1
|
Zeng H, Jiang Y, Yin Q, Li X, Xiong Y, Li B, Xu X, Hu H, Qian G. Sinisan Alleviates Stress-Induced Intestinal Dysfunction and Depressive-like Behaviors in Mice with Irritable Bowel Syndrome by Enhancing the Intestinal Barrier and Modulating Central 5-Hydroxytryptamine. Int J Mol Sci 2024; 25:10262. [PMID: 39408592 PMCID: PMC11476996 DOI: 10.3390/ijms251910262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a common chronic functional bowel disorder and is strongly associated with an increased risk of depression and anxiety. The brain-gut axis plays an important role in the pathophysiologic changes in IBS, yet effective treatments for IBS are still lacking. Sinisan, originating from the Treatise on Typhoid Fever by the medical sage Zhang Zhongjing, is a classic formula in the Eight Methods of Traditional Chinese Medicine (TCM) that focuses on dispersing the liver and regulating the spleen, relieving depression and transmitting evils, and has been widely used in the treatment of liver-depression and spleen-deficiency, diarrhea, and related liver and stomach disorders. However, the therapeutic effect of sinisan in IBS has not been clarified. The aim of this study was to investigate the effects of sinisan on stress-induced intestinal dysfunction and depressive behavior in IBS mice. We established a diarrhea-predominant irritable bowel syndrome (IBS-D) mouse model using a 4% acetic acid enema combined with restraint stress, and analyzed the results using behavioral tests, relevant test kits, hematoxylin-eosin (HE) staining, immunofluorescence (IF), Western blot (WB), and quantitative fluorescence polymerase chain reaction (qRT-PCR). The results showed that sinisan administration significantly alleviated intestinal dysfunction and depressive-like behaviors in IBS-D mice, improved mild colonic inflammation and intestinal mucosal permeability, up-regulated the expression of tight junction proteins ZO-1 and occludin. Sinisan significantly alleviated intestinal dysfunction and depressive-like behaviors in IBS-D mice by decreasing the expression of TNF-α, promoting the expression of tight junction proteins (occludin, ZO-1) expression, and inhibiting the Tlr4/Myd88 signaling pathway, thereby attenuating the inflammatory response, protecting the intestinal barrier, and alleviating symptoms in the IBS-D mouse model. Taken together, sinisan may ameliorate intestinal inflammation and the intestinal barrier by regulating 5-HT expression and the Tlr4/Myd88 pathway, thereby alleviating stress-induced intestinal dysfunction and depressive behaviors in IBS-D mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guoqiang Qian
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.Z.); (Y.J.); (Q.Y.); (X.L.); (Y.X.); (B.L.); (X.X.); (H.H.)
| |
Collapse
|
2
|
Wang Y, Cui C, Zhao W, Tian X, Liu P, Wei L, Zhu Z, Liu M, Fu R, Jia L. WIP1-mediated regulation of p38 MAPK signaling attenuates pyroptosis in sepsis-associated acute kidney injury. Immunobiology 2024; 229:152832. [PMID: 38943814 DOI: 10.1016/j.imbio.2024.152832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Wild-Type p53-Induced Phosphatase 1 (WIP1/PPM1D) is a serine/threonine phosphatase that plays a significant role in various physiological processes. However, the involvement of WIP1 in kidney remains unclear. Lipopolysaccharide (LPS) was administered to induce acute injury in mice and human kidney 2 (HK2) cells in the study. The WIP1 inhibitor, CCT007093, was administered both in vitro and in vivo to assess its effect on kidney. The single-cell sequencing (scRNA-seq) data revealed that Ppm1d mRNA reached peak on day 2 following unilateral ischemia-reperfusion injury (uni-IRI) in mice, especially in the proximal renal tubules during repair phase. Compared to the control group, WIP1 protein exhibited a significant increase in renal tubules of patients with acute tubular injury (ATI) and mice with LPS-induced acute kidney injury (AKI), as well as in LPS-injured HK2 cells. In vitro experiments showed that CCT007093 increased the protein levels of NLRP3, cleaved-Caspase1, GSDMD-N and IL-1β in HK2 cells and further reduced the viability of LPS-stimulated HK2 cells. In vivo experiments showed that inhibition of WIP1 activity with CCT007093 further increased cleaved-Caspase1, GSDMD-N protein levels in kidney tissue from mice with LPS-induced AKI. In addition, LPS induces phosphorylation of p38 MAPK, a key regulator of pyroptosis, which is further activated by CCT007093. In conclusion, inhibition of WIP1 activity acts as a positive regulator of renal tubular pyroptosis mainly through the mediation of phospho-p38 MAPK.
Collapse
Affiliation(s)
- Yinhong Wang
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chenkai Cui
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weihao Zhao
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Linting Wei
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zikun Zhu
- Department of Computer Science, School of Computing & Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Ming Liu
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rongguo Fu
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Lining Jia
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Xu C, Wei Z, Dong X, Xing J, Meng X, Qiu Y, Zhou H, Zheng W, Xu Z, Huang S, Xia W, Lv L, Jiang H, Wang W, Zhao X, Liu Z, Akimoto Y, Zhao B, Wang S, Hu Z. A p38 MAP kinase inhibitor suppresses osteoclastogenesis and alleviates ovariectomy-induced bone loss through the inhibition of bone turnover. Biochem Pharmacol 2024; 226:116391. [PMID: 38914317 DOI: 10.1016/j.bcp.2024.116391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/26/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Inhibition of excessive osteoclastic activity is an efficient therapeutic strategy for many bone diseases induced by increased bone resorption, such as osteoporosis. BMS-582949, a clinical p38α inhibitor, is a promising drug in Phase II studies for treating rheumatoid arthritis. However, its function on bone resorption is largely unknown. In this study, we find that BMS-582949 represses RANKL-induced osteoclast differentiation in a dose-dependent manner. Moreover, BMS-582949 inhibits osteoclastic F-actin ring formation and osteoclast-specific gene expression. Mechanically, BMS-582949 treatment attenuates RANKL-mediated osteoclastogenesis through mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) signaling pathways without disturbing nuclear factor-κB (NF-κB) signaling. Interestingly, BMS-582949 impairs osteoclastic mitochondrial biogenesis and functions, such as oxidative phosphorylation (OXPHOS). Furthermore, BMS-582949 administration prevents bone loss in ovariectomized mouse mode by inhibiting both bone resorption and bone formation in vivo. Taken together, these findings indicate that BMS-582949 may be a potential and effective drug for the therapy of osteolytic diseases.
Collapse
Affiliation(s)
- Cheng Xu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China.
| | - Zhixin Wei
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Xiaoyu Dong
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Junqiao Xing
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Xiangrui Meng
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Yaxuan Qiu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Huimei Zhou
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Wenrui Zheng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Zhenyu Xu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Shanhua Huang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Wenwen Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Longfei Lv
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Haochen Jiang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Weihua Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Xue Zhao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Zixuan Liu
- Gogdel Cranleigh High School, Wuhan, Hubei 430312, China
| | | | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Siyuan Wang
- Department of Medicinal Chemistry, College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong 518118, China.
| | - Zhangfeng Hu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China; Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, Hubei 430056, China.
| |
Collapse
|
4
|
Chen RY, Shi JJ, Liu YJ, Yu J, Li CY, Tao F, Cao JF, Yang GJ, Chen J. The State-of-the-Art Antibacterial Activities of Glycyrrhizin: A Comprehensive Review. Microorganisms 2024; 12:1155. [PMID: 38930536 PMCID: PMC11206003 DOI: 10.3390/microorganisms12061155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Licorice (Glycyrrhiza glabra) is a plant of the genus Glycyrrhiza in the family Fabaceae/Leguminosae and is a renowned natural herb with a long history of medicinal use dating back to ancient times. Glycyrrhizin (GLY), the main active component of licorice, serves as a widely utilized therapeutic agent in clinical practice. GLY exhibits diverse medicinal properties, including anti-inflammatory, antibacterial, antiviral, antitumor, immunomodulatory, intestinal environment maintenance, and liver protection effects. However, current research primarily emphasizes GLY's antiviral activity, while providing limited insight into its antibacterial properties. GLY demonstrates a broad spectrum of antibacterial activity via inhibiting the growth of bacteria by targeting bacterial enzymes, impacting cell membrane formation, and altering membrane permeability. Moreover, GLY can also bolster host immunity by activating pertinent immune pathways, thereby enhancing pathogen clearance. This paper reviews GLY's inhibitory mechanisms against various pathogenic bacteria-induced pathological changes, its role as a high-mobility group box 1 inhibitor in immune regulation, and its efficacy in combating diseases caused by pathogenic bacteria. Furthermore, combining GLY with other antibiotics reduces the minimum inhibitory concentration, potentially aiding in the clinical development of combination therapies against drug-resistant bacteria. Sources of information were searched using PubMed, Web of Science, Science Direct, and GreenMedical for the keywords "licorice", "Glycyrrhizin", "antibacterial", "anti-inflammatory", "HMGB1", and combinations thereof, mainly from articles published from 1979 to 2024, with no language restrictions. Screening was carried out by one author and supplemented by others. Papers with experimental flaws in their experimental design and papers that did not meet expectations (antifungal papers, etc.) were excluded.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China (J.-J.S.); (Y.-J.L.); (J.Y.); (C.-Y.L.); (F.T.); (J.-F.C.)
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China (J.-J.S.); (Y.-J.L.); (J.Y.); (C.-Y.L.); (F.T.); (J.-F.C.)
| |
Collapse
|
5
|
Shen F, Zhang Y, Li C, Yang H, Yuan P. Network pharmacology and experimental verification of the mechanism of licochalcone A against Staphylococcus aureus pneumonia. Front Microbiol 2024; 15:1369662. [PMID: 38803378 PMCID: PMC11128579 DOI: 10.3389/fmicb.2024.1369662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Staphylococcus aureus strains cause the majority of pneumonia cases and are resistant to various antibiotics. Given this background, it is very important to discover novel host-targeted therapies. Licochalcone A (LAA), a natural plant product, has various biological activities, but its primary targets in S. aureus pneumonia remain unclear. Therefore, the purpose of this study was to identify its molecular target against S. aureus pneumonia. Network pharmacology analysis, histological assessment, enzyme-linked immunosorbent assays, and Western blotting were used to confirm the pharmacological effects. Network pharmacology revealed 33 potential targets of LAA and S. aureus pneumonia. Enrichment analysis revealed that these potential genes were enriched in the Toll-like receptor and NOD-like receptor signaling pathways. The results were further verified by experiments in which LAA alleviated histopathological changes, inflammatory infiltrating cells and inflammatory cytokines (TNF, IL-6, and IL-1β) in the serum and bronchoalveolar lavage fluid in vivo. Moreover, LAA treatment effectively reduced the expression levels of NF-κB, p-JNK, p-p38, NLRP3, ASC, caspase 1, IL-1β, and IL-18 in lung tissue. The in vitro experimental results were consistent with the in vivo results. Thus, our findings demonstrated that LAA exerts anti-infective effects on S. aureus-induced lung injury via suppression of the Toll-like receptor and NOD-like receptor signaling pathways, which provides a theoretical basis for understanding the function of LAA against S. aureus pneumonia and implies its potential clinical application.
Collapse
Affiliation(s)
- Fengge Shen
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yinghua Zhang
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chunjie Li
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hongyan Yang
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng Yuan
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
6
|
Kim TH, Heo SY, Chandika P, Kim YM, Kim HW, Kang HW, Je JY, Qian ZJ, Kim N, Jung WK. A literature review of bioactive substances for the treatment of periodontitis: In vitro, in vivo and clinical studies. Heliyon 2024; 10:e24216. [PMID: 38293511 PMCID: PMC10826675 DOI: 10.1016/j.heliyon.2024.e24216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Periodontitis is a common chronic inflammatory disease of the supporting tissues of the tooth that involves a complex interaction of microorganisms and various cell lines around the infected site. To prevent and treat this disease, several options are available, such as scaling, root planning, antibiotic treatment, and dental surgeries, depending on the stage of the disease. However, these treatments can have various side effects, including additional inflammatory responses, chronic wounds, and the need for secondary surgery. Consequently, numerous studies have focused on developing new therapeutic agents for more effective periodontitis treatment. This review explores the latest trends in bioactive substances with therapeutic effects for periodontitis using various search engines. Therefore, this study aimed to suggest effective directions for therapeutic approaches. Additionally, we provide a summary of the current applications and underlying mechanisms of bioactive substances, which can serve as a reference for the development of periodontitis treatments.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea
| | - Pathum Chandika
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun-Woo Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Wook Kang
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Jae-Young Je
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Human Bioconvergence, School of Smart Healthcare, Pukyong National University, Busan, 48513, Republic of Korea
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen, 518108, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Namwon Kim
- Ingram School of Engineering, Texas State University, San Marcos, TX, 78666, USA
- Materials Science, Engineering, and Commercialization (MSEC), Texas State University, San Marcos, TX, 78666, USA
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
7
|
Xiao C, Cao S, Li Y, Luo Y, Liu J, Chen Y, Bai Q, Chen L. Pyroptosis in microbial infectious diseases. Mol Biol Rep 2023; 51:42. [PMID: 38158461 DOI: 10.1007/s11033-023-09078-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
Pyroptosis is a gasdermins-mediated programmed cell death that plays an essential role in immune regulation, and its role in autoimmune disease and cancer has been studied extensively. Increasing evidence shows that various microbial infections can lead to pyroptosis, associated with the occurrence and development of microbial infectious diseases. This study reviews the recent advances in pyroptosis in microbial infection, including bacterial, viral, and fungal infections. We also explore potential therapeutic strategies for treating microbial infection-related diseases by targeting pyroptosis.
Collapse
Affiliation(s)
- Cui Xiao
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Saihong Cao
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Yiyang Medical College, School of Public Health and Laboratory Medicine, Yiyang, Hunan, 421000, China
| | - Yunfei Li
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuchen Luo
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jian Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuyu Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University Infection-Associated Hemophagocytic Syndrome, Changsha, Hunan, 421000, China
| | - Qinqin Bai
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lili Chen
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
8
|
Meng T, Ding J, Shen S, Xu Y, Wang P, Song X, Li Y, Li S, Xu M, Tian Z, He Q. Xuanfei Baidu decoction in the treatment of coronavirus disease 2019 (COVID-19): Efficacy and potential mechanisms. Heliyon 2023; 9:e19163. [PMID: 37809901 PMCID: PMC10558324 DOI: 10.1016/j.heliyon.2023.e19163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide and become a major global public health concern. Although novel investigational COVID-19 antiviral candidates such as the Pfizer agent PAXLOVID™, molnupiravir, baricitinib, remdesivir, and favipiravir are currently used to treat patients with COVID-19, there is still a critical need for the development of additional treatments, as the recommended therapeutic options are frequently ineffective against SARS-CoV-2. The efficacy and safety of vaccines remain uncertain, particularly with the emergence of several variants. All 10 versions of the National Health Commission's diagnosis and treatment guidelines for COVID-19 recommend using traditional Chinese medicine. Xuanfei Baidu Decoction (XFBD) is one of the "three Chinese medicines and three Chinese prescriptions" recommended for COVID-19. This review summarizes the clinical evidence and potential mechanisms of action of XFBD for COVID-19 treatment. With XFBD, patients with COVID-19 experience improved clinical symptoms, shorter hospital stay, prevention of the progression of their symptoms from mild to moderate and severe symptoms, and reduced mortality in critically ill patients. The mechanisms of action may be associated with its direct antiviral, anti-inflammatory, immunomodulatory, antioxidative, and antimicrobial properties. High-quality clinical and experimental studies are needed to further explore the clinical efficacy and underlying mechanisms of XFBD in COVID-19 treatment.
Collapse
Affiliation(s)
- Tiantian Meng
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100071, China
| | - Jingyi Ding
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| | - Shujie Shen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100089, China
| | - Yingzhi Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010 China
| | - Peng Wang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010, China
- Department of Traditional Chinese Medicine, Beijing Jiangong Hospital, Beijing, 100032, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yixiang Li
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Shangjin Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| | - Minjie Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010 China
| | - Ziyu Tian
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingyong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| |
Collapse
|
9
|
Ni R, Jiang L, Zhang C, Liu M, Luo Y, Hu Z, Mou X, Zhu Y. Biologic Mechanisms of Macrophage Phenotypes Responding to Infection and the Novel Therapies to Moderate Inflammation. Int J Mol Sci 2023; 24:ijms24098358. [PMID: 37176064 PMCID: PMC10179618 DOI: 10.3390/ijms24098358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Pro-inflammatory and anti-inflammatory types are the main phenotypes of the macrophage, which are commonly notified as M1 and M2, respectively. The alteration of macrophage phenotypes and the progression of inflammation are intimately associated; both phenotypes usually coexist throughout the whole inflammation stage, involving the transduction of intracellular signals and the secretion of extracellular cytokines. This paper aims to address the interaction of macrophages and surrounding cells and tissues with inflammation-related diseases and clarify the crosstalk of signal pathways relevant to the phenotypic metamorphosis of macrophages. On these bases, some novel therapeutic methods are proposed for regulating inflammation through monitoring the transition of macrophage phenotypes so as to prevent the negative effects of antibiotic drugs utilized in the long term in the clinic. This information will be quite beneficial for the diagnosis and treatment of inflammation-related diseases like pneumonia and other disorders involving macrophages.
Collapse
Affiliation(s)
- Renhao Ni
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Lingjing Jiang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Chaohai Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Mujie Liu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianbo Mou
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
10
|
Qi X, Li J, Luo P. Glycyrrhizin for treatment of CRS caused by CAR T-cell therapy: A pharmacological perspective. Front Pharmacol 2023; 14:1134174. [PMID: 36923358 PMCID: PMC10009180 DOI: 10.3389/fphar.2023.1134174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
Chimeric antigen receptor T (CAR T)-cell therapy promises to revolutionize the management of hematologic malignancies and possibly other tumors. However, the main side effect of cytokine release syndrome (CRS) is a great challenge for its clinical application. Currently, treatment of CRS caused by CAR T-cell therapy is limited to tocilizumab (TCZ) and corticosteroids in clinical guidelines. However, the theoretical risks of these two agents may curb clinicians' enthusiasm for their application, and the optimal treatment is still debated. CAR T-cell therapy induced-CRS treatment is a current research focus. Glycyrrhizin, which has diverse pharmacological effects, good tolerance, and affordability, is an ideal therapeutic alternative for CRS. It can also overcome the shortcoming of TCZ and corticosteroids. In this brief article, we discuss the therapeutic potential of glycyrrhizin for treating CRS caused by CAR T-cell therapy from the perspective of its pharmacological action.
Collapse
Affiliation(s)
- Xingxing Qi
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Luo
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Dragoș D, Petran M, Gradinaru TC, Gilca M. Phytochemicals and Inflammation: Is Bitter Better? PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212991. [PMID: 36365444 PMCID: PMC9654259 DOI: 10.3390/plants11212991] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 05/13/2023]
Abstract
The taste of a herb influences its use in traditional medicine. A molecular basis for the taste-based patterns ruling the distribution of herbal (ethno) pharmacological activities may not be excluded. This study investigated the potential correlations between the anti-inflammatory activity (AIA) and the phytocompound taste and/or its chemical class. The study relies on information gathered by an extensive literature (articles, books, databases) search and made public as PlantMolecularTasteDB. Out of a total of 1527 phytotastants with reliably documented taste and structure available in PlantMolecularTasteDB, 592 (for each of which at least 40 hits were found on PubMed searches) were included in the statistical analysis. A list of 1836 putative molecular targets of these phytotastants was afterwards generated with SwissTargetPrediction tool. These targets were systematically evaluated for their potential role in inflammation using an international databases search. The correlations between phytochemical taste and AIA, between chemical class and AIA, and between the taste and the number of inflammation related targets were statistically analyzed. Phytochemical taste may be a better predictor of AIA than the chemical class. Bitter phytocompounds have a higher probability of exerting AIA when compared with otherwise phytotastants. Moreover, bitter phytotastants act upon more inflammation related targets than non-bitter tasting compounds.
Collapse
Affiliation(s)
- Dorin Dragoș
- Department of Medical Semiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- 1st Internal Medicine Clinic, University Emergency Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 050098 Bucharest, Romania
- Correspondence:
| | - Madalina Petran
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Teodora-Cristiana Gradinaru
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Marilena Gilca
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
12
|
Glycyrrhizic Acid Protects Experimental Sepsis Rats against Acute Lung Injury and Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3571800. [PMID: 36072408 PMCID: PMC9444394 DOI: 10.1155/2022/3571800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
Background The incidence of acute lung injury/acute respiratory distress (ALI/ARDS) is high in sepsis aggravating morbidity and mortality. Glycyrrhizic acid (GA) has pharmacological activities in the treatment of inflammation and antiviral. Materials and Methods Sepsis rats were constructed by the cecal ligation and puncture (CLP) surgery. After GA (25 and 50 mg/kg) injection, the survival rate, blood oxygen, biochemical indexes, myeloperoxidase (MPO) activity, and wet/dry weight ratio of the lung were observed. The bronchoalveolar lavage fluid was collected to count the cells and measure the level of TNF-α, IL-1β, IL-10, and high mobility group box-1 protein (HMGB1). Lung tissue sections were taken to observe the levels of histopathological injury and apoptosis by HE and TUNEL staining. The levels of HMGB1, TLR4, p-38 MAPK, NF-κB, and ERK1/2 proteins were observed by immunohistochemistry and Western blot. Results GA treatment improved the survival rate, blood oxygen, ALT, AST, BUN, and Scr of CLP rats. It could advance the MPO activity, the wet/dry weight ratio, histopathological injury, apoptosis, and the IL-10 level in the lung. After GA injection, the number of total cells, neutrophils, and macrophages in the CLP rats was reduced and the levels of TNF-α, IL-1β, HMGB1, TLR4, p-38 MAPK, and ERK1/2 in the CLP rat were also repressed. Conclusions GA treatment may improve the sepsis-induced ALI/ARDS and inflammation by inhibiting HMBG1. This study provided an experimental basis for the prevention and treatment of ALI/ARDS caused by sepsis.
Collapse
|
13
|
Gu J, Ran X, Deng J, Zhang A, Peng G, Du J, Wen D, Jiang B, Xia F. Glycyrrhizin alleviates sepsis-induced acute respiratory distress syndrome via suppressing of HMGB1/TLR9 pathways and neutrophils extracellular traps formation. Int Immunopharmacol 2022; 108:108730. [DOI: 10.1016/j.intimp.2022.108730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/06/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
|
14
|
Li K, Yang M, Tian M, Jia L, Du J, Wu Y, Li L, Yuan L, Ma Y. Lactobacillus plantarum 17-5 attenuates Escherichia coli-induced inflammatory responses via inhibiting the activation of the NF-κB and MAPK signalling pathways in bovine mammary epithelial cells. BMC Vet Res 2022; 18:250. [PMID: 35764986 PMCID: PMC9238091 DOI: 10.1186/s12917-022-03355-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mastitis is one of the most prevalent diseases and causes considerable economic losses in the dairy farming sector and dairy industry. Presently, antibiotic treatment is still the main method to control this disease, but it also brings bacterial resistance and drug residue problems. Lactobacillus plantarum (L. plantarum) is a multifunctional probiotic that exists widely in nature. Due to its anti-inflammatory potential, L. plantarum has recently been widely researched in complementary therapies for various inflammatory diseases. In this study, the apoptotic ratio, the expression levels of various inflammatory mediators and key signalling pathway proteins in Escherichia coli-induced bovine mammary epithelial cells (BMECs) under different doses of L. plantarum 17–5 intervention were evaluated. Results The data showed that L. plantarum 17–5 reduced the apoptotic ratio, downregulated the mRNA expression levels of TLR2, TLR4, MyD88, IL1β, IL6, IL8, TNFα, COX2, iNOS, CXCL2 and CXCL10, and inhibited the activation of the NF-κB and MAPK signalling pathways by suppressing the phosphorylation levels of p65, IκBα, p38, ERK and JNK. Conclusions The results proved that L. plantarum 17–5 exerted alleviative effects in Escherichia coli-induced inflammatory responses of BMECs. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03355-9.
Collapse
Affiliation(s)
- Ke Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ming Yang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Mengyue Tian
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Li Jia
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Jinliang Du
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yinghao Wu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lianmin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lining Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yuzhong Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
15
|
Wu X, Yao J, Hu Q, Kang H, Miao Y, Zhu L, Li C, Zhao X, Li J, Wan M, Tang W. Emodin Ameliorates Acute Pancreatitis-Associated Lung Injury Through Inhibiting the Alveolar Macrophages Pyroptosis. Front Pharmacol 2022; 13:873053. [PMID: 35721108 PMCID: PMC9201345 DOI: 10.3389/fphar.2022.873053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Objective: To investigate the protective effect of emodin in acute pancreatitis (AP)-associated lung injury and the underlying mechanisms. Methods: NaT-AP model in rats was constructed using 3.5% sodium taurocholate, and CER+LPS-AP model in mice was constructed using caerulein combined with Lipopolysaccharide. Animals were divided randomly into four groups: sham, AP, Ac-YVAD-CMK (caspase-1 specific inhibitor, AYC), and emodin groups. AP-associated lung injury was assessed with H&E staining, inflammatory cytokine levels, and myeloperoxidase activity. Alveolar macrophages (AMs) pyroptosis was evaluated by flow cytometry. In bronchoalveolar lavage fluid, the levels of lactate dehydrogenase and inflammatory cytokines were measured by enzyme-linked immunosorbent assay. Pyroptosis-related protein expressions were detected by Western Blot. Results: Emodin, similar to the positive control AYC, significantly alleviated pancreas and lung damage in rats and mice. Additionally, emodin mitigated the pyroptotic process of AMs by decreasing the level of inflammatory cytokines and lactate dehydrogenase. More importantly, the protein expressions of NLRP3, ASC, Caspase1 p10, GSDMD, and GSDMD-NT in AMs were significantly downregulated after emodin intervention. Conclusion: Emodin has a therapeutic effect on AP-associated lung injury, which may result from the inhibition of NLRP3/Caspase1/GSDMD-mediated AMs pyroptosis signaling pathways.
Collapse
Affiliation(s)
- Xiajia Wu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxin Kang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yifan Miao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lv Zhu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Cong Li
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Xianlin Zhao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
The Anti-Inflammatory Properties of Licorice ( Glycyrrhiza glabra)-Derived Compounds in Intestinal Disorders. Int J Mol Sci 2022; 23:ijms23084121. [PMID: 35456938 PMCID: PMC9025446 DOI: 10.3390/ijms23084121] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancer (CRC), are a significant source of morbidity and mortality worldwide. Epidemiological data have shown that IBD patients are at an increased risk for the development of CRC. IBD-associated cancer develops against a background of chronic inflammation and oxidative stress, and their products contribute to cancer development and progression. Therefore, the discovery of novel drugs for the treatment of intestinal diseases is urgently needed. Licorice (Glycyrrhiza glabra) has been largely used for thousands of years in traditional Chinese medicine. Licorice and its derived compounds possess antiallergic, antibacterial, antiviral, anti-inflammatory, and antitumor effects. These pharmacological properties aid in the treatment of inflammatory diseases. In this review, we discuss the pharmacological potential of bioactive compounds derived from Licorice and addresses their anti-inflammatory and antioxidant properties. We also discuss how the mechanisms of action in these compounds can influence their effectiveness and lead to therapeutic effects on intestinal disorders.
Collapse
|
17
|
Wang Z, Xu G, Li Z, Xiao X, Tang J, Bai Z. NLRP3 Inflammasome Pharmacological Inhibitors in Glycyrrhiza for NLRP3-Driven Diseases Treatment: Extinguishing the Fire of Inflammation. J Inflamm Res 2022; 15:409-422. [PMID: 35082510 PMCID: PMC8784972 DOI: 10.2147/jir.s344071] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022] Open
Abstract
Inflammation is the tissues’ defense response after the body is stimulated by microbial infection or damage signals, and it is initiated when pattern recognition receptors recognize pathogen-related molecular patterns and danger-related molecular patterns. The hyperactivation of NLRP3 inflammasome, the main driving force of immune outbreaks, is involved in a wide range of inflammatory diseases. Meanwhile, growing evidence has indicated that the development of NLRP3-targeted therapies offers great potential and promise for the treatment of related diseases. The search for and development of efficacious anti-inflammatory prodrugs from natural sources of plants and traditional Chinese medicines (TCMs) have received extensive attention. Glycyrrhiza, an important minister in the kingdom of TCMs, has high activity and a wide range of therapeutic effects. Studies have shown that a variety of active components found in Glycyrrhiza, such as licochalcone A, echinatin, isoliquiritigenin, and glycyrrhizin, produce a wide range of anti-inflammatory effects by discouraging NLRP3 inflammasome activation. Here, we summarize the role and mechanism of the active ingredients in Glycyrrhiza that target the NLRP3 inflammasome and treat related inflammatory diseases. We describe a favorable approach for the development of natural, safe, and efficient drugs that exploit these naturally occurring active ingredients to treat NLRP3-driven diseases.
Collapse
Affiliation(s)
- Zhilei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Guang Xu
- Senior Department of Hepatology, The Fifth Medical Centre of PLA General Hospital, Beijing, People’s Republic Of China
- China Military Institute of Chinese Materia, The Fifth Medical Centre of PLA General Hospital, Beijing, People’s Republic of China
| | - Zhiyong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Centre of PLA General Hospital, Beijing, People’s Republic Of China
- China Military Institute of Chinese Materia, The Fifth Medical Centre of PLA General Hospital, Beijing, People’s Republic of China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Correspondence: Jianyuan Tang; Zhaofang Bai Email ;
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Centre of PLA General Hospital, Beijing, People’s Republic Of China
- China Military Institute of Chinese Materia, The Fifth Medical Centre of PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Abraham J, Florentine S. Licorice ( Glycyrrhiza glabra) Extracts-Suitable Pharmacological Interventions for COVID-19? A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2600. [PMID: 34961070 PMCID: PMC8708549 DOI: 10.3390/plants10122600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 06/06/2023]
Abstract
Even though vaccination has started against COVID-19, people should continue maintaining personal and social caution as it takes months or years to get everyone vaccinated, and we are not sure how long the vaccine remains efficacious. In order to contribute to the mitigation of COVID-19 symptoms, the pharmaceutical industry aims to develop antiviral drugs to inhibit the SARS-CoV-2 replication and produce anti-inflammatory medications that will inhibit the acute respiratory distress syndrome (ARDS), which is the primary cause of mortality among the COVID-19 patients. In reference to these tasks, this article considers the properties of a medicinal plant named licorice (Glycyrrhiza glabra), whose phytochemicals have shown both antiviral and anti-inflammatory tendencies through previous studies. All the literature was selected through extensive search in various databases such as google scholar, Scopus, the Web of Science, and PubMed. In addition to the antiviral and anti-inflammatory properties, one of the licorice components has an autophagy-enhancing mechanism that studies have suggested to be necessary for COVID-19 treatment. Based on reviewing relevant professional and historical literature regarding the medicinal properties of licorice, it is suggested that it may be worthwhile to conduct in vitro and in vivo studies, including clinical trials with glycyrrhizic and glycyrrhetinic acids together with other flavonoids found in licorice, as there is the potentiality to provide natural interventions against COVID-19 symptoms.
Collapse
Affiliation(s)
- Joji Abraham
- School of Engineering, Information Technology, and Physical Sciences, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Singarayer Florentine
- Centre for Environmental Management, School of Science, Psychology, and Sport, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3353, Australia;
| |
Collapse
|
19
|
Wang YH, Gao X, Tang YR, Yu Y, Sun MJ, Chen FQ, Li Y. The Role of NF-κB/NLRP3 Inflammasome Signaling Pathway in Attenuating Pyroptosis by Melatonin Upon Spinal Nerve Ligation Models. Neurochem Res 2021; 47:335-346. [PMID: 34515922 DOI: 10.1007/s11064-021-03450-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Accumulated evidence has demonstrated causative links between neuropathic pain (NP) and immune-mediated inflammatory disorders. However, the role of inflammasome-induced pyroptosis in NP remains elusive. Melatonin possesses a well-documented analgesic action in various pain models. The current study aimed to test our hypothesis that melatonin regulated pyroptosis to alleviate NP by inhibiting NF-κB/NLRP3-dependent signaling. A rat model of spinal nerve ligation (SNL) was established to explore the potential association between melatonin and pyroptosis. Behavioral experiments revealed that SNL provoked severe allodynia which was suppressed by the administration of melatonin, a caspase-1 inhibitor (VX-765), or an NF-κB inhibitor (BAY 11-7085). SNL significantly up-regulated the inflammatory cytokines associated with the excessive activation of NLRP3 components and NF-κB signaling, as well as a marked pyroptosis activation. These effects were partially inhibited by melatonin, VX-765 or BAY 11-7085, and when melatonin and inhibitors were added together, the effect was enhanced. In conclusion, melatonin has potent analgesic and anti-inflammatory effects in SNL models through preventing pyroptosis via the NF-κB/NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Yi-Hao Wang
- Department of Pain Management, Qingdao Municipal Hospital, 5 Donghaizhong Road, Qingdao, 266011, Shandong Province, China
| | - Xiao Gao
- Qingdao Mental Health Center, Qingdao University, Qingdao, 266034, Shandong Province, China
| | - Yu-Ru Tang
- Qingdao Mental Health Center, Qingdao University, Qingdao, 266034, Shandong Province, China
| | - Yang Yu
- Department of Pain Management, Qingdao Municipal Hospital, 5 Donghaizhong Road, Qingdao, 266011, Shandong Province, China
| | - Ming-Jie Sun
- Department of Pain Management, Qingdao Municipal Hospital, 5 Donghaizhong Road, Qingdao, 266011, Shandong Province, China
| | - Fu-Qiang Chen
- Department of Pain Management, Qingdao Municipal Hospital, 5 Donghaizhong Road, Qingdao, 266011, Shandong Province, China.
| | - Yan Li
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
20
|
Zhu L, Wei M, Yang N, Li X. Glycyrrhizic acid alleviates the meconium-induced acute lung injury in neonatal rats by inhibiting oxidative stress through mediating the Keap1/Nrf2/HO-1 signal pathway. Bioengineered 2021; 12:2616-2626. [PMID: 34499011 PMCID: PMC8806485 DOI: 10.1080/21655979.2021.1937445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Meconium aspiration syndrome (MAS) is a disease closely related to inflammation and oxidative stress. Glycyrrhizic acid (GA) is a triterpenoid isolated from licorice with multiple bioprotective properties. In the present study, impacts of GA against MAS rats, as well as the potential mechanism, will be investigated. MAS model was established on newborn rats, followed by the treatment of 12.5, 25, and 50 mg/kg GA. The wet/dry weight ratio of lung tissues was calculated. The production of IL-6, IL-1β, TNF-α, malonaldehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) was measured using ELISA assay. HE staining was used to evaluate the pathological state of lung tissues and TUNEL assay was used to detect the apoptotic state. The protein expression of Nrf2, Keap1, HO-1, Bcl-2, Bax, and cleaved-Caspase3 was measured by Western blotting assay. The elevated W/D ratio, release of inflammatory factors, lung injury score, and apoptotic index, as well as the activated oxidative stress and suppressed Keap1/Nrf2/HO-1 pathway, in MAS rats were significantly alleviated by GA. After introducing the inhibitor of Nrf2, ML385, the protective property of GA on the pathological state, apoptotic index, and oxidative stress in MAS rats was pronouncedly abolished. Taken together, glycyrrhizin alleviated GAH in rats by suppressing Keap1/Nrf2/HO-1 signaling mediated oxidative stress.
Collapse
Affiliation(s)
- Linhan Zhu
- Pediatric Department, Beijing Friendship Hospital, Capital Medical University, Beijing China
| | - Meichen Wei
- Pediatric Department, Beijing Friendship Hospital, Capital Medical University, Beijing China
| | - Nan Yang
- Pediatric Department, Beijing Friendship Hospital, Capital Medical University, Beijing China
| | - Xuehua Li
- Pediatric Department, Beijing Friendship Hospital, Capital Medical University, Beijing China
| |
Collapse
|
21
|
Bhattacharya S, Paul SMN. Efficacy of phytochemicals as immunomodulators in managing COVID-19: a comprehensive view. Virusdisease 2021; 32:435-445. [PMID: 34189187 PMCID: PMC8224255 DOI: 10.1007/s13337-021-00706-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Throughout history, disease outbreaks have worked havoc upon humanity, sometimes reorienting the history and at times, signaling the end of entire civilizations and the modern pandemic that the world is dealing with, is COVID-19 or SARS-CoV-2. A healthy immunity could be an ideal gear for resisting COVID-19 for neither medicines nor vaccines have been ascertained till date. In view of the present scenario, there is a demanding necessity to analyze innovative and valid techniques for forestalling and cure of COVID-19 by re-evaluating the structure of the natural compounds for drug designing. The Ayurveda has come forward by prescribing a lot of medicinal herbs for combating this dreaded disease. We have searched from sources in Pubmed and Google Scholar and found 1509 items. The search criteria were limited to the effect of phytochemicals in certain immunomodulatory aspects of viral infection. The original research papers related to the works on phytochemicals in the down regulation of NF-kB, activation of NK and CD8+ cells, inhibition of inflammatory cytokine release and ROS scavenging were included in our study. Here, we try to focus on the immunoregulatory cells which have a vital aspect in COVID-19 and highlight the potential effects of the restorative use of phytochemicals as drugs or dietary supplements. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00706-2.
Collapse
Affiliation(s)
- Sonali Bhattacharya
- Department of Zoology, Rishi Bankim Chandra College, Naihati, West Bengal 743165 India
| | | |
Collapse
|
22
|
Huan C, Xu Y, Zhang W, Guo T, Pan H, Gao S. Research Progress on the Antiviral Activity of Glycyrrhizin and its Derivatives in Liquorice. Front Pharmacol 2021; 12:680674. [PMID: 34295250 PMCID: PMC8290359 DOI: 10.3389/fphar.2021.680674] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Liquorice is a traditional medicine. Triterpenoids such as glycyrrhizin and glycyrrhetinic acid are the main active constituents of liquorice. Studies have revealed that these compounds exert inhibitory effects on several viruses, including SARS-CoV-2. The main mechanisms of action of these compounds include inhibition of virus replication, direct inactivation of viruses, inhibition of inflammation mediated by HMGB1/TLR4, inhibition of β-chemokines, reduction in the binding of HMGB1 to DNA to weaken the activity of viruses, and inhibition of reactive oxygen species formation. We herein review the research progress on the antiviral effects of glycyrrhizin and its derivatives. In addition, we emphasise the significance of exploring unknown antiviral mechanisms, structural modifications, and drug combinations in future studies.
Collapse
Affiliation(s)
- Changchao Huan
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Yao Xu
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Wei Zhang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Tingting Guo
- College of Medicine, Yangzhou University, Yangzhou, China
| | - Haochun Pan
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Song Gao
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| |
Collapse
|
23
|
Wang B, Ye X, Zhou Y, Zhao P, Mao Y. Glycyrrhizin Attenuates Salmonella Typhimurium-Induced Tissue Injury, Inflammatory Response, and Intestinal Dysbiosis in C57BL/6 Mice. Front Vet Sci 2021; 8:648698. [PMID: 34239908 PMCID: PMC8258384 DOI: 10.3389/fvets.2021.648698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonellae are one of the most important foodborne pathogens, which threaten the health of humans and animals severely. Glycyrrhizin (GL) has been proven to exhibit anti-inflammatory and tissue-protective properties. Here, we investigated the effects of GL on tissue injury, inflammatory response, and intestinal dysbiosis in Salmonella Typhimurium-infected mice. Results showed that GL or gentamicin (GM) significantly (P < 0.05) alleviated ST-induced splenomegaly indicated by the decreased spleen index, injury of liver and jejunum indicated by the decreased hepatocytic apoptosis, and the increased jejunal villous height. GL significantly (P < 0.05) increased secretion of inflammatory cytokines (IFN-γ, IL-12p70, IL-6, and IL-10) in spleen and IL-12p40 mRNA expression in liver. Meanwhile, GL or GM pre-infection treatments significantly (P < 0.05) decreased ST-induced pro-inflammatory cytokine (IFN-γ, TNF-α, and IL-6) expression in both spleen and liver and increased (P < 0.05) anti-inflammatory cytokine IL-10 secretion in spleen. Furthermore, GL or GM pre-infection treatment also regulates the diversities and compositions of intestinal microbiota and decreased the negative connection among the intestinal microbes in ST-infected mice. The above findings indicate that GL alleviates ST-induced splenomegaly, hepatocytic apoptosis, injury of jejunum and liver, inflammatory response of liver and spleen, and intestinal dysbacteriosis in mice.
Collapse
Affiliation(s)
- Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaolin Ye
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Pengwei Zhao
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yulong Mao
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Herbal Active Ingredients: Potential for the Prevention and Treatment of Acute Lung Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5543185. [PMID: 34258266 PMCID: PMC8245226 DOI: 10.1155/2021/5543185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a life-threatening clinical syndrome with high morbidity and mortality. The main pathological features of ALI are increased alveolar-capillary membrane permeability, edema, uncontrolled migration of neutrophils to the lungs, and diffuse alveolar damage, resulting in acute hypoxemic respiratory failure. Glucocorticoids, aspirin, and other anti-inflammatory drugs are commonly used to treat ALI. Respiratory supports, such as a ventilator, are used to alleviate hypoxemia. Many treatment methods are available, but they cannot significantly ameliorate the quality of life of patients with ALI and reduce mortality rates. Herbal active ingredients, such as flavonoids, terpenoids, saponins, alkaloids, and quinonoids, exhibit advantages for ALI prevention and treatment, but the underlying mechanism needs further study. This paper summarizes the role of herbal active ingredients in anti-ALI therapy and progresses in the understanding of their mechanisms. The work also provides some references and insights for the discovery and development of novel drugs for ALI prevention and treatment.
Collapse
|
25
|
Zheng W, Huang X, Lai Y, Liu X, Jiang Y, Zhan S. Glycyrrhizic Acid for COVID-19: Findings of Targeting Pivotal Inflammatory Pathways Triggered by SARS-CoV-2. Front Pharmacol 2021; 12:631206. [PMID: 34177566 PMCID: PMC8223069 DOI: 10.3389/fphar.2021.631206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19) is now a worldwide public health crisis. The causative pathogen is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Novel therapeutic agents are desperately needed. Because of the frequent mutations in the virus and its ability to cause cytokine storms, targeting the viral proteins has some drawbacks. Targeting cellular factors or pivotal inflammatory pathways triggered by SARS-CoV-2 may produce a broader range of therapies. Glycyrrhizic acid (GA) might be beneficial against SARS-CoV-2 because of its anti-inflammatory and antiviral characteristics and possible ability to regulate crucial host factors. However, the mechanism underlying how GA regulates host factors remains to be determined. Methods: In our report, we conducted a bioinformatics analysis to identify possible GA targets, biological functions, protein-protein interactions, transcription-factor-gene interactions, transcription-factor-miRNA coregulatory networks, and the signaling pathways of GA against COVID-19. Results: Protein-protein interactions and network analysis showed that ICAM1, MMP9, TLR2, and SOCS3 had higher degree values, which may be key targets of GA for COVID-19. GO analysis indicated that the response to reactive oxygen species was significantly enriched. Pathway enrichment analysis showed that the IL-17, IL-6, TNF-α, IFN signals, complement system, and growth factor receptor signaling are the main pathways. The interactions of TF genes and miRNA with common targets and the activity of TFs were also recognized. Conclusions: GA may inhibit COVID-19 through its anti-oxidant, anti-viral, and anti-inflammatory effects, and its ability to activate the immune system, and targeted therapy for those pathways is a predominant strategy to inhibit the cytokine storms triggered by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wenjiang Zheng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiufang Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanni Lai
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Shaofeng Zhan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
26
|
Li X, Zou Y, Fu YY, Xing J, Wang KY, Wan PZ, Wang M, Zhai XY. Ibudilast Attenuates Folic Acid-Induced Acute Kidney Injury by Blocking Pyroptosis Through TLR4-Mediated NF-κB and MAPK Signaling Pathways. Front Pharmacol 2021; 12:650283. [PMID: 34025417 PMCID: PMC8139578 DOI: 10.3389/fphar.2021.650283] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Folic acid (FA)-induced renal tubule damage, which is characterized by extensive inflammation, is a common model of acute kidney injury (AKI). Pyroptosis, a pro-inflammatory form of cell death due to the activation of inflammatory caspases, is involved in AKI progression. Ibudilast, a TLR4 antagonist, has been used in the clinic to exert an anti-inflammatory effect on asthma. However, researchers have not explored whether ibudilast exerts a protective effect on AKI by inhibiting inflammation. In the present study, ibudilast reversed FA-induced AKI in mice, as indicated by the reduced serum creatinine and urea nitrogen levels, and improved renal pathology, as well as the downregulation of kidney injury marker-1. In addition, ibudilast significantly increased the production of the anti-inflammatory factor IL-10 while suppressing the secretion of the pro-inflammatory cytokine TNF-α and macrophage infiltration. Moreover, in the injured kidney, ibudilast reduced the levels of both inflammasome markers (NLRP3) and pyroptosis-related proteins (caspase-1, IL1-β, IL-18, and GSDMD cleavage), and decreased the number of TUNEL-positive cells. Further mechanistic studies showed that ibudilast administration inhibited the FA-induced upregulation of TLR4, blocked NF-κB nuclear translocation, and reduced the phosphorylation of NF-κB and IκBα, p38, ERK, and JNK. Thus, this study substantiates the protective effect of ibudilast on FA-induced AKI in mice and suggests that protection might be achieved by reducing pyroptosis and inflammation, likely through the inhibition of TLR4-mediated NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Xue Li
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China.,Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Zou
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Yuan-Yuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Jia Xing
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Kai-Yue Wang
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Peng-Zhi Wan
- Department of Nephrology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mo Wang
- Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Xiao-Yue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China.,Institute of Nephropathology, China Medical University, Shenyang, China
| |
Collapse
|
27
|
Shaukat A, Hanif S, Shaukat I, Shukat R, Rajput SA, Jiang K, Akhtar M, Yang Y, Guo S, Shaukat I, Akhtar M, Shaukat S, Yang L, Deng G. Upregulated-gene expression of pro-inflammatory cytokines, oxidative stress and apoptotic markers through inflammatory, oxidative and apoptosis mediated signaling pathways in Bovine Pneumonia. Microb Pathog 2021; 155:104935. [PMID: 33945855 DOI: 10.1016/j.micpath.2021.104935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022]
Abstract
Pneumonia is the acute inflammation of lung tissue and is multi-factorial in etiology. Staphylococcus aureus (S. aureus) is a harmful pathogen present as a normal flora of skin and nares of dairy cattle. In bovine pneumonia, S. aureus triggers to activates Toll-Like Receptors (TLRs), that further elicits the activation of the inflammation via NF-κB pathway, oxidative stress and apoptotic pathways. In the current study, pathogen-associated gene expression of the pro-inflammatory cytokines, oxidative stress and apoptotic markers in the lung tissue of cattle was explored in bovine pneumonia. Fifty lung samples collected from abattoir located in Wuhan city, Hubei, China. Histopathologically, thickening of alveolar wall, accumulation of inflammatory cells and neutrophils in perivascular space, hyperemia, hemorrhages and edema were observed in infected lungs as compared to non-infected lung samples. Furthermore, molecular identification and characterization were carried by amplification of S. aureus-specific nuc gene (270 base pairs) from the infected and non-infected lung samples to identify the S. aureus. Moreover, qPCR results displayed that relative mRNA levels of TLR2, TLR4, pro-inflammatory gene (IL-1β, IL-6 and TNF-α) and apoptosis-associated genes (Bax, caspase-3 and caspase-9) were up-regulated except Bcl-2, which is antiapoptotic in nature, and oxidative stress related genes (Nrf2, NQO1, HO-1 and GCLC) which was down-regulated in infected pulmonary group. The relative protein expression of NF-κB, mitochondria-mediated apoptosis gene was up-regulated while Bcl-2 and Nrf2 pathway genes were downregulated in infected cattle lungs. Our findings revealed that genes expression levels of inflammatory mediators, oxidative stress and apoptosis were associated with host immunogenic regulatory mechanisms in the lung tissue during infection. Conclusively, the present study provides insights of active immune response via TLRs-mediated inflammatory, oxidative damage, and apoptotic paradox.
Collapse
Affiliation(s)
- Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Sana Hanif
- Department of Physics, University of Gujrat, Gujrat, Pakistan
| | - Irfan Shaukat
- Faculty of Medicine, University of Lorraine, Nancy, France
| | - Rizwan Shukat
- Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kangfeng Jiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Muhammad Akhtar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yaping Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuai Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Imran Shaukat
- Department of Physics, University of Agriculture, Faisalabad, Pakistan
| | - Masood Akhtar
- Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Shadab Shaukat
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Liguo Yang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Ganzhen Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
28
|
Wang WY, Xie Y, Zhou H, Liu L. Contribution of traditional Chinese medicine to the treatment of COVID-19. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153279. [PMID: 32675044 PMCID: PMC7338274 DOI: 10.1016/j.phymed.2020.153279] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/25/2020] [Accepted: 07/04/2020] [Indexed: 05/13/2023]
Abstract
COVID-19 as an epidemic disease has spread across the planet since December 2019. The somber situation reminds each country to take actions in preventing the spreading of the virus. China as one of the early affected countries has been fighting against the novel coronavirus with the achievements of nearly 80,000 cured confirmed patients. Traditional Chinese medicine (TCM) has made contributions to the treatment of COVID-19 because of its efficacy and comprehensive therapeutic theory. In this commentary, the advantage, etiology and mechanism of TCM therapy were discussed in the aspect of its functions in reducing the harms brought by COVID-19 to human beings.
Collapse
Affiliation(s)
- Wan-Ying Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Ying Xie
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Liang Liu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
29
|
Involvement of TFAP2A in the activation of GSDMD gene promoter in hyperoxia-induced ALI. Exp Cell Res 2021; 401:112521. [PMID: 33609534 DOI: 10.1016/j.yexcr.2021.112521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/28/2022]
Abstract
Oxygen therapy is a common treatment in neonatal intensive care units, but long-term continuous hyperoxia ventilation may induce acute lung injury (ALI). Gasdermin D (GSDMD)-mediated pyroptosis participates in various diseases including ALI, but the role of GSDMD in hyperoxia-induced ALI is yet understood. Here, we showed a significant increase in GSDMD after exposure to high oxygen. To elucidate the molecular mechanisms involved in GSDMD regulation, we identified the core promoter of GSDMD, -98 ~ -12 bp relative to the transcriptional start site (TSS). The results of mutational analysis, overexpression or siRNA interference, EMSA and ChIP demonstrated that E2F4 and TFAP2A positively regulate the transcriptional activity of the GSDMD by binding to its promoter. However, only TFAP2A showed a regulatory effect on the expression of GSDMD. Moreover, TFAP2A was increased in the lung tissues of rats exposed to hyperoxia and showed a strong linear correlation with GSDMD. Our results indicated that TFAP2A positively regulates the GSDMD expression via binding to the promoter region of GSDMD.
Collapse
|
30
|
Liu B, He R, Zhang L, Hao B, Jiang W, Wang W, Geng Q. Inflammatory Caspases Drive Pyroptosis in Acute Lung Injury. Front Pharmacol 2021; 12:631256. [PMID: 33613295 PMCID: PMC7892432 DOI: 10.3389/fphar.2021.631256] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
Acute lung injury (ALI), a critical respiratory disorder that causes diffuse alveolar injury leads to high mortality rates with no effective treatment. ALI is characterized by varying degrees of ventilation/perfusion mismatch, severe hypoxemia, and poor pulmonary compliance. The diffuse injury to cells is one of most important pathological characteristics of ALI. Pyroptosis is a form of programmed cell death distinguished from apoptosis induced by inflammatory caspases, which can release inflammatory cytokines to clear cells infected by pathogens and promote monocytes to reassemble at the site of injury. And pyroptosis not only promotes inflammation in certain cell types, but also regulates many downstream pathways to perform different functions. There is increasing evidence that pyroptosis and its related inflammatory caspases play an important role in the development of acute lung injury. The main modes of activation of pyroptosis is not consistent among different types of cells in lung tissue. Meanwhile, inhibition of inflammasome, the key to initiating pyroptosis is currently the main way to treat acute lung injury. The review summarizes the relationship among inflammatory caspases, pyroptosis and acute lung injury and provides general directions and strategies to conduct further research.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Hao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenyang Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Xie K, Chen YQ, Chai YS, Lin SH, Wang CJ, Xu F. HMGB1 suppress the expression of IL-35 by regulating Naïve CD4+ T cell differentiation and aggravating Caspase-11-dependent pyroptosis in acute lung injury. Int Immunopharmacol 2021; 91:107295. [PMID: 33360086 DOI: 10.1016/j.intimp.2020.107295] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a severe form of inflammatory lung disease. Its development and progression are regulated by cytokines. The purpose of this study was to determine the effects of HMGB1 involved in the regulation of Treg cells and IL-35. METHODS A cecal ligation and puncture (CLP)-induced ALI model was used to investigate the changes in IL-35, Tregs, and the expression of RAGE and caspase-11 after HMGB1 inhibition (glycyrrhizin was used as an inhibitor of HMGB1). CD4+ naïve T cells sorted from C57BL/6 mice spleens were cultured to explore the role of HMGB1 in the differentiation from CD4+ naïve T cells to Tregs. RESULTS HMGB1 promoted lung injury and uncontrolled inflammation in the CLP mouse model. HMGB1, NF-κB p65, RAGE, and caspase-11 expression in the lungs of CLP mice decreased significantly after pretreatment with glycyrrhizin. We found that the Treg proportion and IL-35 expression were upregulated in the serum and lung of CLP mice after inhibiting HMGB1. In our in vitro experiments, we found that recombinant HMGB1 significantly suppressed the proportion of CD4+CD25+FOXP3+Tregs differentiated from CD4+ naïve T cells. CONCLUSIONS The inhibition of HMGB1 increased the proportion of Treg and expression of IL-35 and alleviated lung injury in the CLP-induced ALI model. Furthermore, inhibition of HMGB1 reduced caspase-11-dependent pyroptosis in the lungs of the CLP-induced ALI model.
Collapse
Affiliation(s)
- Ke Xie
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan-Qing Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Sen Chai
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shi-Hui Lin
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan-Jiang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Fang Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
32
|
Liu MM, Zhou J, Ji D, Yang J, Huang YP, Wang Q. Diammonium glycyrrhizinate lipid ligand ameliorates lipopolysaccharide-induced acute lung injury by modulating vascular endothelial barrier function. Exp Ther Med 2021; 21:303. [PMID: 33717246 PMCID: PMC7885082 DOI: 10.3892/etm.2021.9734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/24/2020] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study was to investigate the effects of diammonium glycyrrhizinate lipid ligand (DGLL) treatment on acute lung injury (ALI) and pulmonary edema induced by lipopolysaccharide (LPS) in Sprague-Dawley rats. Rats orally received 30, 60 and 120 mg/kg DGLL. After 1 h, the rat ALI model was established by LPS (10 mg/kg) intraperitoneal injection. After 6 h, lung injury was evaluated using hematoxylin and eosin staining techniques. Pulmonary edema was evaluated using lung wet-dry weight ratio, protein concentrations in the bronchoalveolar lavage fluid (BALF) and Evans blue (EB) extravasation in lung tissue. The expression levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in lung tissues were measured using ELISA. Myeloperoxidase (MPO) expression levels were detected by immunohistochemical staining. Western blotting was used to measure the expression level changes of intercellular adhesion molecule (ICAM)-1, as well as adherent and tight junction proteins, including vascular endothelial (VE)-cadherin, zonula occludens (ZO)-1, occludin and junctional adhesion molecule (JAM)-1 that were associated with pulmonary inflammation and microvascular permeability. DGLL treatment significantly alleviated ALI induced by LPS, which was demonstrated by reduction of MPO-positive cells and expression levels of TNF-α, IL-1β and ICAM-1 in rat lung tissues. In addition, DGLL abrogated LPS-induced pulmonary edema, decreased the protein concentration in BALF and reduced EB extravasation. DGLL also reversed the reduced expression of VE-cadherin and tight junction proteins, including ZO-1, occludin and JAM-1 in the lung tissues caused by LPS. In conclusion, DGLL exhibits a protective effect on LPS-induced rat ALI, which is associated with the inhibition of inflammatory cell infiltration and microvascular barrier disruption. The present results provide a theoretical basis for the application of DGLL for the potential clinical treatment of ALI.
Collapse
Affiliation(s)
- Mei-Mei Liu
- Department of Histology and Embryology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Jin Zhou
- Department of Histology and Embryology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Dan Ji
- Department of Histology and Embryology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Jun Yang
- Department of Histology and Embryology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Yan-Ping Huang
- Department of Histology and Embryology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Qi Wang
- Department of Histology and Embryology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
33
|
Ding L, Gao X, Yu S, Sheng L. miR-128-3p enhances the protective effect of dexmedetomidine on acute lung injury in septic mice by targeted inhibition of MAPK14. J Bioenerg Biomembr 2020; 52:237-245. [PMID: 32594289 DOI: 10.1007/s10863-020-09842-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
To investigate the role of miR-128-3p and MAPK14 in the dexmedetomidine treatment of acute lung injury in septic mice. SPF C57BL/6 mice were divided into 8 groups. The pathological changes and wet/dry weight ratio (W/D), PaO2, PaCO2, MDA, SOD and MPO levels in lung tissue and the serum levels of inflammation factors were observed. Dual luciferase reporter assay was used to detect the targeting relationship of miR-128-3p and MAPK14, and qPCR and WB were used to detect the expression of miR-128-3p and MAPK14. Compared with the Normal group, other groups had lower MDA, MPO, inflammatory factors levels and the expression level of MAPK14, while the content of SOD and the expression level of miR-128-3p was significantly decreased (all p < 0.05). Compared with the Model group, the contents of MDA, MPO, inflammatory factors in the DEX group and miR-128-3p mimic group were significantly decreased, and the content SOD was significantly increased, however, opposite results were occurred in oe-MAPK14 group (all p < 0.05). Compared with the DEX group, all the indicators in miR-128-3p mimic+DEX group showed significant improvement (all p < 0.05). Compared with the miR-128-3p mimic group, all the indicators were deteriorated in the miR-128-3p mimic+oe-MAPK14 group (all p < 0.05). The combination of DEX and oe-MAPK14 blocked the protective effect of dexmedetomidine on acute lung injury in septic mice. miR-128-3p can further enhance the protective effect of dexmedetomidine on acute lung injury in septic mice by targeting and inhibiting MAPK14 expression.
Collapse
Affiliation(s)
- Li Ding
- Department of Anesthesiology, The People's Hospital of Yinzhou, No.251 Baizhang East Road, Ningbo, Zhejiang Province, 315040, China.
| | - Xiang Gao
- Department of Anesthesiology, The People's Hospital of Yinzhou, No.251 Baizhang East Road, Ningbo, Zhejiang Province, 315040, China
| | - Shenghui Yu
- Department of Anesthesiology, The People's Hospital of Yinzhou, No.251 Baizhang East Road, Ningbo, Zhejiang Province, 315040, China
| | - Liufang Sheng
- Department of Anesthesiology, The People's Hospital of Yinzhou, No.251 Baizhang East Road, Ningbo, Zhejiang Province, 315040, China.
| |
Collapse
|
34
|
Murck H. Symptomatic Protective Action of Glycyrrhizin (Licorice) in COVID-19 Infection? Front Immunol 2020; 11:1239. [PMID: 32574273 PMCID: PMC7270278 DOI: 10.3389/fimmu.2020.01239] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/18/2020] [Indexed: 01/22/2023] Open
Abstract
The role of the ACE2 enzyme in the COVID-19 infection is 2-fold, with opposing implications for the disease development. 1. The membrane bound angiotensin converting enzyme 2 (ACE2) serves as the entry point of COVID-19 2. Conversely, it supports an anti-inflammatory pathway. This led to the controversy of the impact of medications, which influence its expression. ACE2 is part of the wider renin-angiotensin-aldosterone system (RAAS) and is upregulated via compounds, which inhibits the classical ACE, thereby plasma aldosterone and aldosterone receptor (MR) activation. MR activation may therefore protect organs from binding the COVID-19 by reducing ACE2 expression. Glycyrrhizin (GL) is a frequent component in traditional Chinese medicines, which have been used to control COVID-19 infections. Its systemically active metabolite glycyrrhetinic acid (GA) inhibits 11beta hydroxysteroid dehydrogenase(11betaHSD2) and activates MR in organs, which express this enzyme, including the lungs. Does this affect the protective effect of ACE2? Importantly, GL has anti-inflammatory properties by itself via toll like receptor 4 (TLR4) antagonism and therefore compensates for the reduced protection of the downregulated ACE2. Finally, a direct effect of GL or GA to reduce virus transmission exists, which may involve reduced expression of type 2 transmembrane serine protease (TMPRSS2), which is required for virus uptake. Glycyrrhizin may reduce the severity of an infection with COVID-19 at the two stages of the COVID-19 induced disease process, 1. To block the number of entry points and 2. provide an ACE2 independent anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Harald Murck
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.,Murck-Neuroscience LLC, Westfield, NJ, United States
| |
Collapse
|
35
|
Chen L, Hu C, Hood M, Zhang X, Zhang L, Kan J, Du J. A Novel Combination of Vitamin C, Curcumin and Glycyrrhizic Acid Potentially Regulates Immune and Inflammatory Response Associated with Coronavirus Infections: A Perspective from System Biology Analysis. Nutrients 2020; 12:E1193. [PMID: 32344708 PMCID: PMC7230237 DOI: 10.3390/nu12041193] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Novel coronaviruses (CoV) have emerged periodically around the world in recent years. The recurrent spreading of CoVs imposes an ongoing threat to global health and the economy. Since no specific therapy for these CoVs is available, any beneficial approach (including nutritional and dietary approach) is worth investigation. Based on recent advances in nutrients and phytonutrients research, a novel combination of vitamin C, curcumin and glycyrrhizic acid (VCG Plus) was developed that has potential against CoV infection. System biology tools were applied to explore the potential of VCG Plus in modulating targets and pathways relevant to immune and inflammation responses. Gene target acquisition, gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment were conducted consecutively along with network analysis. The results show that VCG Plus can act on 88 hub targets which are closely connected and associated with immune and inflammatory responses. Specifically, VCG Plus has the potential to regulate innate immune response by acting on NOD-like and Toll-like signaling pathways to promote interferons production, activate and balance T-cells, and regulate the inflammatory response by inhibiting PI3K/AKT, NF-κB and MAPK signaling pathways. All these biological processes and pathways have been well documented in CoV infections studies. Therefore, our findings suggest that VCG Plus may be helpful in regulating immune response to combat CoV infections and inhibit excessive inflammatory responses to prevent the onset of cytokine storm. However, further in vitro and in vivo experiments are warranted to validate the current findings with system biology tools. Our current approach provides a new strategy in predicting formulation rationale when developing new dietary supplements.
Collapse
Affiliation(s)
- Liang Chen
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China; (L.C.); (X.Z.); (L.Z.); (J.K.)
| | - Chun Hu
- Nutrilite Health Institute, 5600 Beach Boulevard, Buena Park, CA 90621, USA;
| | - Molly Hood
- Nutrilite Health Institute, 7575 East Fulton Avenue, Ada, MI 49355, USA;
| | - Xue Zhang
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China; (L.C.); (X.Z.); (L.Z.); (J.K.)
| | - Lu Zhang
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China; (L.C.); (X.Z.); (L.Z.); (J.K.)
| | - Juntao Kan
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China; (L.C.); (X.Z.); (L.Z.); (J.K.)
| | - Jun Du
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China; (L.C.); (X.Z.); (L.Z.); (J.K.)
| |
Collapse
|
36
|
Systems pharmacology reveals the mechanism of activity of Ge-Gen-Qin-Lian decoction against LPS-induced acute lung injury: A novel strategy for exploring active components and effective mechanism of TCM formulae. Pharmacol Res 2020; 156:104759. [PMID: 32200026 DOI: 10.1016/j.phrs.2020.104759] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/16/2022]
Abstract
Acute lung injury (ALI), a severe and life-threatening inflammation of the lung, with high morbidity and mortality, underscoring the urgent need for novel treatments. Ge-Gen-Qin-Lian decoction (GQD), a classic Chinese herbal formula, has been widely used to treat intestine-related diseases in the clinic for centuries. In recent years, a growing number of studies have found that GQD has a favorable anti-inflammatory effect. With the further study on the viscera microbiota, the link between the lungs and the gut-the gut-lung axis has been established. Based on the theory of the gut-lung axis, we used systems pharmacology to explore the effects and mechanisms of GQD treatment in ALI. Hypothesizing that GQD inhibits ALI progression, we used the experimental model of lipopolysaccharide (LPS)-induced ALI in Balb/c mice to evaluate the therapeutic potential of GQD. Our results showed that GQD exerted protective effects against LPS-induced ALI by reducing pulmonary edema and microvascular permeability. Meanwhile, GQD can downregulate the expression of LPS-induced TNF-α, IL-1β, and IL-6 in lung tissue, bronchoalveolar lavage fluid (BLAF), and serum. To further understand the molecular mechanism of GQD in the treatment of ALI, we used the network pharmacology to predict the disease targets of the active components of GQD. Lung tissue and serum samples of the mice were separately analyzed by transcriptomics and metabolomics. KEGG pathway analysis of network pharmacology and transcriptomics indicated that PI3K/Akt signaling pathway was significantly enriched, suggesting that it may be the main regulatory pathway for GQD treatment of ALI. By immunohistochemical analysis and apoptosis detection, it was verified that GQD can inhibit ALI apoptosis through PI3K/Akt signaling pathway. Then, we used the PI3K inhibitor LY294002 to block the PI3K/Akt signaling pathway, and reversely verified that the PI3K/Akt signaling pathway is the main pathway of GQD anti-ALI. In addition, differential metabolites in mice serum samples indicate that GQD can inhibit the inflammatory process of ALI by reversing the imbalance of energy metabolism. Our study showed that, GQD did have a better therapeutic effect on ALI, and initially elucidated its molecular mechanism. Thus, GQD could be exploited to develop novel therapeutics for ALI. Moreover, our study also provides a novel strategy to explore active components and effective mechanism of TCM formula combined with TCM theory to treat ALI.
Collapse
|
37
|
Le K, Wu S, Chibaatar E, Ali AI, Guo Y. Alarmin HMGB1 Plays a Detrimental Role in Hippocampal Dysfunction Caused by Hypoxia-Ischemia Insult in Neonatal Mice: Evidence from the Application of the HMGB1 Inhibitor Glycyrrhizin. ACS Chem Neurosci 2020; 11:979-993. [PMID: 32073822 DOI: 10.1021/acschemneuro.0c00084] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hippocampal dysfunction related to cognitive impairment and emotional disorders in young children and adolescents caused by neonatal hypoxic-ischemic brain injury (HIBI) has attracted increasing attention in recent years. Crosstalk between the nervous and immune systems organized by hypoxia-ischemia (HI) insult may contribute to hippocampal dysfunction after HIBI. Extracellular HMGB1 functions as a damage-associated molecular pattern to instigate and amplify inflammatory responses, but whether this molecule is correlated with hippocampal dysfunction after HIBI is largely unknown. Therefore, this study examined hippocampal function after HMGB1 inhibition in an experimental HIBI model to verify the hypothesis that HMGB1 is a key mediator of hippocampal neuropathology in neonatal HIBI. By administering different doses of the HMGB1-specific inhibitor glycyrrhizin (GLY), we first found that GLY reversed the HI insult-induced loss of neurons and myelin in the hippocampal region and neurobehavioral impairments, partially in a dose-dependent manner, and based on this, we determined the optimal drug concentration to be 50 mg/kg. Subsequent analysis found that this neuroprotective effect was achieved through the inhibition of HMGB1 expression and nucleocytoplasmic translocation, a reduction in the abnormal expression of proteins associated with the downstream signaling pathway of HMGB1, a decrease in the inflammatory response, the suppression of increases in microglia/astrocytes, and the inhibition of hippocampal cell apoptosis. Collectively, our discoveries contribute to the rising appreciation of the role of HMGB1 in the neuropathology of hippocampal dysfunction and related behavioral outcomes following HIBI.
Collapse
Affiliation(s)
- Kai Le
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Shanshan Wu
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Enkhmurun Chibaatar
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Abdoulaye Idriss Ali
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Yijing Guo
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province 210009, China
| |
Collapse
|
38
|
Ding Z, Zhong R, Xia T, Yang Y, Xing N, Wang W, Wang Y, Yang B, Sun X, Shu Z. Advances in research into the mechanisms of Chinese Materia Medica against acute lung injury. Biomed Pharmacother 2019; 122:109706. [PMID: 31918277 DOI: 10.1016/j.biopha.2019.109706] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/30/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022] Open
Abstract
Acute lung injury (ALI) is a common and serious disease. Numerous treatment options are available but they do not improve quality of life or reduce mortality for ALI patients. Here, we review the treatments for ALI to provide basic data for ALI drug therapy research and development. Chinese Materia Medica (CMM) has long been the traditional clinical approach in China for the treatment of ALI and it has proven efficacy. The continued study of CMM has disclosed new potential therapeutic ingredients for ALI. However, few reviews summarize the currently available CMM-based anti-ALI drugs. Therefore, the systematic analysis of research progress in anti-ALI CMM is of great academic and clinical value. The aim of the present review is to describe CMM-based research progress in ALI treatment. Data were compiled by electronic retrieval (CNKI, SciFinder, PubMeds, Google Scholar, Web of Science) and from articles, patents and ethnopharmacological literature in university libraries were systematically studied. This review introduces progress in research on the etiology and mechanisms of ALI, the anti-ALI theory and modes of action in traditional Chinese medicine (TCM), anti-ALI active constituents of CMM, research progress in experimental methods of CMM anti-ALI, the anti-ALI molecular mechanisms of CMM, the anti-ALI efficacy of CMM formulae, and the potential toxicity of CMM and the antidotes for it. Scholars have investigated the anti-ALI molecular mechanism of CMM from various direction and have made substantial progress. This research explored the above aspects, enriched the anti-ALI theory of CMM and established the clinical significance and developmental prospects of ALI treatment by CMM. Because of the high frequency of drugs such as glucocorticoids or antibiotics, Western medicine lacks the advantages of CMM in terms of overall anti-ALI efficacy. In the future, the development of CMM-based anti-ALI therapies will become a major trend in the field of ALI drug development. Successful clinical safety and efficacy validations will promote and encourage the use of CMM. It provides fundamental theoretical support for the discovery and use of CMM resources through the comprehensive analysis of various anti-ALI CMM report databases.
Collapse
Affiliation(s)
- Zihe Ding
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Renxing Zhong
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tianyi Xia
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanni Yang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Na Xing
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wujing Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bingyou Yang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zunpeng Shu
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
39
|
Low dose of indomethacin and Hedgehog signaling inhibitor administration synergistically attenuates cartilage damage in osteoarthritis by controlling chondrocytes pyroptosis. Gene 2019; 712:143959. [DOI: 10.1016/j.gene.2019.143959] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
|
40
|
Zhao J, Sun T, Wu S, Liu Y. High Mobility Group Box 1: An Immune-regulatory Protein. Curr Gene Ther 2019; 19:100-109. [PMID: 31223085 DOI: 10.2174/1566523219666190621111604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
High mobility group box 1 (HMGB1) presents in almost all somatic cells as a component of the cell nucleus. It is necessary for transcription regulation during cell development. Recent studies indicate that extracellular HMGB1, coming from necrotic cells or activated immune cells, triggers inflammatory response whereas intracellular HMGB1 controls the balance between autophagy and apoptosis. In addition, reduced HMGB1 can effectively mediate tissue regeneration. HMGB1, therefore, is regarded as a therapeutic target for inflammatory diseases. In this review, we summarized and discussed the immunomodulatory effect of HMGB1.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Intensive Care Medicine, Hefei No. 2 People Hospital, Hefei 230000, China
| | - Tianle Sun
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215000, China
| | - Shengdi Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yufeng Liu
- Department of Nursing, General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|