression of SASP proteins (IL-1β, TNF-α, MMP2 and MMP9). CONCLUSION MiR-494-3p expression can be induced by oxidative stress via the p38MAPK-c-myc signaling pathway, and miR-494-3p can directly bind to SIRT3 to reduce its expression, leading to increased cellular senescence and thereby contributing to COPD progression.
Collapse
Affiliation(s)
- Qinghua Zeng
- Center of General Practice, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Juan Zeng
- Center of General Practice, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
23
|
Long non-coding RNA maternally expressed gene regulates cigarette smoke extract induced lung inflammation and human bronchial epithelial apoptosis via miR-149-3p. Exp Ther Med 2020; 21:60. [PMID: 33365060 PMCID: PMC7716647 DOI: 10.3892/etm.2020.9492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has become a significant public health risk. Long non-coding RNAs (lncRNAs) have been identified as important factors involved in the proliferation, apoptosis and inflammatory cytokine expression of lung cells. Peripheral blood samples from 66 subjects (18 non-smokers, 24 smokers without COPD and 28 smokers with COPD) and HBE135-E6E7 cell treated with cigarette smoke extract (CSE) or not were used as the research object. The aim of the present study was to investigate the underlying mechanism of lncRNA maternally expressed gene 3 (MEG3) in COPD. Following transfection with microRNA (miR)-149-3p mimics, miR-negative control mimics, miR-149-3p inhibitor, miR-negative control inhibitor, small interfering (si)RNA targeting MEG3 (si-MEG3) and si-negative control (si-NC), levels of MEG3 and microRNA (miR)-149-3p were detected using reverse transcription-quantitative PCR, Proliferation and apoptosis were examined using the Cell Counting Kit-8 and flow cytometry assays, respectively. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Protein levels of B-cell lymphoma-2 (Bcl-2), cleaved-caspase-3, cleaved-caspase-9, phosphorylated (p)-p65, total (t)-p65, p-lkBα and t-lkBα were measured by western blotting. Luciferase assay was conducted to examine the relationship between MEG3 and miR-149-3p. LncRNA MEG3 was highly expressed, whereas miR-149-3p expression was downregulated in smokers with COPD peripheral blood samples, compared with non-smokers and smokers without COPD samples. Compared with untreated human bronchial epithelial (HBE) cells, MEG3 expression was increased in cigarette smoke extract (CSE)-treated HBE cells. Compared with CSE-treated HBE cells transfected with si-NC, MEG3 knockdown promoted cell proliferation and inhibited apoptosis in CSE-treated HBE cells transfected with si-MEG3, and it also decreased the levels of IL-6, TNF-α, Bcl-2 and increased cleaved-caspase-3 and cleaved-caspase-9 in CSE-treated HBE cells transfected with si-MEG3. The luciferase assay demonstrated that miR-149-3p has target sites for MEG3. MEG3 was demonstrated to regulate the NF-κB signaling pathway by sponging miR-149-3p in CSE-treated HBE cells. In conclusion, these findings suggested that MEG3 promoted proliferation and inhibited apoptosis by regulating the NF-κB signal pathway via miR-149-3p in CSE-treated HBE cells. These results provide an insight for further verification and understanding of the molecular basis of COPD.
Collapse
|
24
|
Zhang J, Xu Z, Kong L, Gao H, Zhang Y, Zheng Y, Wan Y. miRNA-486-5p Promotes COPD Progression by Targeting HAT1 to Regulate the TLR4-Triggered Inflammatory Response of Alveolar Macrophages. Int J Chron Obstruct Pulmon Dis 2020; 15:2991-3001. [PMID: 33244226 PMCID: PMC7683830 DOI: 10.2147/copd.s280614] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose The aim of this study was to investigate the role of miRNA-486-5p in chronic obstructive pulmonary disease (COPD) progression and the underlying molecular mechanisms. Materials and Methods Aberrant miRNA expression profiles between smokers and nonsmokers, and those between COPD patients and normal subjects were analyzed using microarray datasets and reverse-transcriptase quantitative polymerase chain reaction (qPCR). Enzyme-linked immunosorbent assay was used to determine the levels of inflammatory cytokines in cell supernatants. Expression levels of inflammatory cytokines, HAT1, TLR4, and miR-486-5p, were determined using qPCR or Western blotting. Luciferase reporter assays and fluorescence in situ hybridization were used to confirm the regulatory interaction between miR-486-6p and HAT1. Results miR-486-5p was significantly upregulated in the COPD and smoker groups compared to the control group, as demonstrated using bioinformatics analysis and validated using qPCR assay of alveolar macrophages and peripheral monocytes. Moreover, miR-486-5p expression was significantly correlated with the expression of IL-6, IL-8, TNF-α, and IFN-γ. Luciferase reporter assays confirmed that miR-486-5p directly targeted HAT1, and cellular localization showed that miR-486-5p and HAT1 were highly expressed in the cytoplasm. miR-486-5p overexpression led to a significant upregulation of TLR4 and a significant downregulation of HAT1. Inversely, miR-486-5p inhibition led to a significant downregulation of TLR4 and a significant upregulation of HAT1. HAT1 knockdown using siRNA significantly upregulated the expression of TLR4, IL-6, IL-8, TNF-α, and IFN-γ. Conclusion miR-486-5p was differentially expressed in the alveolar macrophages of COPD patients. miR-486-5p overexpression may enhance the TLR4-triggered inflammatory response in COPD patients by targeting HAT1.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Respiratory Diseases, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 203302, Jiangsu, People's Republic of China
| | - Zhongneng Xu
- Department of Cardiothoracic Surgery, Huai'an Hospital Affiliated to Nanjing Medical College and Huai'an First People's Hospital, Huai'an 223002, Jiangsu, People's Republic of China
| | - Lianhua Kong
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Hong Gao
- Department of Respiratory Diseases, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 203302, Jiangsu, People's Republic of China
| | - Yueming Zhang
- Department of Respiratory Diseases, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 203302, Jiangsu, People's Republic of China
| | - Yulong Zheng
- Department of Respiratory Diseases, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 203302, Jiangsu, People's Republic of China
| | - Yufeng Wan
- Department of Respiratory Diseases, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 203302, Jiangsu, People's Republic of China
| |
Collapse
|
25
|
Finicelli M, Squillaro T, Galderisi U, Peluso G. Micro-RNAs: Crossroads between the Exposure to Environmental Particulate Pollution and the Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:E7221. [PMID: 33007849 PMCID: PMC7582315 DOI: 10.3390/ijms21197221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Environmental pollution has reached a global echo and represents a serious problem for human health. Air pollution encompasses a set of hazardous substances, such as particulate matter and heavy metals (e.g., cadmium, lead, and arsenic), and has a strong impact on the environment by affecting groundwater, soil, and air. An adaptive response to environmental cues is essential for human survival, which is associated with the induction of adaptive phenotypes. The epigenetic mechanisms regulating the expression patterns of several genes are promising candidates to provide mechanistic and prognostic insights into this. Micro-RNAs (miRNAs) fulfil these features given their ability to respond to environmental factors and their critical role in determining phenotypes. These molecules are present in extracellular fluids, and their expression patterns are organ-, tissue-, or cell-specific. Moreover, the experimental settings for their quantitative and qualitative analysis are robust, standardized, and inexpensive. In this review, we provide an update on the role of miRNAs as suitable tools for understanding the mechanisms behind the physiopathological response to toxicants and the prognostic value of their expression pattern associable with specific exposures. We look at the mechanistic evidence associable to the role of miRNAs in the processes leading to environmental-induced pulmonary disease (i.e., chronic obstructive pulmonary disease).
Collapse
Affiliation(s)
- Mauro Finicelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Pietro Castellino 111, 80131 Naples, Italy
| | - Tiziana Squillaro
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (T.S.); (U.G.)
| | - Umberto Galderisi
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania “Luigi Vanvitelli”, via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (T.S.); (U.G.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
26
|
Huang X, Lv D, Yang X, Li M, Zhang H. m6A RNA methylation regulators could contribute to the occurrence of chronic obstructive pulmonary disease. J Cell Mol Med 2020; 24:12706-12715. [PMID: 32961012 PMCID: PMC7686997 DOI: 10.1111/jcmm.15848] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
N6‐methyladenosine (m6A) RNA methylation, the most prevalent internal chemical modification of mRNA, has been reported to participate in the progression of various tumours via the dynamic regulation of m6A RNA methylation regulators. However, the role of m6A RNA methylation regulators in chronic obstructive pulmonary disease (COPD) has never been reported. This study aimed to determine the expression and potential functions of m6A RNA methylation regulators in COPD. Four gene expression data sets were acquired from Gene Expression Omnibus. Gene ontology function, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, weighted correlation network analysis and protein‐protein interaction network analysis were performed. The correlation analyses of m6A RNA methylation regulators and key COPD genes were also performed. We found that the mRNA expressions of IGF2BP3, FTO, METTL3 and YTHDC2, which have the significant associations with some key genes enriched in the signalling pathway and biological processes that promote the development progression of COPD, are highly correlated with the occurrence of COPD. In conclusion, six central m6A RNA methylation regulators could contribute to the occurrence of COPD. This study provides important evidence for further examination of the role of m6A RNA methylation in COPD.
Collapse
Affiliation(s)
- Xinwei Huang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Dongjin Lv
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Xiao Yang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Min Li
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Hong Zhang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Traboulsi H, Cherian M, Abou Rjeili M, Preteroti M, Bourbeau J, Smith BM, Eidelman DH, Baglole CJ. Inhalation Toxicology of Vaping Products and Implications for Pulmonary Health. Int J Mol Sci 2020; 21:E3495. [PMID: 32429092 PMCID: PMC7278963 DOI: 10.3390/ijms21103495] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
E-cigarettes have a liquid that may contain flavors, solvents, and nicotine. Heating this liquid generates an aerosol that is inhaled into the lungs in a process commonly referred to as vaping. E-cigarette devices can also contain cannabis-based products including tetrahydrocannabinol (THC), the psychoactive component of cannabis (marijuana). E-cigarette use has rapidly increased among current and former smokers as well as youth who have never smoked. The long-term health effects are unknown, and emerging preclinical and clinical studies suggest that e-cigarettes may not be harmless and can cause cellular alterations analogous to traditional tobacco smoke. Here, we review the historical context and the components of e-cigarettes and discuss toxicological similarities and differences between cigarette smoke and e-cigarette aerosol, with specific reference to adverse respiratory outcomes. Finally, we outline possible clinical disorders associated with vaping on pulmonary health and the recent escalation of acute lung injuries, which led to the declaration of the vaping product use-associated lung injury (EVALI) outbreak. It is clear there is much about vaping that is not understood. Consequently, until more is known about the health effects of vaping, individual factors that need to be taken into consideration include age, current and prior use of combustible tobacco products, and whether the user has preexisting lung conditions such as asthma and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
| | - Mathew Cherian
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.); (D.H.E.)
| | - Mira Abou Rjeili
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Matthew Preteroti
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jean Bourbeau
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Benjamin M. Smith
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.); (D.H.E.)
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - David H. Eidelman
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.); (D.H.E.)
| | - Carolyn J. Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (H.T.); (M.A.R.); (M.P.); (J.B.); (B.M.S.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.); (D.H.E.)
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
28
|
Li S, Jiang L, Yang Y, Cao J, Zhang Q, Zhang J, Wang R, Deng X, Li Y. MiR-195-5p inhibits the development of chronic obstructive pulmonary disease via targeting siglec1. Hum Exp Toxicol 2020; 39:1333-1344. [PMID: 32351126 DOI: 10.1177/0960327120920923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD), characterized by chronic inflammation, is a recognized global health crisis. Sialic acid-binding immunoglobulin-like lectin 1 (siglec1 or CD169), mainly expressed in macrophages and dendritic cells, is markedly upregulated after encountering pathogens or under acute/chronic inflammation conditions. However, it is rarely reported that whether siglec1 plays a role in the development of COPD. In this study, we found that siglec1 had higher expression in the lungs from COPD rats and in peripheral blood mononuclear cells (PBMCs) from COPD patients. Knockdown of siglec1 in vivo and in vitro dramatically decreased pro-inflammatory cytokines production in pulmonary macrophages and alleviated pulmonary inflammatory responses in COPD rats as well as inactivated nuclear factor kappa B (NF-κB) signaling. In addition, we identified a new microRNA, miR-195-5p, which has never explored in COPD, was lower expressed in COPD rats and PBMC of COPD patients, and could negatively modulate siglec1 expression in macrophages. Moreover, overexpression of miR-195-5p via miR-195-5p mimics in vitro and in vivo could significantly alleviate pro-inflammatory cytokines production in pulmonary macrophages and pulmonary inflammatory responses in COPD rats. Together, our findings suggested that miR-195-5p inhibited the development of COPD via targeting siglec1, which might become a therapeutic target to improve COPD.
Collapse
Affiliation(s)
- S Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Pharmacy, Luohe Central Hospital, Luohe, Henan, China
| | - L Jiang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Y Yang
- Department of Respiratory Medicine, Luohe Central Hospital, Luohe, Henan, China
| | - J Cao
- Department of Respiratory Medicine, Luohe Central Hospital, Luohe, Henan, China
| | - Q Zhang
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, Jiangsu, China
| | - J Zhang
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, Jiangsu, China
| | - R Wang
- Department of Pharmacy, Luohe Central Hospital, Luohe, Henan, China
| | - X Deng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.,Huadong Research Institute for Medicine and Biotechnics, Nanjing, Jiangsu, China
| | - Y Li
- Department of Respiratory Medicine, Luohe Central Hospital, Luohe, Henan, China
| |
Collapse
|
29
|
Bersimbaev R, Pulliero A, Bulgakova O, Asia K, Aripova A, Izzotti A. Radon Biomonitoring and microRNA in Lung Cancer. Int J Mol Sci 2020; 21:E2154. [PMID: 32245099 PMCID: PMC7139524 DOI: 10.3390/ijms21062154] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Radon is the number one cause of lung cancer in non-smokers. microRNA expression in human bronchial epithelium cells is altered by radon, with particular reference to upregulation of miR-16, miR-15, miR-23, miR-19, miR-125, and downregulation of let-7, miR-194, miR-373, miR-124, miR-146, miR-369, and miR-652. These alterations alter cell cycle, oxidative stress, inflammation, oncogene suppression, and malignant transformation. Also DNA methylation is altered as a consequence of miR-29 modification induced by radon. Indeed miR-29 targets DNA methyltransferases causing inhibition of CpG sites methylation. Massive microRNA dysregulation occurs in the lung due to radon expose and is functionally related with the resulting lung damage. However, in humans this massive lung microRNA alterations only barely reflect onto blood microRNAs. Indeed, blood miR-19 was not found altered in radon-exposed subjects. Thus, microRNAs are massively dysregulated in experimental models of radon lung carcinogenesis. In humans these events are initially adaptive being aimed at inhibiting neoplastic transformation. Only in case of long-term exposure to radon, microRNA alterations lead towards cancer development. Accordingly, it is difficult in human to establish a microRNA signature reflecting radon exposure. Additional studies are required to understand the role of microRNAs in pathogenesis of radon-induced lung cancer.
Collapse
Affiliation(s)
- Rakhmet Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N.Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (R.B.); (O.B.); (K.A.); (A.A.)
| | - Alessandra Pulliero
- Department of Experimental Medicine, University of Genoa, I-16132 Genoa, Italy;
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N.Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (R.B.); (O.B.); (K.A.); (A.A.)
| | - Kussainova Asia
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N.Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (R.B.); (O.B.); (K.A.); (A.A.)
| | - Akmara Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N.Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (R.B.); (O.B.); (K.A.); (A.A.)
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, I-16132 Genoa, Italy;
- IRCCS Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
30
|
Atherton LJ, Jorquera PA, Bakre AA, Tripp RA. Determining Immune and miRNA Biomarkers Related to Respiratory Syncytial Virus (RSV) Vaccine Types. Front Immunol 2019; 10:2323. [PMID: 31649663 PMCID: PMC6794384 DOI: 10.3389/fimmu.2019.02323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) causes serious respiratory tract illness and substantial morbidity and some mortality in populations at the extremes of age, i.e., infants, young children, and the elderly. To date, RSV vaccine development has been unsuccessful, a feature linked to the lack of biomarkers available to assess the safety and efficacy of RSV vaccine candidates. We examined microRNAs (miR) as potential biomarkers for different types of RSV vaccine candidates. In this study, mice were vaccinated with a live attenuated RSV candidate that lacks the small hydrophobic (SH) and attachment (G) proteins (CP52), an RSV G protein microparticle (GA2-MP) vaccine, a formalin-inactivated RSV (FI-RSV) vaccine or were mock-treated. Several immunological endpoints and miR expression profiles were determined in mouse serum and bronchoalveolar lavage (BAL) following vaccine priming, boost, and RSV challenge. We identified miRs that were linked with immunological parameters of disease and protection. We show that miRs are potential biomarkers providing valuable insights for vaccine development.
Collapse
Affiliation(s)
- Lydia J Atherton
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Patricia A Jorquera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Abhijeet A Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
31
|
Huang J, Jiang W, Tong X, Zhang L, Zhang Y, Fan H. Identification of gene and microRNA changes in response to smoking in human airway epithelium by bioinformatics analyses. Medicine (Baltimore) 2019; 98:e17267. [PMID: 31568004 PMCID: PMC6756728 DOI: 10.1097/md.0000000000017267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Smoking is a substantial risk factor for many respiratory diseases. This study aimed to identify the gene and microRNA changes related to smoking in human airway epithelium by bioinformatics analysis.From the Gene Expression Omnibus (GEO) database, the mRNA datasets GSE11906, GSE22047, GSE63127, and microRNA dataset GSE14634 were downloaded, and were analyzed using GEO2R. Functional enrichment analysis of the differentially expressed genes (DEGs) was enforced using DAVID. The protein-protein interaction (PPI) network and differentially expressed miRNAs (DEMs)- DEGs network were executed by Cytoscape.In total, 107 DEGs and 10 DEMs were determined. Gene Ontology (GO) analysis revealed that DEGs principally enriched in oxidation-reduction process, extracellular space and oxidoreductase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway demonstrated that DEGs were principally enriched in metabolism of xenobiotics by cytochrome P450 and chemical carcinogenesis. The PPI network revealed 15 hub genes, including NQO1, CYP1B1, AKR1C1, CYP1A1, AKR1C3, CEACAM5, MUCL1, B3GNT6, MUC5AC, MUC12, PTGER4, CALCA, CBR1, TXNRD1, and CBR3. Cluster analysis showed that these hub genes were associated with adenocarcinoma in situ, squamous cell carcinoma, cell differentiation, inflammatory response, oxidative DNA damage, oxidative stress response and tumor necrosis factor. Hsa-miR-627-5p might have the most target genes, including ITLN1, TIMP3, PPP4R4, SLC1A2, NOVA1, RNFT2, CLDN10, TMCC3, EPHA7, SRPX2, PPP1R16B, GRM1, HS3ST3A1, SFRP2, SLC7A11, and KLHDC8A.We identified several molecular changes induced by smoking in human airway epithelium. This study may provide some candidate genes and microRNAs for assessing the risk of lung diseases caused by smoking.
Collapse
Affiliation(s)
- Jizhen Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan
| | - Wanli Jiang
- Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan
| | - Yuan Zhang
- Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan
| |
Collapse
|
32
|
MicroRNA-191-5p diminished sepsis-induced acute kidney injury through targeting oxidative stress responsive 1 in rat models. Biosci Rep 2019; 39:BSR20190548. [PMID: 31362998 PMCID: PMC6692571 DOI: 10.1042/bsr20190548] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
There is no effective treatment for septic acute kidney injury (AKI), which is considered a major public health concern in today’s world. Here, we studied the functions of miR-191-5p in septic AKI. MiR-191-5p mimic or mimic control was injected into rats from caudal vein before cecal ligation and puncture (CLP) surgery. Part of kidney tissues was stained by Hematoxylin and Eosin (H&E) for histological examination. The levels of serum cytokines were evaluated using enzyme-linked immunosorbent assay (ELISA). For cell transfection, renal cells were isolated from the kidneys of CLP rat model injected with mimic control and miR-191-5p mimic. With TargetScan prediction, serine/threonine-protein kinase OSR1 was identified as a target of miR-191-5p. Oxidative stress responsive 1 (OXSR1) overexpression vector was transfected into renal cells. Cell viability and apoptosis rate were determined by Cell Counting Kit-8 (CCK-8) and flow cytometry, respectively. We additionally measured the phosphorylation levels of p38 and p65. We found that the injection of miR-191-5p mimic could observably inhibit renal injury scores, and inhibit inflammatory cytokine productions and apoptotic protein levels in septic rats. After being transfected with OXSR1, the apoptosis rates and expressions of B-cell lymphoma-2 (Bcl-2), down-regulated Bax and Cleaved caspase-3 (C caspase-3) indicated overexpressed OXSR1 contributed to cell apoptosis. The up-regulated protein levels of p-p38 and p-p65 may suggest the involvement of p38 MAPK/NF-κB signaling pathway in the functions of OXSR1. Our results showed that the protective effects of miR-191-5p on kidney tissues of septic rats may rely on the repression of OXSR1.
Collapse
|
33
|
Huang X, Mu X, Deng L, Fu A, Pu E, Tang T, Kong X. The etiologic origins for chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2019; 14:1139-1158. [PMID: 31213794 PMCID: PMC6549659 DOI: 10.2147/copd.s203215] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/18/2019] [Indexed: 12/27/2022] Open
Abstract
COPD, characterized by long-term poorly irreversible airway limitation and persistent respiratory symptoms, has resulted in enormous challenges to human health worldwide, with increasing rates of prevalence, death, and disability. Although its origin was thought to be in the interactions of genetic with environmental factors, the effects of environmental factors on the disease during different life stages remain little known. Without clear mechanisms and radical cure for it, early screening and prevention of COPD seem to be important. In this review, we will discuss the etiologic origins for poor lung function and COPD caused by specific adverse effects during corresponding life stages, as well as try to find new insights and potential prevention strategies for this disease.
Collapse
Affiliation(s)
- Xinwei Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China.,Medical School, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China
| | - Xi Mu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China
| | - Li Deng
- The Pathology Department, First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, People's Republic of China
| | - Aili Fu
- Department of Oncology, Yunfeng Hospital, Xuanwei City, Yunnan Province, People's Republic of China
| | - Endong Pu
- Department of Thoracic Surgery, Yunfeng Hospital, Xuanwei City, Yunnan Province, People's Republic of China
| | - Tao Tang
- Medical School, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China
| | - Xiangyang Kong
- Medical School, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China
| |
Collapse
|