1
|
Gu L, Zhu J, Nie Q, Xie B, Xue S, Zhang A, Li Q, Zhang Z, Li S, Li Y, Shi Q, Shi W, Zhao L, Liu S, Shi X. NLRP3 promotes inflammatory signaling and IL-1β cleavage in acute lung injury caused by cell wall extract of Lactobacillus casei. Commun Biol 2025; 8:20. [PMID: 39774843 PMCID: PMC11706994 DOI: 10.1038/s42003-025-07462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Gram-positive bacterial pneumonia is a significant cause of hospitalization and death. Shortage of a good experimental model and therapeutic targets hinders the cure of acute lung injury (ALI). This study has established a mouse model of ALI using Gram-positive bacteria Lactobacillus casie cell wall extracts (LCWE) and identified the key regulator NLRP3. We show that LCWE induces TNF, NF-κB signaling, and so on pathways. Similar to lipopolysaccharide (LPS), LCWE induces the infiltration of CD11b-positive cells and inflammation in lungs. LCWE also triggers inflammatory signaling through TLR2, different from LPS through TLR4. It suggests that cytokines amplify inflammation signaling relying on NLRP3 in LCWE-induced ALI. NLRP3 deletion disrupts inflammation, IL-1β cleavage, and the infiltration of neutrophils and macrophages in the injured lung. Our study highlights an animal ALI model for Gram-positive bacterial pneumonia and that NLRP3 is a key therapeutic target to prevent inflammation and lung damage in LCWE-induced ALI.
Collapse
Affiliation(s)
- Lingui Gu
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Jinjin Zhu
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Qingbing Nie
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Binghua Xie
- The Fuyang Hospital, Anhui Medical University, Fuyang, Anhui, 236000, P. R. China
| | - Shuo Xue
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Ailing Zhang
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Qiangwei Li
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Zhengzhong Zhang
- The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Shupeng Li
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Yusen Li
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Qinquan Shi
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Weiwei Shi
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Lei Zhao
- The Fuyang Hospital, Anhui Medical University, Fuyang, Anhui, 236000, P. R. China.
| | - Shuzhen Liu
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China.
| | - Xuanming Shi
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China.
| |
Collapse
|
2
|
Liu C, Shao J. Therapy of traditional Chinese medicine in Candida spp. and Candida associated infections: A comprehensive review. Fitoterapia 2024; 177:106139. [PMID: 39047847 DOI: 10.1016/j.fitote.2024.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Candida spp. are commonly a group of opportunistic dimorphic fungi, frequently causing diverse fungal infections in immunocompromised or immunosuppressant patients from mucosal disturbs (oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated infections (systemic candidiasis) with high morbidity and mortality. Importantly, several Candida species can be isolated from diseased individuals with digestive, neuropathic, respiratory, metabolic and autoimmune diseases. Due to increased resistance to conventional antifungal agents, the arsenal for antifungal purpose is in urgent need. Traditional Chinese Medicines (TCMs) are a huge treasury that can be used as promising candidates for antimycotic applications. In this review, we make a short survey of microbiological (morphology and virulence) and pathological (candidiasis and Candida related infections) features of and host immune response (innate and adaptive immunity) to Candida spp.. Based on the chemical structures and well-studied antifungal mechanisms, the monomers, extracts, decoctions, essential oils and other preparations of TCMs that are reported to have fair antifungal activities or immunomodulatory effects for anticandidal purpose are comprehensively reviewed. We also emphasize the importance of combination and drug pair of TCMs as useful anticandidal strategies, as well as network pharmacology and molecular docking as beneficial complements to current experimental approaches. This review construct a therapeutic module that can be helpful to guide in-future experimental and preclinical studies in the combat against fungal threats aroused by C. albicans and non-albicans Candida species.
Collapse
Affiliation(s)
- Chengcheng Liu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China.
| |
Collapse
|
3
|
Khaled A, Kadri R, Kadri M, Berredjem M. New Cu(II) and Zn(II) complexes with diethyl phenyl (N-phenylsulfamoylamino) methyl phosphonate: Synthesis, characterisation, DFT/M11 studies, NBO, DOS, QTAIM and RDG analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Yu D, Xu C, Tu H, Ye A, Wu L. miR-384-5p regulates inflammation in Candida albicans-induced acute lung injury by downregulating PGC1β and enhancing the activation of Candida albicans-triggered signaling pathways. Sci Prog 2021; 104:368504211014361. [PMID: 33970047 PMCID: PMC10358457 DOI: 10.1177/00368504211014361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acute lung injury (ALI) is one of the most prevalent respiratory syndromes of excessive inflammatory reaction during lung infection. Candida albicans (C. albicans) infection is among the leading causes of ALI. MicroRNAs (miRNAs) regulate the expression of target mRNAs, including those involved in inflammatory processes, by binding to the 3'UTR. To date, the roles of miRNAs in C. albicans-induced ALI remain unclear. In this study, we investigated the role of miR-384-5p in C. albicans-induced ALI and its underlying molecular mechanism. RT-PCR, Western blot, ELISA, Myeloperoxidase (MPO) assay, microRNA target analysis, transient transfection, and luciferase reporter assay were utilized. In vivo study was conducted on mouse model. The expression of miR-384-5p was upregulated and positively correlated with inflammatory cytokine production in lung tissues and RAW264.7 and J774A.1 macrophages infected with C. albicans. The miR-384-5p inhibitor alleviated the inflammatory reaction induced by C. albicans. Target prediction analysis revealed that PGC1β was a target of miR-384-5p, which was further validated by the PGC1β 3'-UTR luciferase assay and the inverse correlation between the expression of miR-384-5p and PGC1β in C. albicans-infected ALI tissues and macrophages. Moreover, macrophages transfected with miR-384-5p mimic exhibited reduced levels of PGC1β. The suppression of the expression of PGC1β by C. albicans infection in the macrophages was abrogated by miR-384-5p inhibitor. Then, we demonstrated that PGC1β played an inhibitory role in C. albicans-induced production of inflammatory cytokines. Furthermore, suppression of miR-384-5p in macrophages inhibited the activation of the NF-κB, MAPK, and Akt signaling pathways triggered by C. albicans, but not the STAT3 pathway. These results demonstrate that miR-384-5p contributes to C. albicans-induced ALI at least in part by targeting PGC1β and enhancing the activation of the NF-κB, MAPK, and Akt inflammatory signaling pathways. Thus, targeting miR-384-5p might exert a protective effect on C. albicans-induced ALI.
Collapse
Affiliation(s)
- Dandan Yu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chunquan Xu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Hongxiang Tu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Aifang Ye
- Translational Medical Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Lingjian Wu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
5
|
Riboni N, Spadini C, Cabassi CS, Bianchi F, Grolli S, Conti V, Ramoni R, Casoli F, Nasi L, de Julián Fernández C, Luches P, Careri M. OBP-functionalized/hybrid superparamagnetic nanoparticles for Candida albicans treatment. RSC Adv 2021; 11:11256-11265. [PMID: 35423627 PMCID: PMC8695780 DOI: 10.1039/d1ra01112j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Infections caused by the opportunistic yeast Candida albicans are one of the major life threats for hospitalized and immunocompromised patients, as a result of antibiotic and long-term antifungal treatment abuse. Odorant binding proteins can be considered interesting candidates to develop systems able to reduce the proliferation and virulence of this yeast, because of their intrinsic antimicrobial properties and complexation capabilities toward farnesol, the major quorum sensing molecule of Candida albicans. In the present study, a hybrid system characterized by a superparamagnetic iron oxide core functionalized with bovine odorant binding protein (bOBP) was successfully developed. The nanoparticles were designed to be suitable for magnetic protein delivery to inflamed areas of the body. The inorganic superparamagnetic core was characterized by an average diameter of 6.5 ± 1.1 nm and a spherical shape. Nanoparticles were functionalized by using 11-phosphonoundecanoic acid as spacer and linked to bOBP via amide bonds, resulting in a concentration level of 26.0 ± 1.2 mg bOBP/g SPIONs. Finally, both the biocompatibility of the developed hybrid system and the fungistatic activity against Candida albicans by submicromolar OBP levels were demonstrated by in vitro experiments.
Collapse
Affiliation(s)
- Nicolò Riboni
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability Parco Area delle Scienze 17/A 43124 Parma Italy +39 0521 905556 +39 0521 905128 +39 0521 905446
| | - Costanza Spadini
- University of Parma, Department of Veterinary Science Via del Taglio 10 43126 Parma Italy
| | - Clotilde S Cabassi
- University of Parma, Department of Veterinary Science Via del Taglio 10 43126 Parma Italy
| | - Federica Bianchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability Parco Area delle Scienze 17/A 43124 Parma Italy +39 0521 905556 +39 0521 905128 +39 0521 905446
- University of Parma, Interdepartmental Center for Packaging (CIPACK) Parco Area delle Scienze 43124 Parma Italy
| | - Stefano Grolli
- University of Parma, Department of Veterinary Science Via del Taglio 10 43126 Parma Italy
| | - Virna Conti
- University of Parma, Department of Veterinary Science Via del Taglio 10 43126 Parma Italy
| | - Roberto Ramoni
- University of Parma, Department of Veterinary Science Via del Taglio 10 43126 Parma Italy
| | - Francesca Casoli
- Institute of Materials for Electronics and Magnetism Parco Area delle Scienze 37/A 43124 Parma Italy
| | - Lucia Nasi
- Institute of Materials for Electronics and Magnetism Parco Area delle Scienze 37/A 43124 Parma Italy
| | - César de Julián Fernández
- Institute of Materials for Electronics and Magnetism Parco Area delle Scienze 37/A 43124 Parma Italy
| | - Paola Luches
- Center S3, Istituto Nanoscienze, CNR Via G. Campi 213/A 41125 Modena Italy
| | - Maria Careri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability Parco Area delle Scienze 17/A 43124 Parma Italy +39 0521 905556 +39 0521 905128 +39 0521 905446
| |
Collapse
|